Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Understanding mechanisms of antioxidant action in health and disease

Abstract

Several different reactive oxygen species (ROS) are generated in vivo. They have roles in the development of certain human diseases whilst also performing physiological functions. ROS are counterbalanced by an antioxidant defence network, which functions to modulate ROS levels to allow their physiological roles whilst minimizing the oxidative damage they cause that can contribute to disease development. This Review describes the mechanisms of action of antioxidants synthesized in vivo, antioxidants derived from the human diet and synthetic antioxidants developed as therapeutic agents, with a focus on the gaps in our current knowledge and the approaches needed to close them. The Review also explores the reasons behind the successes and failures of antioxidants in treating or preventing human disease. Antioxidants may have special roles in the gastrointestinal tract, and many lifestyle features known to promote health (especially diet, exercise and the control of blood glucose and cholesterol levels) may be acting, at least in part, by antioxidant mechanisms. Certain reactive sulfur species may be important antioxidants but more accurate determinations of their concentrations in vivo are needed to help assess their contributions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Reactive oxygen species–antioxidant balance in vivo.

Similar content being viewed by others

References

  1. Halliwell, B. & Gutteridge, J. M. Free Radicals in Biology and Medicine 5th edn (Clarendon, 2015).

  2. Sies, H. & Jones, D. P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol. 21, 363–383 (2020).

    CAS  PubMed  Google Scholar 

  3. Lennicke, C. & Cochemé, H. M. Redox metabolism: ROS as specific molecular regulators of cell signaling and function. Mol. Cell 81, 3691–3707 (2021).

    CAS  PubMed  Google Scholar 

  4. Forman, H. J. et al. Even free radicals should follow some rules: a guide to free radical research terminology and methodology. Free. Radic. Biol. Med. 78, 233–235 (2015).

    CAS  PubMed  Google Scholar 

  5. Sies, H. et al. Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat. Rev. Mol. Cell Biol. 23, 499–515 (2022).

    CAS  PubMed  Google Scholar 

  6. Halliwell, B. Reflections of an aging free radical. Free. Radic. Biol. Med. 161, 234–245 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Erusalimsky, J. D. & Moncada, S. Nitric oxide and mitochondrial signaling: from physiology to pathophysiology. Arterioscler. Thromb. Vasc. Biol. 27, 2524–2531 (2007).

    CAS  PubMed  Google Scholar 

  8. Eiserich, J. P., Butler, J., van der Vliet, A., Cross, C. E. & Halliwell, B. Nitric oxide rapidly scavenges tyrosine and tryptophan radicals. Biochem. J. 310, 745–749 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Bayır, H. et al. Achieving life through death: redox biology of lipid peroxidation in ferroptosis. Cell Chem. Biol. 27, 387–408 (2020).

    PubMed  PubMed Central  Google Scholar 

  10. Halliwell, B., Adhikary, A., Dingfelder, M. & Dizdaroglu, M. Hydroxyl radical is a significant player in oxidative DNA damage in vivo. Chem. Soc. Rev. 50, 8355–8360 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Dizdaroglu, M., Coskun, E. & Jaruga, P. Measurement of oxidatively induced DNA damage and its repair, by mass spectrometric techniques. Free. Radic. Res. 49, 525–548 (2015).

    CAS  PubMed  Google Scholar 

  12. Davis, S. J. et al. Singlet molecular oxygen: from COIL lasers to photodynamic cancer therapy. J. Phys. Chem. B 127, 2289–2301 (2023).

    CAS  PubMed  Google Scholar 

  13. Li, C., Xue, Y., Ba, X. & Wang, R. The role of 8-oxoG repair systems in tumorigenesis and cancer therapy. Cells 11, 3798 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Halliwell, B. Biochemistry of oxidative stress. Biochem. Soc. Trans. 35, 1147–1149 (2007).

    CAS  PubMed  Google Scholar 

  15. Murphy, M. P. et al. Guidelines for measuring reactive oxygen species and oxidative damage in cells and in vivo. Nat. Metab. 4, 651–662 (2022).

    PubMed  PubMed Central  Google Scholar 

  16. Butterfield, D. A. Ubiquitin carboxyl-terminal hydrolase L-1 in brain: focus on its oxidative/nitrosative modification and role in brains of subjects with Alzheimer disease and mild cognitive impairment. Free Radic. Biol. Med. 177, 278–286 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Bonet-Costa, V., Pomatto, L. C.-D. & Davies, K. J. A. The proteasome and oxidative stress in Alzheimer’s disease. Antioxid. Redox Signal. 25, 886–901 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Meng, J. et al. Precision redox: the key for antioxidant pharmacology. Antioxid. Redox Signal. 34, 1069–1082 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Cadenas, E. & Sies, H. Lester Packer: on his life and his legacy. Antioxid. Redox Signal. 38, 768–774 (2023).

    CAS  PubMed  Google Scholar 

  20. Ursini, F., Maiorino, M. & Forman, H. J. Redox homeostasis: the golden mean of healthy living. Redox Biol. 8, 205–215 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Rhee, S. G. & Woo, H. A. Multiple functions of 2-Cys peroxiredoxins, I and II, and their regulations via post-translational modifications. Free Radic. Biol. Med. 152, 107–115 (2020).

    CAS  PubMed  Google Scholar 

  22. Hu, J., Dong, L. & Outten, C. E. The redox environment in the mitochondrial intermembrane space is maintained separately from the cytosol and matrix. J. Biol. Chem. 283, 29126–29134 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Viña, J. & Borrás, C. Women live longer than men: understanding molecular mechanisms offers opportunities to intervene by using estrogenic compounds. Antioxid. Redox Signal. 13, 269–278 (2010).

    PubMed  Google Scholar 

  24. Giustarini, D., Dalle-Donne, I., Tsikas, D. & Rossi, R. Oxidative stress and human diseases: origin, link, measurement, mechanisms, and biomarkers. Crit. Rev. Clin. Lab. Sci. 46, 241–281 (2009).

    CAS  PubMed  Google Scholar 

  25. Halliwell, B. Free radicals and antioxidants — quo vadis? Trends Pharmacol. Sci. 32, 125–130 (2011).

    CAS  PubMed  Google Scholar 

  26. Frijhoff, J. et al. Clinical relevance of biomarkers of oxidative stress. Antioxid. Redox Signal. 23, 1144–1170 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Lim, J. M., Kim, G. & Levine, R. L. Methionine in proteins: it’s not just for protein initiation anymore. Neurochem. Res. 44, 247–257 (2019).

    CAS  PubMed  Google Scholar 

  28. Han, R.-M., Zhang, J.-P. & Skibsted, L. H. Reaction dynamics of flavonoids and carotenoids as antioxidants. Molecules 17, 2140–2160 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Bohn, T., de Lera, A. R., Landrier, J.-F. & Rühl, R. Carotenoid metabolites, their tissue and blood concentrations in humans and further bioactivity via retinoid receptor-mediated signalling. Nutr. Res. Rev. 16, 1–14 (2022).

    Google Scholar 

  30. Padayatty, S. J. & Levine, M. Vitamin C: the known and the unknown and Goldilocks. Oral. Dis. 22, 463–493 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Traber, M. G. & Head, B. Vitamin E: how much is enough, too much and why! Free Radic. Biol. Med. 177, 212–225 (2021).

    CAS  PubMed  Google Scholar 

  32. Traber, M. G. et al. α-Tocopherol pharmacokinetics in adults with cystic fibrosis: benefits of supplemental vitamin C administration. Nutrients 14, 3717 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Shi, H., Noguchi, N. & Niki, E. Dynamics of antioxidant action of ubiquinol: a reappraisal. Biofactors 9, 141–148 (1999).

    CAS  PubMed  Google Scholar 

  34. Halliwell, B. Oxidative stress and neurodegeneration: where are we now? J. Neurochem. 97, 1634–1658 (2006).

    CAS  PubMed  Google Scholar 

  35. Dielschneider, R. F., Henson, E. S. & Gibson, S. B. Lysosomes as oxidative targets for cancer therapy. Oxid. Med. Cell Longev. 2017, 3749157 (2017).

    PubMed  PubMed Central  Google Scholar 

  36. Brand, M. D. Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling. Free Radic. Biol. Med. 100, 14–31 (2016).

    CAS  PubMed  Google Scholar 

  37. Hirschenson, J., Melgar-Bermudez, E. & Mailloux, R. J. The uncoupling proteins: a systematic review on the mechanism used in the prevention of oxidative stress. Antioxidants 11, 322 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Castejon-Vega, B., Cordero, M. D. & Sanz, A. How the disruption of mitochondrial redox signalling contributes to ageing. Antioxidants 12, 831 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Pedroso, N. et al. Modulation of plasma membrane lipid profile and microdomains by H2O2 in Saccharomyces cerevisiae. Free. Radic. Biol. Med. 46, 289–298 (2009).

    CAS  PubMed  Google Scholar 

  40. Cao, J. L. et al. An endophytic fungus, Piriformospora indica, enhances drought tolerance of trifoliate orange by modulating the antioxidant defense system and composition of fatty acids. Tree Physiol. 43, 452–466 (2023).

    CAS  PubMed  Google Scholar 

  41. Liochev, S. I. & Fridovich, I. Modulation of the fumarases of Escherichia coli in response to oxidative stress. Arch. Biochem. Biophys. 301, 379–384 (1993).

    CAS  PubMed  Google Scholar 

  42. Fridovich, I. Superoxide radical and superoxide dismutases. Annu. Rev. Biochem. 64, 97–112 (1995).

    CAS  PubMed  Google Scholar 

  43. Flohé, L., Toppo, S. & Orian, L. The glutathione peroxidase family: discoveries and mechanism. Free Radic. Biol. Med. 187, 113–122 (2022).

    PubMed  Google Scholar 

  44. Bhaskaran, S. et al. Neuronal deletion of MnSOD in mice leads to demyelination, inflammation and progressive paralysis that mimics phenotypes associated with progressive multiple sclerosis. Redox Biol. 59, 102550 (2023).

    CAS  PubMed  Google Scholar 

  45. Halliwell, B. & Gutteridge, J. M. The antioxidants of human extracellular fluids. Arch. Biochem. Biophys. 280, 1–8 (1990).

    CAS  PubMed  Google Scholar 

  46. O’Connell, M. et al. Formation of hydroxyl radicals in the presence of ferritin and haemosiderin. Is haemosiderin formation a biological protective mechanism? Biochem. J. 234, 727–731 (1986).

    PubMed  PubMed Central  Google Scholar 

  47. Winterbourn, C. C. & Metodiewa, D. Reactivity of biologically important thiol compounds with superoxide and hydrogen peroxide. Free Radic. Biol. Med. 27, 322–328 (1999).

    CAS  PubMed  Google Scholar 

  48. Lim, J. C., Suzuki-Kerr, H., Nguyen, T. X., Lim, C. J. J. & Poulsen, R. C. Redox homeostasis in ocular tissues: circadian regulation of glutathione in the lens? Antioxidants 11, 1516 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Amponsah, P. S. et al. Peroxiredoxins couple metabolism and cell division in an ultradian cycle. Nat. Chem. Biol. 17, 477–484 (2021).

    CAS  PubMed  Google Scholar 

  50. Rice-Evans, C. A., Miller, N. J. & Paganga, G. Structure–antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 20, 933–956 (1996).

    CAS  PubMed  Google Scholar 

  51. Halliwell, B., Tang, R. M. Y. & Cheah, I. K. Diet-derived antioxidants: the special case of ergothioneine. Annu. Rev. Food Sci. Technol. 14, 323–345 (2023).

    CAS  PubMed  Google Scholar 

  52. Williamson, G., Kay, C. D. & Crozier, A. The bioavailability, transport, and bioactivity of dietary flavonoids: a review from a historical perspective. Compr. Rev. Food Sci. Food Saf. 17, 1054–1112 (2018).

    PubMed  Google Scholar 

  53. Chen, J. et al. Plant-derived polyphenols as Nrf2 activators to counteract oxidative stress and intestinal toxicity induced by deoxynivalenol in swine: an emerging research direction. Antioxidants 11, 2379 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Roberts, J. E. & Dennison, J. The photobiology of lutein and zeaxanthin in the eye. J. Ophthalmol. 2015, 687173 (2015).

    PubMed  PubMed Central  Google Scholar 

  55. Goodman, D. & Ness, S. The role of oxidative stress in the aging eye. Life 13, 837 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Wu, L. Y. et al. Low plasma ergothioneine predicts cognitive and functional decline in an elderly cohort attending memory clinics. Antioxidants 11, 1717 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Huang, J., Weinstein, S. J., Yu, K., Männistö, S. & Albanes, D. Relationship between serum α-tocopherol and overall and cause-specific mortality. Circ. Res. 125, 29–40 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Hantikainen, E. et al. Dietary antioxidants and the risk of Parkinson disease: the Swedish national march cohort. Neurology 96, e895–e903 (2021).

    CAS  PubMed  Google Scholar 

  59. Salo, P. M. et al. Serum antioxidant vitamins and respiratory morbidity and mortality: a pooled analysis. Respir. Res. 23, 150 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Beydoun, M. A. et al. Association of serum antioxidant vitamins and carotenoids with incident Alzheimer disease and all-cause dementia among US adults. Neurology 98, e2150–e2162 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Jiang, Y. W. et al. Dietary intake and circulating concentrations of carotenoids and risk of type 2 diabetes: a dose–response meta-analysis of prospective observational studies. Adv. Nutr. 12, 1723–1733 (2021).

    PubMed  PubMed Central  Google Scholar 

  62. McKay, G. J. et al. Association of low plasma antioxidant levels with all-cause mortality and coronary events in healthy middle-aged men from France and Northern Ireland in the PRIME study. Eur. J. Nutr. 60, 2631–2641 (2021).

    CAS  PubMed  Google Scholar 

  63. Levine, M. et al. Vitamin C pharmacokinetics in healthy volunteers: evidence for a recommended dietary allowance. Proc. Natl Acad. Sci. USA 93, 3704–3709 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Gutteridge, J. M. C. & Halliwell, B. Antioxidants: molecules, medicines, and myths. Biochem. Biophys. Res. Commun. 393, 561–564 (2010).

    CAS  PubMed  Google Scholar 

  65. Waring, A. J. & Schorah, C. J. Transport of ascorbic acid in gastric epithelial cells in vitro. Clin. Chim. Acta 275, 137–149 (1998).

    CAS  PubMed  Google Scholar 

  66. Halliwell, B., Zhao, K. & Whiteman, M. The gastrointestinal tract: a major site of antioxidant action? Free Radic. Res. 33, 819–830 (2000).

    CAS  PubMed  Google Scholar 

  67. Gorelik, S., Ligumsky, M., Kohen, R. & Kanner, J. The stomach as a ‘bioreactor’: when red meat meets red wine. J. Agric. Food Chem. 56, 5002–5007 (2008).

    CAS  PubMed  Google Scholar 

  68. Rabkin, B., Tirosh, O. & Kanner, J. Reactivity of vitamin E as an antioxidant in red meat and the stomach medium. J. Agric. Food Chem. 70, 12172–12179 (2022).

    CAS  PubMed  Google Scholar 

  69. Yong, W. J. et al. Possible genetic risks from heat-damaged DNA in food. ACS Cent. Sci. 9, 1170–1179 (2023).

    Google Scholar 

  70. Rosier, B. T. et al. The importance of nitrate reduction for oral health. J. Dent. Res. 101, 887–897 (2022).

    CAS  PubMed  Google Scholar 

  71. Zhao, K., Whiteman, M., Spencer, J. & Halliwell, B. DNA damage by nitrite and peroxynitrite: protection by dietary phenols. Meth. Enzymol. 335, 296–307 (2001).

    CAS  Google Scholar 

  72. Halliwell, B., Clement, M. V. & Long, L. H. Hydrogen peroxide in the human body. FEBS Lett. 486, 10–13 (2000).

    CAS  PubMed  Google Scholar 

  73. Cross, C. E., Halliwell, B. & Allen, A. Antioxidant protection: a function of tracheobronchial and gastrointestinal mucus. Lancet 1, 1328–1330 (1984).

    CAS  PubMed  Google Scholar 

  74. Scarano, A. et al. The chelating ability of plant polyphenols can affect iron homeostasis and gut microbiota. Antioxidants 12, 630 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Gebicka, L. & Banasiak, E. Flavonoids as reductants of ferryl hemoglobin. Acta Biochim. Pol. 56, 509–513 (2009).

    CAS  PubMed  Google Scholar 

  76. Arduini, A. et al. Reduction of sperm whale ferrylmyoglobin by endogenous reducing agents: potential reducible loci of ferrylmyoglobin. Free Radic. Biol. Med. 13, 449–454 (2009).

    Google Scholar 

  77. Halliwell, B. The wanderings of a free radical. Free Radic. Biol. Med. 46, 531–542 (2009).

    CAS  PubMed  Google Scholar 

  78. Pérez, S., Taléns-Visconti, R., Rius-Pérez, S., Finamor, I. & Sastre, J. Redox signaling in the gastrointestinal tract. Free Radic. Biol. Med. 104, 75–103 (2017).

    PubMed  Google Scholar 

  79. Naliyadhara, N. et al. Interplay of dietary antioxidants and gut microbiome in human health: what has been learnt thus far? J. Funct. Foods 100, 105365 (2023).

    CAS  Google Scholar 

  80. Lippolis, T., Cofano, M., Caponio, G. R., De Nunzio, V. & Notarnicola, M. Bioaccessibility and bioavailability of diet polyphenols and their modulation of gut microbiota. Int. J. Mol. Sci. 24, 3813 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Perler, B. K., Friedman, E. S. & Wu, G. D. The role of the gut microbiota in the relationship between diet and human health. Annu. Rev. Physiol. 85, 449–468 (2023).

    CAS  PubMed  Google Scholar 

  82. Osborn, L. J. et al. A gut microbial metabolite of dietary polyphenols reverses obesity-driven hepatic steatosis. Proc. Natl Acad. Sci. USA 119, e2202934119 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. García-Villalba, R. et al. Ellagitannins, urolithins, and neuroprotection: human evidence and the possible link to the gut microbiota. Mol. Asp. Med. 89, 101109 (2023).

    Google Scholar 

  84. Rocha, H. R. et al. Carotenoids diet: digestion, gut microbiota modulation, and inflammatory diseases. Nutrients 15, 2265 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Dumitrescu, D. G. et al. A microbial transporter of the dietary antioxidant ergothioneine. Cell 185, 4526–4540.e18 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Cheah, I. K. et al. Does Lactobacillus reuteri influence ergothioneine levels in the human body? FEBS Lett. 596, 1241–1251 (2022).

    CAS  PubMed  Google Scholar 

  87. Zhang, Y. et al. Discovery and structure of a widespread bacterial ABC transporter specific for ergothioneine. Nat. Commun. 13, 7586 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. D’Onofrio, N. et al. Diet-derived ergothioneine induces necroptosis in colorectal cancer cells by activating the SIRT3/MLKL pathway. FEBS Lett. 596, 1313–1329 (2022).

    PubMed  Google Scholar 

  89. Forman, H. J. & Zhang, H. Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov. 20, 689–709 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Casas, A. I. et al. On the clinical pharmacology of reactive oxygen species. Pharmacol. Rev. 72, 801–828 (2020).

    CAS  PubMed  Google Scholar 

  91. Firsov, A. M. et al. Deuterated polyunsaturated fatty acids inhibit photoirradiation-induced lipid peroxidation in lipid bilayers. J. Photochem. Photobiol. B 229, 112425 (2022).

    CAS  PubMed  Google Scholar 

  92. Shchepinov, M. S. Polyunsaturated fatty acid deuteration against neurodegeneration. Trends Pharmacol. Sci. 41, 236–248 (2020).

    CAS  PubMed  Google Scholar 

  93. Giustarini, D., Milzani, A., Dalle-Donne, I. & Rossi, R. How to increase cellular glutathione. Antioxidants 12, 1094 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Sylvester, A. L., Zhang, D. X., Ran, S. & Zinkevich, N. S. Inhibiting NADPH oxidases to target vascular and other pathologies: an update on recent experimental and clinical studies. Biomolecules 12, 823 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Kusano, T. et al. Targeted knock-in mice expressing the oxidase-fixed form of xanthine oxidoreductase favor tumor growth. Nat. Commun. 10, 4904 (2019).

    PubMed  PubMed Central  Google Scholar 

  96. Bhawna et al. Monoamine oxidase inhibitors: a concise review with special emphasis on structure activity relationship studies. Eur. J. Med. Chem. 242, 114655 (2022).

    CAS  PubMed  Google Scholar 

  97. Halliwell, B., Evans, P. J., Kaur, H. & Chirico, S. Drug-derived radicals. Mediators of the side-effects of anti-inflammatory drugs? Ann. Rheum. Dis. 51, 1261–1263 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Halliwell, B. Antioxidant characterization. Methodology and mechanism. Biochem. Pharmacol. 49, 1341–1348 (1995).

    CAS  PubMed  Google Scholar 

  99. Marshall, K. A., Reiter, R. J., Poeggeler, B., Aruoma, O. I. & Halliwell, B. Evaluation of the antioxidant activity of melatonin in vitro. Free Radic. Biol. Med. 21, 307–315 (1996).

    CAS  PubMed  Google Scholar 

  100. Larsen, E. L., Weimann, A. & Poulsen, H. E. Interventions targeted at oxidatively generated modifications of nucleic acids focused on urine and plasma markers. Free Radic. Biol. Med. 145, 256–283 (2019).

    CAS  PubMed  Google Scholar 

  101. Azzi, A. Reflections on a century of vitamin E research: looking at the past with an eye on the future. Free Radic. Biol. Med. 175, 155–160 (2021).

    CAS  PubMed  Google Scholar 

  102. O’Reilly, J. D. et al. Consumption of flavonoids in onions and black tea: lack of effect on F2-isoprostanes and autoantibodies to oxidized LDL in healthy humans. Am. J. Clin. Nutr. 73, 1040–1044 (2001).

    PubMed  Google Scholar 

  103. Kietzmann, T. Vitamin C: from nutrition to oxygen sensing and epigenetics. Redox Biol. 63, 102753 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Pearson, A. G. et al. Peroxiredoxin 2 oxidation reveals hydrogen peroxide generation within erythrocytes during high-dose vitamin C administration. Redox Biol. 43, 101980 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Halliwell, B. Artefacts with ascorbate and other redox-active compounds in cell culture: epigenetic modifications, and cell killing due to hydrogen peroxide generation in cell culture media. Free Radic. Res. 52, 907–909 (2018).

    CAS  PubMed  Google Scholar 

  106. Cross, C. E., van der Vliet, A., O’Neill, C. A., Louie, S. & Halliwell, B. Oxidants, antioxidants, and respiratory tract lining fluids. Environ. Health Perspect. 102, 185–191 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Kotha, R. R., Tareq, F. S., Yildiz, E. & Luthria, D. L. Oxidative stress and antioxidants — a critical review on in vitro antioxidant assays. Antioxidants 11, 2388 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Lotito, S. B. & Frei, B. Consumption of flavonoid-rich foods and increased plasma antioxidant capacity in humans: cause, consequence, or epiphenomenon? Free Radic. Biol. Med. 41, 1727–1746 (2006).

    CAS  PubMed  Google Scholar 

  109. Halliwell, B. Plasma antioxidants. Health benefits of eating chocolate? Nature 426, 787 (2003).

    CAS  PubMed  Google Scholar 

  110. Pompella, A. et al. The use of total antioxidant capacity as surrogate marker for food quality and its effect on health is to be discouraged. Nutrition 30, 791–793 (2014).

    CAS  PubMed  Google Scholar 

  111. Sanderson, S. M., Gao, X., Dai, Z. & Locasale, J. W. Methionine metabolism in health and cancer: a nexus of diet and precision medicine. Nat. Rev. Cancer 19, 625–637 (2019).

    CAS  PubMed  Google Scholar 

  112. Badgley, M. A. et al. Cysteine depletion induces pancreatic tumor ferroptosis in mice. Science 368, 85–89 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Cui, C., Yang, F. & Li, Q. Post-translational modification of GPX4 is a promising target for treating ferroptosis-related diseases. Front. Mol. Biosci. 9, 901565 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Glasauer, A., Sena, L. A., Diebold, L. P., Mazar, A. P. & Chandel, N. S. Targeting SOD1 reduces experimental non-small-cell lung cancer. J. Clin. Invest. 124, 117–128 (2014).

    CAS  PubMed  Google Scholar 

  115. Lv, C. et al. Ainsliadimer A induces ROS-mediated apoptosis in colorectal cancer cells via directly targeting peroxiredoxin 1 and 2. Cell Chem. Biol. 30, 295–307.e5 (2023).

    CAS  PubMed  Google Scholar 

  116. Milton, V. J. & Sweeney, S. T. Oxidative stress in synapse development and function. Dev. Neurobiol. 72, 100–110 (2012).

    CAS  PubMed  Google Scholar 

  117. Yi, J. H. et al. Postsynaptic p47phox regulates long-term depression in the hippocampus. Cell Discov. 4, 44 (2018).

    PubMed  PubMed Central  Google Scholar 

  118. Kishida, K. T. et al. Synaptic plasticity deficits and mild memory impairments in mouse models of chronic granulomatous disease. Mol. Cell Biol. 26, 5908–5920 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Shah, M. S. & Brownlee, M. Molecular and cellular mechanisms of cardiovascular disorders in diabetes. Circ. Res. 118, 1808–1829 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Martini, D. et al. What is the current direction of the research on carotenoids and human health? An overview of registered clinical trials. Nutrients 14, 1191 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Heyland, D. et al. A randomized trial of glutamine and antioxidants in critically ill patients. N. Engl. J. Med. 368, 1489–1497 (2013).

    CAS  PubMed  Google Scholar 

  122. Goodman, M., Bostick, R. M., Kucuk, O. & Jones, D. P. Clinical trials of antioxidants as cancer prevention agents: past, present, and future. Free. Radic. Biol. Med. 51, 1068–1084 (2011).

    CAS  PubMed  Google Scholar 

  123. Praticò, D. Evidence of oxidative stress in Alzheimer’s disease brain and antioxidant therapy: lights and shadows. Ann. N. Y. Acad. Sci. 1147, 70–78 (2008).

    PubMed  Google Scholar 

  124. Kryscio, R. J. et al. Association of antioxidant supplement use and dementia in the Prevention of Alzheimer’s Disease by Vitamin E and Selenium trial (PREADViSE). JAMA Neurol. 74, 567–573 (2017).

    PubMed  PubMed Central  Google Scholar 

  125. Polidori, M. C. & Nelles, G. Antioxidant clinical trials in mild cognitive impairment and Alzheimer’s disease — challenges and perspectives. Curr. Pharm. Des. 20, 3083–3092 (2014).

    CAS  PubMed  Google Scholar 

  126. Lloret, A. et al. Vitamin E paradox in Alzheimer’s disease: it does not prevent loss of cognition and may even be detrimental. J. Alzheimers Dis. 17, 143–149 (2009).

    CAS  PubMed  Google Scholar 

  127. US Preventive Services Task Force et al. Vitamin, mineral, and multivitamin supplementation to prevent cardiovascular disease and cancer: US Preventive Services Task Force Recommendation Statement. J. Am. Med. Assoc. 327, 2326–2333 (2022).

    Google Scholar 

  128. Mason, S. A., Parker, L., van der Pligt, P. & Wadley, G. D. Vitamin C supplementation for diabetes management: a comprehensive narrative review. Free Radic. Biol. Med. 194, 255–283 (2023).

    CAS  PubMed  Google Scholar 

  129. Al-Khudairy, L. et al. Vitamin C supplementation for the primary prevention of cardiovascular disease. Cochrane Database Syst. Rev. 3, CD011114 (2017).

    PubMed  Google Scholar 

  130. Gontero, P. et al. A randomized double-blind placebo controlled phase I–II study on clinical and molecular effects of dietary supplements in men with precancerous prostatic lesions. Chemoprevention or ‘chemopromotion’? Prostate 75, 1177–1186 (2015).

    CAS  PubMed  Google Scholar 

  131. Somer, S. & Levy, A. P. The role of haptoglobin polymorphism in cardiovascular disease in the setting of diabetes. Int. J. Mol. Sci. 22, 287 (2020).

    PubMed  PubMed Central  Google Scholar 

  132. Krejbich, P. & Birringer, M. The self-administered use of complementary and alternative medicine (CAM) supplements and antioxidants in cancer therapy and the critical role of Nrf-2 — a systematic review. Antioxidants 11, 2149 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Klein, E. A. et al. Vitamin E and the risk of prostate cancer: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). J. Am. Med. Assoc. 306, 1549–1556 (2011).

    CAS  Google Scholar 

  134. Albanes, D. et al. α-Tocopherol and β-carotene supplements and lung cancer incidence in the α-Tocopherol, β-Carotene Cancer Prevention study: effects of base-line characteristics and study compliance. J. Natl Cancer Inst. 88, 1560–1570 (1996).

    CAS  PubMed  Google Scholar 

  135. Zou, Z. V. et al. Antioxidants promote intestinal tumor progression in mice. Antioxidants 10, 241 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Wiel, C. et al. BACH1 stabilization by antioxidants stimulates lung cancer metastasis. Cell 178, 330–345 (2019).

    CAS  PubMed  Google Scholar 

  137. Kashif, M. et al. ROS-lowering doses of vitamins C and A accelerate malignant melanoma metastasis. Redox Biol. 60, 102619 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Breau, M. et al. The antioxidant N-acetylcysteine protects from lung emphysema but induces lung adenocarcinoma in mice. JCI Insight 4, e127647 (2019).

    PubMed  PubMed Central  Google Scholar 

  139. Halliwell, B. Free radicals, antioxidants and human disease: curiosity, cause or consequence? Lancet 344, 721–724 (1994).

    CAS  PubMed  Google Scholar 

  140. Mattson, M. P. Hormesis defined. Ageing Res. Rev. 7, 1–7 (2008).

    CAS  PubMed  Google Scholar 

  141. Sun, J. Z., Kaur, H., Halliwell, B., Li, X. Y. & Bolli, R. Use of aromatic hydroxylation of phenylalanine to measure production of hydroxyl radicals after myocardial ischemia in vivo. Direct evidence for a pathogenetic role of the hydroxyl radical in myocardial stunning. Circ. Res. 73, 534–549 (1993).

    CAS  PubMed  Google Scholar 

  142. Tang, X. L. et al. Oxidant species trigger late preconditioning against myocardial stunning in conscious rabbits. Am. J. Physiol. Heart Circ. Physiol. 282, H281–H291 (2002).

    CAS  PubMed  Google Scholar 

  143. Manda, G. et al. Pros and cons of NRF2 activation as adjunctive therapy in rheumatoid arthritis. Free Radic. Biol. Med. 190, 179–201 (2022).

    CAS  PubMed  Google Scholar 

  144. Halliwell, B., Hoult, J. R. & Blake, D. R. Oxidants, inflammation, and anti-inflammatory drugs. FASEB J. 2, 2867–2873 (1988).

    CAS  PubMed  Google Scholar 

  145. Hultqvist, M., Olsson, L. M., Gelderman, K. A. & Holmdahl, R. The protective role of ROS in autoimmune disease. Trends Immunol. 30, 201–208 (2009).

    CAS  PubMed  Google Scholar 

  146. Zhong, J. et al. Association of NOX2 subunits genetic variants with autoimmune diseases. Free Radic. Biol. Med. 125, 72–80 (2018).

    CAS  PubMed  Google Scholar 

  147. Nunoi, H., Nakamura, H., Nishimura, T. & Matsukura, M. Recent topics and advanced therapies in chronic granulomatous disease. Hum. Cell 36, 515–527 (2023).

    CAS  PubMed  Google Scholar 

  148. Goh, J., Wong, E., Soh, J., Maier, A. B. & Kennedy, B. K. Targeting the molecular & cellular pillars of human aging with exercise. FEBS J. 290, 649–668 (2023).

    CAS  PubMed  Google Scholar 

  149. Jackson, M. J. Monitoring of hydrogen peroxide and other reactive oxygen and nitrogen species generated by skeletal muscle. Methods Enzymol. 528, 279–300 (2013).

    CAS  PubMed  Google Scholar 

  150. O’Neill, C. A., Stebbins, C. L., Bonigut, S., Halliwell, B. & Longhurst, J. C. Production of hydroxyl radicals in contracting skeletal muscle of cats. J. Appl. Physiol. 81, 1197–1206 (1996).

    PubMed  Google Scholar 

  151. Jordan, A. C., Perry, C. G. R. & Cheng, A. J. Promoting a pro-oxidant state in skeletal muscle: potential dietary, environmental, and exercise interventions for enhancing endurance-training adaptations. Free Radic. Biol. Med. 176, 189–202 (2021).

    CAS  PubMed  Google Scholar 

  152. Gomez-Cabrera, M. C., Salvador-Pascual, A., Cabo, H., Ferrando, B. & Viña, J. Redox modulation of mitochondriogenesis in exercise. Does antioxidant supplementation blunt the benefits of exercise training? Free Radic. Biol. Med. 86, 37–46 (2015).

    CAS  PubMed  Google Scholar 

  153. Merry, T. L. & Ristow, M. Do antioxidant supplements interfere with skeletal muscle adaptation to exercise training? J. Physiol. 594, 5135–5147 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Mason, S. A., Trewin, A. J., Parker, L. & Wadley, G. D. Antioxidant supplements and endurance exercise: current evidence and mechanistic insights. Redox Biol. 35, 101471 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Masenga, S. K., Kabwe, L. S., Chakulya, M. & Kirabo, A. Mechanisms of oxidative stress in metabolic syndrome. Int. J. Mol. Sci. 24, 7898 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Butterfield, D. A. & Halliwell, B. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat. Rev. Neurosci. 20, 148–160 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Butterfield, D. A. Oxidative stress in brain in amnestic mild cognitive impairment. Antioxidants 12, 462 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Bradley-Whitman, M. A. et al. Nucleic acid oxidation: an early feature of Alzheimer’s disease. J. Neurochem. 128, 294–304 (2014).

    CAS  PubMed  Google Scholar 

  159. Martins, R. N. et al. Alzheimer’s disease: a journey from amyloid peptides and oxidative stress, to biomarker technologies and disease prevention strategies — gains from AIBL and DIAN cohort studies. J. Alzheimers Dis. 62, 965–992 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Xie, H. et al. Rapid cell death is preceded by amyloid plaque-mediated oxidative stress. Proc. Natl Acad. Sci. USA 110, 7904–7909 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Fujikawa, R. & Tsuda, M. The functions and phenotypes of microglia in Alzheimer’s disease. Cells 12, 1207 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Giraldo, E., Lloret, A., Fuchsberger, T. & Viña, J. Aβ and tau toxicities in Alzheimer’s are linked via oxidative stress-induced p38 activation: protective role of vitamin E. Redox Biol. 2, 873–877 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Whitmore, C. A. et al. Longitudinal consumption of ergothioneine reduces oxidative stress and amyloid plaques and restores glucose metabolism in the 5XFAD mouse model of Alzheimer’s disease. Pharmaceuticals 15, 742 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Cheah, I. K. et al. Inhibition of amyloid-induced toxicity by ergothioneine in a transgenic Caenorhabditis elegans model. FEBS Lett. 593, 2139–2150 (2019).

    CAS  PubMed  Google Scholar 

  165. Reutens, A. T. et al. A physician-initiated double-blind, randomised, placebo-controlled, phase 2 study evaluating the efficacy and safety of inhibition of NADPH oxidase with the first-in-class Nox-1/4 inhibitor, GKT137831, in adults with type 1 diabetes and persistently elevated urinary albumin excretion: protocol and statistical considerations. Contemp. Clin. Trials 90, 105892 (2020).

    PubMed  Google Scholar 

  166. Rossman, M. J., Gioscia-Ryan, R. A., Clayton, Z. S., Murphy, M. P. & Seals, D. R. Targeting mitochondrial fitness as a strategy for healthy vascular aging. Clin. Sci. 134, 1491–1519 (2020).

    CAS  Google Scholar 

  167. Mason, S. A., Wadley, G. D., Keske, M. A. & Parker, L. Effect of mitochondrial-targeted antioxidants on glycaemic control, cardiovascular health, and oxidative stress in humans: a systematic review and meta-analysis of randomized controlled trials. Diabetes Obes. Metab. 24, 1047–1060 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Visioli, F., Ingram, A., Beckman, J. S., Magnusson, K. R. & Hagen, T. M. Strategies to protect against age-related mitochondrial decay: do natural products and their derivatives help? Free Radic. Biol. Med. 178, 330–346 (2022).

    CAS  PubMed  Google Scholar 

  169. Devos, D. et al. Trial of deferiprone in Parkinson’s disease. N. Engl. J. Med. 387, 2045–2055 (2022).

    CAS  PubMed  Google Scholar 

  170. Foster, L. et al. Effect of deferoxamine on trajectory of recovery after intracerebral hemorrhage: a post hoc analysis of the i-DEF trial. Stroke 53, 2204–2210 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Kupershmidt, L. & Youdim, M. B. H. The neuroprotective activities of the novel multi-target iron-chelators in models of Alzheimer’s disease, amyotrophic lateral sclerosis and aging. Cells 12, 763 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Batinic-Haberle, I. et al. H2O2-driven anticancer activity of Mn porphyrins and the underlying molecular pathways. Oxid. Med. Cell Longev. 2021, 6653790 (2021).

    PubMed  PubMed Central  Google Scholar 

  173. Crow, J. Commentary on: catalytic antioxidants to treat amyotrophic lateral sclerosis. Arch. Clin. Toxicol. 4, 1–4 (2022).

    Google Scholar 

  174. Gentinetta, T. et al. Plasma-derived hemopexin as a candidate therapeutic agent for acute vaso-occlusion in sickle cell disease: preclinical evidence. J. Clin. Med. 11, 630 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Snow, B. J. et al. A double-blind, placebo-controlled study to assess the mitochondria-targeted antioxidant MitoQ as a disease-modifying therapy in Parkinson’s disease. Mov. Disord. 25, 1670–1674 (2010).

    PubMed  Google Scholar 

  176. Sies, H. & Parnham, M. J. Potential therapeutic use of ebselen for COVID-19 and other respiratory viral infections. Free Radic. Biol. Med. 156, 107–112 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Ramli, F. F., Cowen, P. J. & Godlewska, B. R. The potential use of ebselen in treatment-resistant depression. Pharmaceuticals 15, 485 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Zhang, H. et al. Hepcidin promoted ferroptosis through iron metabolism which is associated with DMT1 signaling activation in early brain injury following subarachnoid hemorrhage. Oxid. Med. Cell Longev. 2021, 9800794 (2021).

    PubMed  PubMed Central  Google Scholar 

  179. Sahoo, P. et al. Detailed insights into the inhibitory mechanism of new ebselen derivatives against main protease (Mpro) of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). ACS Pharmacol. Transl. Sci. 6, 171–180 (2023).

    CAS  PubMed  Google Scholar 

  180. Beckman, J. A., Goldfine, A. B., Leopold, J. A. & Creager, M. A. Ebselen does not improve oxidative stress and vascular function in patients with diabetes: a randomized, crossover trial. Am. J. Physiol. Heart Circ. Physiol. 311, H1431–H1436 (2016).

    PubMed  PubMed Central  Google Scholar 

  181. Kobayashi, S., Fukuma, S., Ikenoue, T., Fukuhara, S. & Kobayashi, S. Effect of edaravone on neurological symptoms in real-world patients with acute ischemic stroke. Stroke 50, 1805–1811 (2019).

    CAS  PubMed  Google Scholar 

  182. Soares, P. et al. Drug discovery and amyotrophic lateral sclerosis: emerging challenges and therapeutic opportunities. Ageing Res. Rev. 83, 101790 (2023).

    CAS  PubMed  Google Scholar 

  183. Tabrizchi, R. Edaravone Mitsubishi-Tokyo. Curr. Opin. Investig. Drugs 1, 347–354 (2000).

    CAS  PubMed  Google Scholar 

  184. Guo, J., Tuo, Q.-Z. & Lei, P. Iron, ferroptosis, and ischemic stroke. J. Neurochem. 165, 487–520 (2023).

    CAS  PubMed  Google Scholar 

  185. Ramachandran, A. & Jaeschke, H. Oxidant stress and acetaminophen hepatotoxicity: mechanism-based drug development. Antioxid. Redox Signal. 35, 718–733 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Šalamon, Š., Kramar, B., Marolt, T. P., Poljšak, B. & Milisav, I. Medical and dietary uses of N-acetylcysteine. Antioxidants 8, 111 (2019).

    PubMed  PubMed Central  Google Scholar 

  187. Tsikas, D. & Mikuteit, M. N-Acetyl-l-cysteine in human rheumatoid arthritis and its effects on nitric oxide (NO) and malondialdehyde (MDA): analytical and clinical considerations. Amino Acids 54, 1251–1260 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Skov, M. et al. The effect of short-term, high-dose oral N-acetylcysteine treatment on oxidative stress markers in cystic fibrosis patients with chronic P. aeruginosa infection — a pilot study. J. Cyst. Fibros. 14, 211–218 (2015).

    CAS  PubMed  Google Scholar 

  189. Childs, A., Jacobs, C., Kaminski, T., Halliwell, B. & Leeuwenburgh, C. Supplementation with vitamin C and N-acetyl-cysteine increases oxidative stress in humans after an acute muscle injury induced by eccentric exercise. Free Radic. Biol. Med. 31, 745–753 (2001).

    CAS  PubMed  Google Scholar 

  190. Aruoma, O. I., Halliwell, B., Hoey, B. M. & Butler, J. The antioxidant action of N-acetylcysteine: its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid. Free Radic. Biol. Med. 6, 593–597 (1989).

    CAS  PubMed  Google Scholar 

  191. Hayakawa, M. et al. Evidence that reactive oxygen species do not mediate NF-κB activation. EMBO J. 22, 3356–3366 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Mlejnek, P. Direct interaction between N-acetylcysteine and cytotoxic electrophile — an overlooked in vitro mechanism of protection. Antioxidants 11, 1485 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Pedre, B., Barayeu, U., Ezeriņa, D. & Dick, T. P. The mechanism of action of N-acetylcysteine (NAC): the emerging role of H2S and sulfane sulfur species. Pharmacol. Ther. 228, 107916 (2021).

    CAS  PubMed  Google Scholar 

  194. Ezeriņa, D., Takano, Y., Hanaoka, K., Urano, Y. & Dick, T. P. N-Acetylcysteine functions as a fast-acting antioxidant by triggering intracellular H2S and sulfane sulfur production. Cell Chem. Biol. 25, 447–459 (2018).

    PubMed  PubMed Central  Google Scholar 

  195. Oliva, A., Pallecchi, L., Rossolini, G. M., Travaglino, F. & Zanatta, P. Rationale and evidence for the adjunctive use of N-acetylcysteine in multidrug-resistant infections. Eur. Rev. Med. Pharmacol. Sci. 27, 4316–4325 (2023).

    CAS  PubMed  Google Scholar 

  196. Lingappan, K. NF-κB in oxidative stress. Curr. Opin. Toxicol. 7, 81–86 (2018).

    PubMed  Google Scholar 

  197. Sivandzade, F., Prasad, S., Bhalerao, A. & Cucullo, L. NRF2 and NF-κB interplay in cerebrovascular and neurodegenerative disorders: molecular mechanisms and possible therapeutic approaches. Redox Biol. 21, 101059 (2019).

    CAS  PubMed  Google Scholar 

  198. Wardyn, J. D., Ponsford, A. H. & Sanderson, C. M. Dissecting molecular cross-talk between Nrf2 and NF-κB response pathways. Biochem. Soc. Trans. 43, 621–626 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Krafczyk, N. & Klotz, L.-O. FOXO transcription factors in antioxidant defense. IUBMB Life 74, 53–61 (2022).

    CAS  PubMed  Google Scholar 

  200. Labuschagne, C. F., Zani, F. & Vousden, K. H. Control of metabolism by p53 — cancer and beyond. Biochim. Biophys. Acta Rev. Cancer 1870, 32–42 (2018).

    CAS  PubMed  Google Scholar 

  201. Hayes, J. D., Dinkova-Kostova, A. T. & Tew, K. D. Oxidative stress in cancer. Cancer Cell 38, 167–197 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Rius-Pérez, S. et al. PGC-1α, inflammation, and oxidative stress: an integrative view in metabolism. Oxid. Med. Cell Longev. 2020, 1452696 (2020).

    PubMed  PubMed Central  Google Scholar 

  203. Tao, R. et al. Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress. Mol. Cell 40, 893–904 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Anamika, Roy, A. & Trigun, S. K. Hippocampus mitochondrial MnSOD activation by a SIRT3 activator, honokiol, correlates with its deacetylation and upregulation of FoxO3a and PGC1α in a rat model of ammonia neurotoxicity. J. Cell Biochem. 124, 606–618 (2023).

    CAS  PubMed  Google Scholar 

  205. Wang, R. et al. Reactive oxygen species and NRF2 signaling, friends or foes in cancer? Biomolecules 13, 353 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Robertson, H., Dinkova-Kostova, A. T. & Hayes, J. D. NRF2 and the ambiguous consequences of its activation during initiation and the subsequent stages of tumourigenesis. Cancers 12, 3609 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Lu, M.-C., Ji, J.-A., Jiang, Z.-Y. & You, Q.-D. The Keap1–Nrf2–ARE pathway as a potential preventive and therapeutic target: an update. Med. Res. Rev. 36, 924–963 (2016).

    CAS  PubMed  Google Scholar 

  208. Yumimoto, K., Sugiyama, S., Motomura, S., Takahashi, D. & Nakayama, K. I. Molecular evolution of Keap1 was essential for adaptation of vertebrates to terrestrial life. Sci. Adv. 9, eadg2379 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Ramsey, C. P. et al. Expression of Nrf2 in neurodegenerative diseases. J. Neuropathol. Exp. Neurol. 66, 75–85 (2007).

    CAS  PubMed  Google Scholar 

  210. Uruno, A. & Yamamoto, M. The KEAP1–NRF2 system and neurodegenerative diseases. Antioxid. Redox Signal. 38, 974–988 (2023).

    CAS  PubMed  Google Scholar 

  211. Michaličková, D. et al. Edaravone attenuates disease severity of experimental auto-immune encephalomyelitis and increases gene expression of Nrf2 and HO-1. Physiol. Res. 71, 147–157 (2022).

    PubMed  PubMed Central  Google Scholar 

  212. Wu, Y. et al. Ebselen ameliorates renal ischemia–reperfusion injury via enhancing autophagy in rats. Mol. Cell Biochem. 477, 1873–1885 (2022).

    CAS  PubMed  Google Scholar 

  213. Egbujor, M. C., Petrosino, M., Zuhra, K. & Saso, L. The role of organosulfur compounds as Nrf2 activators and their antioxidant effects. Antioxidants 11, 1255 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Tanase, D. M. et al. Oxidative stress and NRF2/KEAP1/ARE pathway in diabetic kidney disease (DKD): new perspectives. Biomolecules 12, 1227 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Robledinos-Antón, N., Fernández-Ginés, R., Manda, G. & Cuadrado, A. Activators and inhibitors of NRF2: a review of their potential for clinical development. Oxid. Med. Cell Longev. 2019, 9372182 (2019).

    PubMed  PubMed Central  Google Scholar 

  216. Satoh, T. & Lipton, S. Recent advances in understanding NRF2 as a druggable target: development of pro-electrophilic and non-covalent NRF2 activators to overcome systemic side effects of electrophilic drugs like dimethyl fumarate. F1000Res 6, 2138 (2017).

    PubMed  PubMed Central  Google Scholar 

  217. Liebmann, M. et al. Dimethyl fumarate treatment restrains the antioxidative capacity of T cells to control autoimmunity. Brain 144, 3126–3141 (2021).

    PubMed  PubMed Central  Google Scholar 

  218. Dong, Y. & Yong, V. W. Oxidized phospholipids as novel mediators of neurodegeneration. Trends Neurosci. 45, 419–429 (2022).

    CAS  PubMed  Google Scholar 

  219. Signorini, C. et al. Relevance of 4-F4t-neuroprostane and 10-F4t-neuroprostane to neurological diseases. Free Radic. Biol. Med. 115, 278–287 (2018).

    CAS  PubMed  Google Scholar 

  220. Choi, I.-Y. et al. In vivo evidence of oxidative stress in brains of patients with progressive multiple sclerosis. Mult. Scler. 24, 1029–1038 (2018).

    CAS  PubMed  Google Scholar 

  221. Hammer, A. et al. The NRF2 pathway as potential biomarker for dimethyl fumarate treatment in multiple sclerosis. Ann. Clin. Transl. Neurol. 5, 668–676 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Schulze-Topphoff, U. et al. Dimethyl fumarate treatment induces adaptive and innate immune modulation independent of Nrf2. Proc. Natl Acad. Sci. USA 113, 4777–4782 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Zhao, Z., Dong, R., Cui, K., You, Q. & Jiang, Z. An updated patent review of Nrf2 activators (2020–present). Expert. Opin. Ther. Pat. 33, 29–49 (2023).

    CAS  PubMed  Google Scholar 

  224. Sun, Y. et al. A potent phosphodiester Keap1–Nrf2 protein–protein interaction inhibitor as the efficient treatment of Alzheimer’s disease. Redox Biol. 64, 102793 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Mullard, A. FDA approves first Friedreich’s ataxia drug. Nat. Rev. Drug Discov. 22, 258 (2023).

    PubMed  Google Scholar 

  226. Wakabayashi, N. et al. Keap1-null mutation leads to postnatal lethality due to constitutive Nrf2 activation. Nat. Genet. 35, 238–245 (2003).

    CAS  PubMed  Google Scholar 

  227. Stanaway, J. D. et al. Health effects associated with vegetable consumption: a burden of proof study. Nat. Med. 28, 2066–2074 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Wang, D. D. et al. Fruit and vegetable intake and mortality: results from 2 prospective cohort studies of US men and women and a meta-analysis of 26 cohort studies. Circulation 143, 1642–1654 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  229. Sheng, L. T. et al. Quantity and variety of fruit and vegetable intake in midlife and cognitive impairment in late life: a prospective cohort study. Br. J. Nutr. 14, 1–10 (2022).

    Google Scholar 

  230. Davis, C. R., Bryan, J., Hodgson, J. M., Woodman, R. & Murphy, K. J. A Mediterranean diet reduces F2-isoprostanes and triglycerides among older australian men and women after 6 months. J. Nutr. 147, 1348–1355 (2017).

    CAS  PubMed  Google Scholar 

  231. Mišík, M. et al. Use of the single cell gel electrophoresis assay for the detection of DNA-protective dietary factors: results of human intervention studies. Mutat. Res. Rev. Mutat. Res. 791, 108458 (2023).

    PubMed  Google Scholar 

  232. Anderson, C., Milne, G. L., Sandler, D. P. & Nichols, H. B. Oxidative stress in relation to diet and physical activity among premenopausal women. Br. J. Nutr. 116, 1416–1424 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Arcusa, R. et al. Anti-inflammatory and antioxidant capacity of a fruit and vegetable-based nutraceutical measured by urinary oxylipin concentration in a healthy population: a randomized, double-blind, placebo-controlled clinical trial. Antioxidants 11, 1342 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Mao, Z. & Bostick, R. M. Associations of dietary, lifestyle, other participant characteristics, and oxidative balance scores with plasma F2-isoprostanes concentrations in a pooled cross-sectional study. Eur. J. Nutr. 61, 1541–1560 (2022).

    CAS  PubMed  Google Scholar 

  235. Lee, C. Y. et al. Cautions in the use of biomarkers of oxidative damage; the vascular and antioxidant effects of dark soy sauce in humans. Biochem. Biophys. Res. Commun. 344, 906–911 (2006).

    CAS  PubMed  Google Scholar 

  236. Park, Y. M. et al. Association of dietary and plasma carotenoids with urinary F2-isoprostanes. Eur. J. Nutr. 61, 2711–2723 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  237. McAnulty, S. R. et al. Effect of daily fruit ingestion on angiotensin converting enzyme activity, blood pressure, and oxidative stress in chronic smokers. Free Radic. Res. 39, 1241–1248 (2005).

    CAS  PubMed  Google Scholar 

  238. Møller, P. et al. No effect of 600 grams fruit and vegetables per day on oxidative DNA damage and repair in healthy nonsmokers. Cancer Epidemiol. Biomark. Prev. 12, 1016–1022 (2003).

    Google Scholar 

  239. Cheah, I. K., Tang, R. M. Y., Yew, T. S. Z., Lim, K. H. C. & Halliwell, B. Administration of pure ergothioneine to healthy human subjects: uptake, metabolism, and effects on biomarkers of oxidative damage and inflammation. Antioxid. Redox Signal. 26, 193–206 (2017).

    CAS  PubMed  Google Scholar 

  240. Block, G. et al. The effect of vitamins C and E on biomarkers of oxidative stress depends on baseline level. Free Radic. Biol. Med. 45, 377–384 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  241. Morrow, J. D. et al. Increase in circulating products of lipid peroxidation (F2-isoprostanes) in smokers. Smoking as a cause of oxidative damage. N. Engl. J. Med. 332, 1198–1203 (1995).

    CAS  PubMed  Google Scholar 

  242. Seet, R. C. S. et al. Biomarkers of oxidative damage in cigarette smokers: which biomarkers might reflect acute versus chronic oxidative stress? Free Radic. Biol. Med. 50, 1787–1793 (2011).

    CAS  PubMed  Google Scholar 

  243. Halliwell, B. The antioxidant paradox. Lancet 355, 1179–1180 (2000).

    CAS  PubMed  Google Scholar 

  244. Halliwell, B. Reactive oxygen species (ROS), oxygen radicals and antioxidants: where are we now, where is the field going and where should we go? Biochem. Biophys. Res. Commun. 633, 17–19 (2022).

    CAS  PubMed  Google Scholar 

  245. Whiteman, M. et al. The novel neuromodulator hydrogen sulfide: an endogenous peroxynitrite ‘scavenger’? J. Neurochem. 90, 765–768 (2004).

    CAS  PubMed  Google Scholar 

  246. Malaeb, H. et al. Stable isotope dilution mass spectrometry quantification of hydrogen sulfide and thiols in biological matrices. Redox Biol. 55, 102401 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  247. Noguchi, N., Saito, Y. & Niki, E. Actions of thiols, persulfides, and polysulfides as free radical scavenging antioxidants. (Online ahead of print) Antioxid. Redox Signal. https://doi.org/10.1089/ars.2022.0191 (2023).

  248. Barayeu, U. et al. Hydropersulfides inhibit lipid peroxidation and ferroptosis by scavenging radicals. Nat. Chem. Biol. 19, 28–37 (2023).

    CAS  PubMed  Google Scholar 

  249. Stockwell, B. R. Ferroptosis turns 10: emerging mechanisms, physiological functions, and therapeutic applications. Cell 185, 2401–2421 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  250. Cao, X. et al. A review of hydrogen sulfide synthesis, metabolism, and measurement: is modulation of hydrogen sulfide a novel therapeutic for cancer? Antioxid. Redox Signal. 31, 1–38 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  251. Shieh, M., Xu, S., Lederberg, O. L. & Xian, M. Detection of sulfane sulfur species in biological systems. Redox Biol. 57, 102502 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  252. Uchiyama, J., Akiyama, M., Hase, K., Kumagai, Y. & Kim, Y.G. Gut microbiota reinforce host antioxidant capacity via the generation of reactive sulfur species. Cell Rep. 38, 110479 (2022).

  253. Constantino, L. et al. Extracellular superoxide dismutase is necessary to maintain renal blood flow during sepsis development. Intensive Care Med. Exp. 5, 15 (2017).

    PubMed  PubMed Central  Google Scholar 

  254. Mansilla, S. et al. Redox sensitive human mitochondrial aconitase and its interaction with frataxin: in vitro and in silico studies confirm that it takes two to tango. Free Radic. Biol. Med. 197, 71–84 (2023).

    CAS  PubMed  Google Scholar 

  255. Radi, R. Oxygen radicals, nitric oxide, and peroxynitrite: redox pathways in molecular medicine. Proc. Natl Acad. Sci. USA 115, 5839–5848 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  256. Hansberg, W. Monofunctional heme-catalases. Antioxidants 11, 2173 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  257. Lessig, J. & Fuchs, B. Plasmalogens in biological systems: their role in oxidative processes in biological membranes, their contribution to pathological processes and aging and plasmalogen analysis. Curr. Med. Chem. 16, 2021–2041 (2009).

    CAS  PubMed  Google Scholar 

  258. Guo, Y. et al. Heme in cardiovascular diseases: a ubiquitous dangerous molecule worthy of vigilance. Front. Cell Dev. Biol. 9, 781839 (2021).

    PubMed  Google Scholar 

  259. Evans, P. J. et al. Metal ions catalytic for free radical reactions in the plasma of patients with fulminant hepatic failure. Free Radic. Res. 20, 139–144 (1994).

    CAS  PubMed  Google Scholar 

  260. Halliwell, B. Albumin — an important extracellular antioxidant? Biochem. Pharmacol. 37, 569–571 (1988).

    CAS  PubMed  Google Scholar 

  261. Colombo, G. et al. Redox albuminomics: oxidized albumin in human diseases. Antioxid. Redox Signal. 17, 1515–1527 (2012).

    CAS  PubMed  Google Scholar 

  262. Halliwell, B. Are polyphenols antioxidants or pro-oxidants? What do we learn from cell culture and in vivo studies? Arch. Biochem. Biophys. 476, 107–112 (2008).

    CAS  PubMed  Google Scholar 

  263. Cheah, I. K. & Halliwell, B. Could ergothioneine aid in the treatment of coronavirus patients? Antioxidants 9, 595 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  264. Redman, L. M. et al. Metabolic slowing and reduced oxidative damage with sustained caloric restriction support the rate of living and oxidative damage theories of aging. Cell Metab. 27, 805–815.e4 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  265. Monzo-Beltran, L. et al. One-year follow-up of clinical, metabolic and oxidative stress profile of morbid obese patients after laparoscopic sleeve gastrectomy. 8-Oxo-dG as a clinical marker. Redox Biol. 12, 389–402 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  266. Mollazadeh, H., Carbone, F., Montecucco, F., Pirro, M. & Sahebkar, A. Oxidative burden in familial hypercholesterolemia. J. Cell Physiol. 233, 5716–5725 (2018).

    CAS  PubMed  Google Scholar 

  267. Moutzouri, E. et al. Comparison of the effect of simvastatin versus simvastatin/ezetimibe versus rosuvastatin on markers of inflammation and oxidative stress in subjects with hypercholesterolemia. Atherosclerosis 231, 8–14 (2013).

    CAS  PubMed  Google Scholar 

  268. Monnier, L. et al. Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. J. Am. Med. Assoc. 295, 1681–1687 (2006).

    CAS  Google Scholar 

  269. Roe, N. D. & Ren, J. Nitric oxide synthase uncoupling: a therapeutic target in cardiovascular diseases. Vasc. Pharmacol. 57, 168–172 (2012).

    CAS  Google Scholar 

  270. Ogboo, B. C. et al. Architecture of the NADPH oxidase family of enzymes. Redox Biol. 52, 102298 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  271. Andrés, C. M. C., Pérez de la Lastra, J. M., Juan, C. A., Plou, F. J. & Pérez-Lebeña, E. The role of reactive species on innate immunity. Vaccines 10, 1735 (2022).

    PubMed  PubMed Central  Google Scholar 

  272. Weigelin, B. & Friedl, P. T cell-mediated additive cytotoxicity — death by multiple bullets. Trends Cancer 8, 980–987 (2022).

    CAS  PubMed  Google Scholar 

  273. Halliwell, B. Oxidative stress and cancer: have we moved forward? Biochem. J. 401, 1–11 (2007).

    CAS  PubMed  Google Scholar 

  274. Shah, M. A. & Rogoff, H. A. Implications of reactive oxygen species on cancer formation and its treatment. Semin. Oncol. 48, 238–245 (2021).

    CAS  PubMed  Google Scholar 

  275. Renken, S. et al. Targeting of Nrf2 improves antitumoral responses by human NK cells, TIL and CAR T cells during oxidative stress. J. Immunother. Cancer 10, e004458 (2022).

    PubMed  PubMed Central  Google Scholar 

  276. Balta, E. et al. Expression of TRX1 optimizes the antitumor functions of human CAR T cells and confers resistance to a pro-oxidative tumor microenvironment. Front. Immunol. 13, 1063313 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  277. Lamb, N. J., Quinlan, G. J., Mumby, S., Evans, T. W. & Gutteridge, J. M. Haem oxygenase shows pro-oxidant activity in microsomal and cellular systems: implications for the release of low-molecular-mass iron. Biochem. J. 344, 153–158 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  278. Terpstra, M., Torkelson, C., Emir, U., Hodges, J. S. & Raatz, S. Noninvasive quantification of human brain antioxidant concentrations after an intravenous bolus of vitamin C. NMR Biomed. 24, 521–528 (2011).

    CAS  PubMed  Google Scholar 

  279. Schaffer, S. & Halliwell, B. Do polyphenols enter the brain and does it matter? Some theoretical and practical considerations. Genes Nutr. 7, 99–109 (2012).

    CAS  PubMed  Google Scholar 

  280. Witting, P. K., Mohr, D. & Stocker, R. Assessment of prooxidant activity of vitamin E in human low-density lipoprotein and plasma. Methods Enzymol. 299, 362–375 (1999).

    CAS  PubMed  Google Scholar 

  281. Neuhouser, M. L. et al. Fruits and vegetables are associated with lower lung cancer risk only in the placebo arm of the β-Carotene and Retinol Efficacy Trial (CARET). Cancer Epidemiol. Biomark. Prev. 12, 350–358 (2003).

    CAS  Google Scholar 

  282. Seet, R. C. S. et al. Oxidative damage in ischemic stroke revealed using multiple biomarkers. Stroke 42, 2326–2329 (2011).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barry Halliwell.

Ethics declarations

Competing interests

The author declares no competing interests.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks Michael Murphy, Navdeep Chandel, Isaac Harris and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Wikipedia article on ‘Oxygen radical absorbance capacity’ — a method of measuring antioxidant capacities in biological samples in vitro: https://en.wikipedia.org/wiki/Oxygen_radical_absorbance_capacity

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halliwell, B. Understanding mechanisms of antioxidant action in health and disease. Nat Rev Mol Cell Biol 25, 13–33 (2024). https://doi.org/10.1038/s41580-023-00645-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-023-00645-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing