Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Context-dependent TGFβ family signalling in cell fate regulation

Abstract

The transforming growth factor-β (TGFβ) family are a large group of evolutionarily conserved cytokines whose signalling modulates cell fate decision-making across varying cellular contexts at different stages of life. Here we discuss new findings in early embryos that reveal how, in contrast to our original understanding of morphogen interpretation, robust cell fate specification can originate from a noisy combination of signalling inputs and a broad range of signalling levels. We compare this evidence with novel findings on the roles of TGFβ family signalling in tissue maintenance and homeostasis during juvenile and adult life, spanning the skeletal, haemopoietic and immune systems. From these comparisons, it emerges that in contrast to robust developing systems, relatively small perturbations in TGFβ family signalling have detrimental effects at later stages in life, leading to aberrant cell fate specification and disease, for example in cancer or congenital disorders. Finally, we highlight novel strategies to target and amend dysfunction in signalling and discuss how gleaning knowledge from different fields of biology can help in the development of therapeutics for aberrant TGFβ family signalling in disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: TGFβ family signalling.
Fig. 2: Nodal and BMP signalling in germ-layer patterning.
Fig. 3: TGFβ signalling in tissue homeostasis.
Fig. 4: TGFβ function on cancer and stromal cell fate in tumours.

Similar content being viewed by others

References

  1. Adamska, M. et al. Wnt and TGF-β expression in the sponge Amphimedon queenslandica and the origin of metazoan embryonic patterning. PLoS ONE 2, e1031 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Huminiecki, L. et al. Emergence, development and diversification of the TGF-β signalling pathway within the animal kingdom. BMC Evol. Biol. 9, 28 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  3. David, C. J. & Massague, J. Contextual determinants of TGFβ action in development, immunity and cancer. Nat. Rev. Mol. Cell Biol. 19, 419–435 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hinck, A. P., Mueller, T. D. & Springer, T. A. Structural biology and evolution of the TGF-β family. Cold Spring Harb. Perspect. Biol. 8, a022103 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Miller, D. S. J. & Hill, C. S. in Encyclopedia of Cell Biology 2nd edn Vol. 4 (eds Bradshaw, R. A., Hart, G. W. & Stahl, P. D.) 46–61 (Academic, 2023).

  6. Tajer, B. & Mullins, M. C. Heterodimers reign in the embryo. eLife 6, e33682 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Christian, J. A tale of two receptors: Bmp heterodimers recruit two type I receptors but use the kinase activity of only one. Proc. Natl Acad. Sci. USA 118, e2104745118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Derynck, R. & Budi, E. H. Specificity, versatility, and control of TGF-β family signaling. Sci. Signal. 12, eaav5183 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tajer, B., Dutko, J. A., Little, S. C. & Mullins, M. C. BMP heterodimers signal via distinct type I receptor class functions. Proc. Natl Acad. Sci. USA 118, e2017952118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nickel, J., Ten Dijke, P. & Mueller, T. D. TGF-β family co-receptor function and signaling. Acta Biochim. Biophys. Sin. 50, 12–36 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Sanchez-Duffhues, G., Hiepen, C., Knaus, P. & Ten Dijke, P. Bone morphogenetic protein signaling in bone homeostasis. Bone 80, 43–59 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Zhang, Y. E. Mechanistic insight into contextual TGF-β signaling. Curr. Opin. Cell Biol. 51, 1–7 (2018).

    Article  PubMed  Google Scholar 

  13. Hill, C. S. Transcriptional control by the SMADs. Cold Spring Harb. Perspect. Biol. 8, a022079 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Deheuninck, J. & Luo, K. Ski and SnoN, potent negative regulators of TGF-β signaling. Cell Res. 19, 47–57 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Gori, I. et al. Mutations in SKI in Shprintzen–Goldberg syndrome lead to attenuated TGF-β responses through SKI stabilization. eLife 10, e63545 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Le Scolan, E. et al. Transforming growth factor-β suppresses the ability of Ski to inhibit tumor metastasis by inducing its degradation. Cancer Res. 68, 3277–3285 (2008).

    Article  PubMed  Google Scholar 

  17. Levy, L. et al. Arkadia activates Smad3/Smad4-dependent transcription by triggering signal-induced SnoN degradation. Mol. Cell. Biol. 27, 6068–6083 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Stroschein, S. L., Wang, W., Zhou, S., Zhou, Q. & Luo, K. Negative feedback regulation of TGF-β signaling by the SnoN oncoprotein. Science 286, 771–774 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Miyazawa, K. & Miyazono, K. Regulation of TGF-β family signaling by inhibitory Smads. Cold Spring Harb. Perspect. Biol. 9, a022095 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Daly, A. C., Randall, R. A. & Hill, C. S. Transforming growth factor β-induced Smad1/5 phosphorylation in epithelial cells is mediated by novel receptor complexes and is essential for anchorage-independent growth. Mol. Cell Biol. 28, 6889–6902 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu, I. M. et al. TGFβ-stimulated Smad1/5 phosphorylation requires the ALK5 L45 loop and mediates the pro-migratory TGFβ switch. EMBO J. 28, 88–98 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Olsen, O. E. et al. Activins as dual specificity TGF-β family molecules: SMAD-activation via activin- and BMP-type 1 receptors. Biomolecules 10, 519 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ramachandran, A. et al. Pathogenic ACVR1R206H activation by activin A-induced receptor clustering and autophosphorylation. EMBO J. 40, e106317 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ramachandran, A. et al. TGF-β uses a novel mode of receptor activation to phosphorylate SMAD1/5 and induce epithelial-to-mesenchymal transition. eLife 7, e31756 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Budi, E. H., Duan, D. & Derynck, R. Transforming growth factor-β receptors and Smads: regulatory complexity and functional versatility. Trends Cell Biol. 27, 658–672 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Miller, D. S. J. et al. The dynamics of TGF-β signaling are dictated by receptor trafficking via the ESCRT machinery. Cell Rep. 25, 1841–1855.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Miller, D. S. J., Schmierer, B. & Hill, C. S. TGF-β family ligands exhibit distinct signalling dynamics that are driven by receptor localisation. J. Cell Sci. 132, jcs234039 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schmierer, B., Tournier, A. L., Bates, P. A. & Hill, C. S. Mathematical modeling identifies Smad nucleocytoplasmic shuttling as a dynamic signal-interpreting system. Proc. Natl Acad. Sci. USA 105, 6608–6613 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vizan, P. et al. Controlling long-term signaling: receptor dynamics determine attenuation and refractory behavior of the TGF-β pathway. Sci. Signal. 6, ra106 (2013).

    Article  PubMed  Google Scholar 

  30. Luo, K. Signaling cross talk between TGF-β/Smad and other signaling pathways. Cold Spring Harb. Perspect. Biol. 9, a022137 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Gaarenstroom, T. & Hill, C. S. TGF-β signaling to chromatin: how Smads regulate transcription during self-renewal and differentiation. Semin. Cell. Dev. Biol. 32, 107–118 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Antebi, Y. E. et al. Combinatorial signal perception in the BMP pathway. Cell 170, 1184–1196.e24 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Su, C. J. et al. Ligand–receptor promiscuity enables cellular addressing. Cell Syst. 13, 408–425.e12 (2022).

    Article  CAS  PubMed  Google Scholar 

  34. Klumpe, H. E. et al. The context-dependent, combinatorial logic of BMP signaling. Cell Syst. 13, 388–407.e10 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Humbert, M. et al. Sotatercept for the treatment of pulmonary arterial hypertension. N. Engl. J. Med. 384, 1204–1215 (2021). This paper demonstrates how treatment of patients with PAH with the dual activin and GDF targeting drug sotatercept results in a reduction in pulmonary vascular resistance.

    Article  CAS  PubMed  Google Scholar 

  36. Lyons, K. M. & Rosen, V. BMPs, TGFβ, and border security at the interzone. Curr. Top. Dev. Biol. 133, 153–170 (2019).

    Article  CAS  PubMed  Google Scholar 

  37. Upton, P. D., Dunmore, B. J., Li, W. & Morrell, N. W. An emerging class of new therapeutics targeting TGF, activin, and BMP ligands in pulmonary arterial hypertension. Dev. Dyn. 252, 327–342 (2022).

    Article  PubMed  Google Scholar 

  38. Wang, W., Rigueur, D. & Lyons, K. M. TGFβ as a gatekeeper of BMP action in the developing growth plate. Bone 137, 115439 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schier, A. F. Nodal morphogens. Cold Spring Harb. Perspect. Biol. 1, a003459 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Smith, J. C., Hagemann, A., Saka, Y. & Williams, P. H. Understanding how morphogens work. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363, 1387–1392 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zorn, A. M. & Wells, J. M. Vertebrate endoderm development and organ formation. Annu. Rev. Cell. Dev. Biol. 25, 221–251 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Economou, A. D. & Hill, C. S. Temporal dynamics in the formation and interpretation of Nodal and BMP morphogen gradients. Curr. Top. Dev. Biol. 137, 363–389 (2020).

    Article  CAS  PubMed  Google Scholar 

  43. Rogers, K. W. et al. Nodal patterning without Lefty inhibitory feedback is functional but fragile. eLife 6, e28785 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  44. van Boxtel, A. L., Economou, A. D., Heliot, C. & Hill, C. S. Long-range signaling activation and local inhibition separate the mesoderm and endoderm lineages. Dev. Cell 44, 179–191.e5 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lord, N. D., Carte, A. N., Abitua, P. B. & Schier, A. F. The pattern of nodal morphogen signaling is shaped by co-receptor expression. eLife 10, e54894 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kuhn, T. et al. Single-molecule tracking of Nodal and Lefty in live zebrafish embryos supports hindered diffusion model. Nat. Commun. 13, 6101 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu, L. et al. Nodal is a short-range morphogen with activity that spreads through a relay mechanism in human gastruloids. Nat. Commun. 13, 497 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Pinheiro, D., Kardos, R., Hannezo, E. & Heisenberg, C.-P. Morphogen gradient orchestrates pattern-preserving tissue morphogenesis via motility-driven unjamming. Nat. Phys. 18, 1482–1493 (2022).

    Article  CAS  Google Scholar 

  49. Dubrulle, J. et al. Response to Nodal morphogen gradient is determined by the kinetics of target gene induction. eLife 4, e05042 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Sako, K. et al. Optogenetic control of nodal signaling reveals a temporal pattern of nodal signaling regulating cell fate specification during gastrulation. Cell Rep. 16, 866–877 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. van Boxtel, A. L. et al. A temporal window for signal activation dictates the dimensions of a nodal signaling domain. Dev. Cell. 35, 175–185 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Economou, A. D., Guglielmi, L., East, P. & Hill, C. S. Nodal signaling establishes a competency window for stochastic cell fate switching. Dev. Cell 57, 2604–2622.e5 (2022). This paper demonstrates that rather than specific levels of signalling dictating endodermal fate, high Nodal signalling provides competency for stochastic fate switching.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Poulain, M., Furthauer, M., Thisse, B., Thisse, C. & Lepage, T. Zebrafish endoderm formation is regulated by combinatorial Nodal, FGF and BMP signalling. Development 133, 2189–2200 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Nelson, A. C. et al. In vivo regulation of the zebrafish endoderm progenitor niche by T-Box transcription factors. Cell Rep. 19, 2782–2795 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Aoki, T. O. et al. Regulation of nodal signalling and mesendoderm formation by TARAM-A, a TGFβ-related type I receptor. Dev. Biol. 241, 273–288 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Dougan, S. T., Warga, R. M., Kane, D. A., Schier, A. F. & Talbot, W. S. The role of the zebrafish nodal-related genes squint and cyclops in patterning of mesendoderm. Development 130, 1837–1851 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Feldman, B. et al. Zebrafish organizer development and germ-layer formation require nodal-related signals. Nature 395, 181–185 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Guglielmi, L. et al. Smad4 controls signaling robustness and morphogenesis by differentially contributing to the Nodal and BMP pathways. Nat. Commun. 12, 6374 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hill, C. S. Establishment and interpretation of NODAL and BMP signaling gradients in early vertebrate development. Curr. Top. Dev. Biol. 149, 311–340 (2022).

    Article  CAS  PubMed  Google Scholar 

  60. Ramel, M. C. & Hill, C. S. The ventral to dorsal BMP activity gradient in the early zebrafish embryo is determined by graded expression of BMP ligands. Dev. Biol. 378, 170–182 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tucker, J. A., Mintzer, K. A. & Mullins, M. C. The BMP signaling gradient patterns dorsoventral tissues in a temporally progressive manner along the anteroposterior axis. Dev. Cell 14, 108–119 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Greenfeld, H., Lin, J. & Mullins, M. C. The BMP signaling gradient is interpreted through concentration thresholds in dorsal–ventral axial patterning. PLoS Biol. 19, e3001059 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rogers, K. W., ElGamacy, M., Jordan, B. M. & Muller, P. Optogenetic investigation of BMP target gene expression diversity. eLife 9, e58641 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Soh, G. H., Pomreinke, A. P. & Muller, P. Integration of nodal and BMP signaling by mutual signaling effector antagonism. Cell Rep. 31, 107487 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tuazon, F. B., Wang, X., Andrade, J. L., Umulis, D. & Mullins, M. C. Proteolytic restriction of chordin range underlies BMP gradient formation. Cell Rep. 32, 108039 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ashe, H. L., Mannervik, M. & Levine, M. Dpp signaling thresholds in the dorsal ectoderm of the Drosophila embryo. Development 127, 3305–3312 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. De Robertis, E. M. Evo-devo: variations on ancestral themes. Cell 132, 185–195 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Bowles, J. R., Hoppe, C., Ashe, H. L. & Rattray, M. Scalable inference of transcriptional kinetic parameters from MS2 time series data. Bioinformatics 38, 1030–1036 (2022).

    Article  CAS  PubMed  Google Scholar 

  69. Garcia, H. G., Tikhonov, M., Lin, A. & Gregor, T. Quantitative imaging of transcription in living Drosophila embryos links polymerase activity to patterning. Curr. Biol. 23, 2140–2145 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Hoppe, C. et al. Modulation of the promoter activation rate dictates the transcriptional response to graded BMP signaling levels in the Drosophila embryo. Dev. Cell 54, 727–741 e727 (2020). This paper demonstrates that BMP signalling regulates target gene transcriptional burst frequency to dictate the gene expression range.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Norris, D. P., Brennan, J., Bikoff, E. K. & Robertson, E. J. The Foxh1-dependent autoregulatory enhancer controls the level of Nodal signals in the mouse embryo. Development 129, 3455–3468 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. Lowe, L. A., Yamada, S. & Kuehn, M. R. Genetic dissection of nodal function in patterning the mouse embryo. Development 128, 1831–1843 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Brennan, J., Norris, D. P. & Robertson, E. J. Nodal activity in the node governs left–right asymmetry. Genes Dev. 16, 2339–2344 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Desgrange, A., Le Garrec, J. F. & Meilhac, S. M. Left–right asymmetry in heart development and disease: forming the right loop. Development 145, dev162776 (2018).

    Article  PubMed  Google Scholar 

  75. Furtado, M. B., Biben, C., Shiratori, H., Hamada, H. & Harvey, R. P. Characterization of Pitx2c expression in the mouse heart using a reporter transgene. Dev. Dyn. 240, 195–203 (2011).

    Article  CAS  PubMed  Google Scholar 

  76. Desgrange, A., Le Garrec, J. F., Bernheim, S., Bonnelykke, T. H. & Meilhac, S. M. Transient nodal signaling in left precursors coordinates opposed asymmetries shaping the heart loop. Dev. Cell 55, 413–431.e6 (2020).

    Article  CAS  PubMed  Google Scholar 

  77. Cunha, S. I., Magnusson, P. U., Dejana, E. & Lampugnani, M. G. Deregulated TGF-β/BMP signaling in vascular malformations. Circ. Res. 121, 981–999 (2017).

    Article  CAS  PubMed  Google Scholar 

  78. Goumans, M. J. & Ten Dijke, P. TGF-β signaling in control of cardiovascular function. Cold Spring Harb. Perspect. Biol. 10, a022210 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Oshima, M., Oshima, H. & Taketo, M. M. TGF-β receptor type II deficiency results in defects of yolk sac hematopoiesis and vasculogenesis. Dev. Biol. 179, 297–302 (1996).

    Article  CAS  PubMed  Google Scholar 

  80. Larsson, J. et al. Abnormal angiogenesis but intact hematopoietic potential in TGF-β type I receptor-deficient mice. EMBO J. 20, 1663–1673 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Boezio, G. L. et al. Endothelial TGF-β signaling instructs smooth muscle cell development in the cardiac outflow tract. eLife 9, e57603 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Abrial, M. et al. Latent TGFβ-binding proteins 1 and 3 protect the larval zebrafish outflow tract from aneurysmal dilatation. Dis. Model. Mech. 15, dmm046979 (2022). This paper highlights the role of TGFβ signalling in protecting against aneurysm through latent TGFβ-binding protein 1 (LTBP1) and LTBP3 expression in the outflow tract.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhou, Y. et al. Latent TGF-β binding protein 3 identifies a second heart field in zebrafish. Nature 474, 645–648 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Poelmann, R. E. & Gittenberger-de Groot, A. C. Development and evolution of the metazoan heart. Dev. Dyn. 248, 634–656 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Sridurongrit, S., Larsson, J., Schwartz, R., Ruiz-Lozano, P. & Kaartinen, V. Signaling via the Tgf-β type I receptor Alk5 in heart development. Dev. Biol. 322, 208–218 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Chen, H. et al. BMP10 is essential for maintaining cardiac growth during murine cardiogenesis. Development 131, 2219–2231 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Chen, H. et al. Context-dependent signaling defines roles of BMP9 and BMP10 in embryonic and postnatal development. Proc. Natl Acad. Sci. USA 110, 11887–11892 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Akhurst, R. J. & Hata, A. Targeting the TGFβ signalling pathway in disease. Nat. Rev. Drug Discov. 11, 790–811 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Batlle, E. & Massague, J. Transforming growth factor-β signaling in immunity and cancer. Immunity 50, 924–940 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Sanjabi, S., Oh, S. A. & Li, M. O. Regulation of the immune response by TGF-β: from conception to autoimmunity and infection. Cold Spring Harb. Perspect. Biol. 9, a022236 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Moreau, J. M., Velegraki, M., Bolyard, C., Rosenblum, M. D. & Li, Z. Transforming growth factor-β1 in regulatory T cell biology. Sci. Immunol. 7, eabi4613 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Shull, M. M. et al. Targeted disruption of the mouse transforming growth factor-β1 gene results in multifocal inflammatory disease. Nature 359, 693–699 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Robinson, R. T. & Gorham, J. D. TGF-β1 regulates antigen-specific CD4+ T cell responses in the periphery. J. Immunol. 179, 71–79 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Rudner, L. A. et al. Necroinflammatory liver disease in BALB/c background, TGF-β1-deficient mice requires CD4+ T cells. J. Immunol. 170, 4785–4792 (2003).

    Article  CAS  PubMed  Google Scholar 

  95. Sakaguchi, S., Yamaguchi, T., Nomura, T. & Ono, M. Regulatory T cells and immune tolerance. Cell 133, 775–787 (2008).

    Article  CAS  PubMed  Google Scholar 

  96. Liu, Y. et al. A critical function for TGF-β signaling in the development of natural CD4+CD25+Foxp3+ regulatory T cells. Nat. Immunol. 9, 632–640 (2008).

    Article  CAS  PubMed  Google Scholar 

  97. Marie, J. C., Letterio, J. J., Gavin, M. & Rudensky, A. Y. TGF-β1 maintains suppressor function and Foxp3 expression in CD4+CD25+ regulatory T cells. J. Exp. Med. 201, 1061–1067 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Li, M. O., Sanjabi, S. & Flavell, R. A. Transforming growth factor-β controls development, homeostasis, and tolerance of T cells by regulatory T cell-dependent and -independent mechanisms. Immunity 25, 455–471 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Marie, J. C., Liggitt, D. & Rudensky, A. Y. Cellular mechanisms of fatal early-onset autoimmunity in mice with the T cell-specific targeting of transforming growth factor-β receptor. Immunity 25, 441–454 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Yang, X. et al. Targeted disruption of SMAD3 results in impaired mucosal immunity and diminished T cell responsiveness to TGF-β. EMBO J. 18, 1280–1291 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Takimoto, T. et al. Smad2 and Smad3 are redundantly essential for the TGF-β-mediated regulation of regulatory T plasticity and TH1 development. J. Immunol. 185, 842–855 (2010).

    Article  CAS  PubMed  Google Scholar 

  102. Martinez, G. J. et al. Smad3 differentially regulates the induction of regulatory and inflammatory T cell differentiation. J. Biol. Chem. 284, 35283–35286 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Konkel, J. E., Jin, W., Abbatiello, B., Grainger, J. R. & Chen, W. Thymocyte apoptosis drives the intrathymic generation of regulatory T cells. Proc. Natl Acad. Sci. USA 111, E465–E473 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Tai, X. et al. How autoreactive thymocytes differentiate into regulatory versus effector CD4+ T cells after avoiding clonal deletion. Nat. Immunol. 24, 637–651 (2023). This paper highlights how TGFβ signalling directs Treg cell specification by promoting pre-Treg cell identity through TCR signalling antagonism.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Li, M. O., Wan, Y. Y. & Flavell, R. A. T cell-produced transforming growth factor-β1 controls T cell tolerance and regulates TH1- and TH17-cell differentiation. Immunity 26, 579–591 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Yoshida, Y. et al. The transcription factor IRF8 activates integrin-mediated TGF-β signaling and promotes neuroinflammation. Immunity 40, 187–198 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Veldhoen, M., Hocking, R. J., Flavell, R. A. & Stockinger, B. Signals mediated by transforming growth factor-β initiate autoimmune encephalomyelitis, but chronic inflammation is needed to sustain disease. Nat. Immunol. 7, 1151–1156 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Zhang, S. The role of transforming growth factor β in T helper 17 differentiation. Immunology 155, 24–35 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zhang, S., Zhang, G. & Wan, Y. Y. SKI and SMAD4 are essential for IL-21-induced TH17 differentiation. Mol. Immunol. 114, 260–268 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zhang, S. et al. Reversing SKI–SMAD4-mediated suppression is essential for TH17 cell differentiation. Nature 551, 105–109 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Li, F., Long, Y., Yu, X., Tong, Y. & Gong, L. Different immunoregulation roles of activin A compared with TGF-β. Front. Immunol. 13, 921366 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Semitekolou, M. et al. Activin-A induces regulatory T cells that suppress T helper cell immune responses and protect from allergic airway disease. J. Exp. Med. 206, 1769–1785 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Rautela, J. et al. Therapeutic blockade of activin-A improves NK cell function and antitumor immunity. Sci. Signal. 12, eaat7527 (2019).

    Article  PubMed  Google Scholar 

  114. Blank, U. & Karlsson, S. TGF-β signaling in the control of hematopoietic stem cells. Blood 125, 3542–3550 (2015).

    Article  CAS  PubMed  Google Scholar 

  115. Letterio, J. J. et al. Autoimmunity associated with TGF-β1-deficiency in mice is dependent on MHC class II antigen expression. J. Clin. Invest. 98, 2109–2119 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Yamazaki, S. et al. Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche. Cell 147, 1146–1158 (2011).

    Article  CAS  PubMed  Google Scholar 

  117. Scandura, J. M., Boccuni, P., Massague, J. & Nimer, S. D. Transforming growth factor β-induced cell cycle arrest of human hematopoietic cells requires p57KIP2 up-regulation. Proc. Natl Acad. Sci. USA 101, 15231–15236 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Challen, G. A., Boles, N. C., Chambers, S. M. & Goodell, M. A. Distinct hematopoietic stem cell subtypes are differentially regulated by TGF-β1. Cell Stem Cell 6, 265–278 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Suragani, R. N. et al. Transforming growth factor-β superfamily ligand trap ACE-536 corrects anemia by promoting late-stage erythropoiesis. Nat. Med. 20, 408–414 (2014).

    Article  CAS  PubMed  Google Scholar 

  120. Wobus, M. et al. Luspatercept restores SDF-1-mediated hematopoietic support by MDS-derived mesenchymal stromal cells. Leukemia 35, 2936–2947 (2021). This work demonstrates that the drug luspatercept, which acts as a ligand trap, inhibits GDF11–SMAD2/3 signalling in mesenchymal stromal cells of the bone marrow, thus restoring hemopoietic support in MDS.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Yu, P. B. et al. BMP type I receptor inhibition reduces heterotopic [corrected] ossification. Nat. Med. 14, 1363–1369 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Wang, E. A. et al. Recombinant human bone morphogenetic protein induces bone formation. Proc. Natl Acad. Sci. USA 87, 2220–2224 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wozney, J. M. et al. Novel regulators of bone formation: molecular clones and activities. Science 242, 1528–1534 (1988).

    Article  CAS  PubMed  Google Scholar 

  124. Heubel, B. & Nohe, A. The role of BMP signaling in osteoclast regulation. J. Dev. Biol. 9, 24 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Okamoto, M., Murai, J., Yoshikawa, H. & Tsumaki, N. Bone morphogenetic proteins in bone stimulate osteoclasts and osteoblasts during bone development. J. Bone Miner. Res. 21, 1022–1033 (2006).

    Article  CAS  PubMed  Google Scholar 

  126. Kamiya, N. et al. Disruption of BMP signaling in osteoblasts through type IA receptor (BMPRIA) increases bone mass. J. Bone Miner. Res. 23, 2007–2017 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Kamiya, N. et al. Targeted disruption of BMP signaling through type IA receptor (BMPR1A) in osteocyte suppresses SOST and RANKL, leading to dramatic increase in bone mass, bone mineral density and mechanical strength. Bone 91, 53–63 (2016).

    Article  CAS  PubMed  Google Scholar 

  128. Boyce, B. F. & Xing, L. Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch. Biochem. Biophys. 473, 139–146 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Baffi, M. O. et al. Conditional deletion of the TGF-β type II receptor in Col2a expressing cells results in defects in the axial skeleton without alterations in chondrocyte differentiation or embryonic development of long bones. Dev. Biol. 276, 124–142 (2004).

    Article  CAS  PubMed  Google Scholar 

  130. Wang, W. et al. The TGFβ type I receptor TGFβRI functions as an inhibitor of BMP signaling in cartilage. Proc. Natl Acad. Sci. USA 116, 15570–15579 (2019). This paper demonstrates that the key function of TGFBRI in cartilage is not to transduce TGFβ signalling but, instead, to antagonize BMP signalling through ACVRL1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Tang, Y. et al. TGF-β1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat. Med. 15, 757–765 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Pignolo, R. J. et al. Prevalence of fibrodysplasia ossificans progressiva (FOP) in the United States: estimate from three treatment centers and a patient organization. Orphanet J. Rare Dis. 16, 350 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Pignolo, R. J., Shore, E. M. & Kaplan, F. S. Fibrodysplasia ossificans progressiva: clinical and genetic aspects. Orphanet J. Rare Dis. 6, 80 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Kaplan, F. S., Pignolo, R. J. & Shore, E. M. The FOP metamorphogene encodes a novel type I receptor that dysregulates BMP signaling. Cytokine Growth Factor Rev. 20, 399–407 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Hatsell, S. J. et al. ACVR1R206H receptor mutation causes fibrodysplasia ossificans progressiva by imparting responsiveness to activin A. Sci. Transl. Med. 7, 303ra137 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Hino, K. et al. Neofunction of ACVR1 in fibrodysplasia ossificans progressiva. Proc. Natl Acad. Sci. USA 112, 15438–15443 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Towler, O. W., Kaplan, F. S. & Shore, E. M. The developmental phenotype of the great toe in fibrodysplasia ossificans progressiva. Front. Cell Dev. Biol. 8, 612853 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Aykul, S. et al. Anti-ACVR1 antibodies exacerbate heterotopic ossification in fibrodysplasia ossificans progressiva (FOP) by activating FOP-mutant ACVR1. J. Clin. Invest. 132, e153792 (2022). This study demonstrates that treatment of FOP with an anti-ACVR1 triggered ACVR1R206H signalling, confirming that receptor clustering is all that is required for ACVR1R206H activity, and therefore anti-ACVR1 therapy should not be considered for FOP.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Lees-Shepard, J. B. et al. An anti-ACVR1 antibody exacerbates heterotopic ossification by fibro-adipogenic progenitors in fibrodysplasia ossificans progressiva mice. J. Clin. Invest. 132, e153795 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Vanhoutte, F. et al. Pharmacokinetics and pharmacodynamics of garetosmab (anti-activin A): results from a first-in-human phase 1 study. J. Clin. Pharmacol. 60, 1424–1431 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Dahir, K. M. et al. Garetosmab reduces flare-ups in patients with fibrodysplasia ossificans progressiva. J. Endocr. Soc. 5, A251–A252 (2021).

    Article  Google Scholar 

  142. Williams, E. et al. Saracatinib is an efficacious clinical candidate for fibrodysplasia ossificans progressiva. JCI Insight 6, e95042 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Hildebrandt, S. et al. ActivinA induced SMAD1/5 signaling in an iPSC derived EC model of fibrodysplasia ossificans progressiva (FOP) can be rescued by the drug candidate saracatinib. Stem Cell Rev. Rep. 17, 1039–1052 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Hino, K. et al. An mTOR signaling modulator suppressed heterotopic ossification of fibrodysplasia ossificans progressiva. Stem Cell Rep. 11, 1106–1119 (2018).

    Article  CAS  Google Scholar 

  145. Smilde, B. J. et al. Monitoring and management of fibrodysplasia ossificans progressiva: current perspectives. Orthop. Res. Rev. 14, 113–120 (2022).

    PubMed  PubMed Central  Google Scholar 

  146. MacCarrick, G. et al. Loeys–Dietz syndrome: a primer for diagnosis and management. Genet. Med. 16, 576–587 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Carmignac, V. et al. In-frame mutations in exon 1 of SKI cause dominant Shprintzen–Goldberg syndrome. Am. J. Hum. Genet. 91, 950–957 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Cannaerts, E., van de Beek, G., Verstraeten, A., Van Laer, L. & Loeys, B. TGF-β signalopathies as a paradigm for translational medicine. Eur. J. Med. Genet. 58, 695–703 (2015).

    Article  PubMed  Google Scholar 

  149. Verstraeten, A., Alaerts, M., Van Laer, L. & Loeys, B. Marfan syndrome and related disorders: 25 years of gene discovery. Hum. Mutat. 37, 524–531 (2016).

    Article  CAS  PubMed  Google Scholar 

  150. Mallat, Z., Ait-Oufella, H. & Tedgui, A. The pathogenic transforming growth factor-β overdrive hypothesis in aortic aneurysms and dissections: a mirage? Circ. Res. 120, 1718–1720 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Lee, C. Y. et al. Blockade of TGF-β (transforming growth factor Β) signaling by deletion of Tgfbr2 in smooth muscle cells of 11-month-old mice alters aortic structure and causes vasomotor dysfunction—brief report. Arterioscler. Thromb. Vasc. Biol. 42, 764–771 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Anderson, J. J. & Lau, E. M. Pulmonary hypertension definition, classification, and epidemiology in Asia. JACC Asia 2, 538–546 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Lai, Y. C., Potoka, K. C., Champion, H. C., Mora, A. L. & Gladwin, M. T. Pulmonary arterial hypertension: the clinical syndrome. Circ. Res. 115, 115–130 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Dunmore, B. J., Jones, R. J., Toshner, M. R., Upton, P. D. & Morrell, N. W. Approaches to treat pulmonary arterial hypertension by targeting BMPR2: from cell membrane to nucleus. Cardiovasc. Res. 117, 2309–2325 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Carvalho, T. Merck bets on sotatercept in pulmonary arterial hypertension. Nat. Med. 29, 2–3 (2023).

    Article  CAS  PubMed  Google Scholar 

  156. Spiekerkoetter, E. et al. FK506 activates BMPR2, rescues endothelial dysfunction, and reverses pulmonary hypertension. J. Clin. Invest. 123, 3600–3613 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Spiekerkoetter, E. et al. Randomised placebo-controlled safety and tolerability trial of FK506 (tacrolimus) for pulmonary arterial hypertension. Eur. Respir. J. 50, 1602449 (2017).

    Article  PubMed  Google Scholar 

  158. Long, L. et al. Selective enhancement of endothelial BMPR-II with BMP9 reverses pulmonary arterial hypertension. Nat. Med. 21, 777–785 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Ryan, D. P., Hong, T. S. & Bardeesy, N. Pancreatic adenocarcinoma. N. Engl. J. Med. 371, 1039–1049 (2014).

    Article  CAS  PubMed  Google Scholar 

  160. Massague, J. TGFβ in cancer. Cell 134, 215–230 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Yang, J. et al. Guidelines and definitions for research on epithelial–mesenchymal transition. Nat. Rev. Mol. Cell. Biol. 21, 341–352 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Nieto, M. A., Huang, R. Y., Jackson, R. A. & Thiery, J. P. EMT: 2016. Cell 166, 21–45 (2016).

    Article  CAS  PubMed  Google Scholar 

  163. Lambert, A. W., Pattabiraman, D. R. & Weinberg, R. A. Emerging biological principles of metastasis. Cell 168, 670–691 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Jolly, M. K. et al. Hybrid epithelial/mesenchymal phenotypes promote metastasis and therapy resistance across carcinomas. Pharmacol. Ther. 194, 161–184 (2019).

    Article  CAS  PubMed  Google Scholar 

  165. Lamouille, S., Xu, J. & Derynck, R. Molecular mechanisms of epithelial–mesenchymal transition. Nat. Rev. Mol. Cell Biol. 15, 178–196 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Derynck, R., Muthusamy, B. P. & Saeteurn, K. Y. Signaling pathway cooperation in TGF-β-induced epithelial–mesenchymal transition. Curr. Opin. Cell Biol. 31, 56–66 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Su, J. et al. TGF-β orchestrates fibrogenic and developmental EMTs via the RAS effector RREB1. Nature 577, 566–571 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. van Staalduinen, J., Baker, D., Ten Dijke, P. & van Dam, H. Epithelial–mesenchymal-transition-inducing transcription factors: new targets for tackling chemoresistance in cancer? Oncogene 37, 6195–6211 (2018).

    Article  PubMed  Google Scholar 

  169. Kalluri, R. The biology and function of fibroblasts in cancer. Nat. Rev. Cancer 16, 582–598 (2016).

    Article  CAS  PubMed  Google Scholar 

  170. Cangkrama, M. et al. A paracrine activin A–mDia2 axis promotes squamous carcinogenesis via fibroblast reprogramming. EMBO Mol. Med. 12, e11466 (2020). This paper demonstrates the reprogramming of fibroblasts to CAFs by tumour-derived ActA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Yu, Y. et al. Cancer-associated fibroblasts induce epithelial–mesenchymal transition of breast cancer cells through paracrine TGF-β signalling. Br. J. Cancer 110, 724–732 (2014).

    Article  CAS  PubMed  Google Scholar 

  172. Wu, X. et al. IL-6 secreted by cancer-associated fibroblasts promotes epithelial–mesenchymal transition and metastasis of gastric cancer via JAK2/STAT3 signaling pathway. Oncotarget 8, 20741–20750 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Sahai, E. et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat. Rev. Cancer 20, 174–186 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Lugano, R., Ramachandran, M. & Dimberg, A. Tumor angiogenesis: causes, consequences, challenges and opportunities. Cell. Mol. Life Sci. 77, 1745–1770 (2020).

    Article  CAS  PubMed  Google Scholar 

  175. Cunha, S. I. et al. Endothelial ALK1 is a therapeutic target to block metastatic dissemination of breast cancer. Cancer Res. 75, 2445–2456 (2015).

    Article  CAS  PubMed  Google Scholar 

  176. Hu-Lowe, D. D. et al. Targeting activin receptor-like kinase 1 inhibits angiogenesis and tumorigenesis through a mechanism of action complementary to anti-VEGF therapies. Cancer Res. 71, 1362–1373 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Trachtman, H. et al. A phase 1, single-dose study of fresolimumab, an anti-TGF-β antibody, in treatment-resistant primary focal segmental glomerulosclerosis. Kidney Int. 79, 1236–1243 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Jaschinski, F. et al. The antisense oligonucleotide trabedersen (AP 12009) for the targeted inhibition of TGF-β2. Curr. Pharm. Biotechnol. 12, 2203–2213 (2011).

    Article  CAS  PubMed  Google Scholar 

  179. Akhurst, R. J. Targeting TGF-β signaling for therapeutic gain. Cold Spring Harb. Perspect. Biol. 9, a022301 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Derynck, R., Turley, S. J. & Akhurst, R. J. TGFβ biology in cancer progression and immunotherapy. Nat. Rev. Clin. Oncol. 18, 9–34 (2021).

    Article  PubMed  Google Scholar 

  181. Haque, S. & Morris, J. C. Transforming growth factor-β: a therapeutic target for cancer. Hum. Vaccin. Immunother. 13, 1741–1750 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  182. van den Bulk, J., de Miranda, N. & Ten Dijke, P. Therapeutic targeting of TGF-β in cancer: hacking a master switch of immune suppression. Clin. Sci. 135, 35–52 (2021).

    Article  Google Scholar 

  183. Martin, C. J. et al. Selective inhibition of TGFβ1 activation overcomes primary resistance to checkpoint blockade therapy by altering tumor immune landscape. Sci. Transl. Med. 12, eaay8456 (2020).

    Article  CAS  PubMed  Google Scholar 

  184. Welsh, B. T. et al. Nonclinical development of SRK-181: an anti-latent TGFβ1 monoclonal antibody for the treatment of locally advanced or metastatic solid tumors. Int. J. Toxicol. 40, 226–241 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Tauriello, D. V. F. et al. TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis. Nature 554, 538–543 (2018).

    Article  CAS  PubMed  Google Scholar 

  186. Tschernia, N. P. & Gulley, J. L. Tumor in the crossfire: inhibiting TGF-β to enhance cancer immunotherapy. BioDrugs 36, 153–180 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Mariathasan, S. et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554, 544–548 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Lan, Y. et al. Enhanced preclinical antitumor activity of M7824, a bifunctional fusion protein simultaneously targeting PD-L1 and TGF-β. Sci. Transl. Med. 10, eaan5488 (2018).

    Article  PubMed  Google Scholar 

  189. Lan, Y. et al. Simultaneous targeting of TGF-β/PD-L1 synergizes with radiotherapy by reprogramming the tumor microenvironment to overcome immune evasion. Cancer Cell 39, 1388–1403.e10 (2021). This paper demonstrates synergistic treatment of multiple therapy-resistant tumour models with the dual TGFβ and PDL1 inhibitor M7824 with radiotherapy.

    Article  CAS  PubMed  Google Scholar 

  190. Dodagatta-Marri, E. et al. Integrin αvβ8 on T cells suppresses anti-tumor immunity in multiple models and is a promising target for tumor immunotherapy. Cell Rep. 36, 109309 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Pinjusic, K. et al. Activin-A impairs CD8 T cell-mediated immunity and immune checkpoint therapy response in melanoma. J. Immunother. Cancer 10, e004533 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Johnen, H. et al. Tumor-induced anorexia and weight loss are mediated by the TGF-β superfamily cytokine MIC-1. Nat. Med. 13, 1333–1340 (2007).

    Article  CAS  PubMed  Google Scholar 

  193. Lee, S. J. Targeting the myostatin signaling pathway to treat muscle loss and metabolic dysfunction. J. Clin. Invest. 131, e148372 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Zhou, X. et al. Reversal of cancer cachexia and muscle wasting by ActRIIB antagonism leads to prolonged survival. Cell 142, 531–543 (2010).

    Article  CAS  PubMed  Google Scholar 

  195. Hopkinson, J., Wright, D. & Corner, J. Exploring the experience of weight loss in people with advanced cancer. J. Adv. Nurs. 54, 304–312 (2006).

    Article  PubMed  Google Scholar 

  196. Baracos, V. E., Martin, L., Korc, M., Guttridge, D. C. & Fearon, K. C. H. Cancer-associated cachexia. Nat. Rev. Dis. Prim. 4, 17105 (2018).

    Article  PubMed  Google Scholar 

  197. Queiroz, A. L. et al. Blocking ActRIIB and restoring appetite reverses cachexia and improves survival in mice with lung cancer. Nat. Commun. 13, 4633 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Golan, T. et al. LY2495655, an antimyostatin antibody, in pancreatic cancer: a randomized, phase 2 trial. J. Cachexia Sarcopenia Muscle 9, 871–879 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Verma, A. et al. Biological basis for efficacy of activin receptor ligand traps in myelodysplastic syndromes. J. Clin. Invest. 130, 582–589 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Ruckle, J. et al. Single-dose, randomized, double-blind, placebo-controlled study of ACE-011 (ActRIIA-IgG1) in postmenopausal women. J. Bone Miner. Res. 24, 744–752 (2009).

    Article  CAS  PubMed  Google Scholar 

  201. Carrancio, S. et al. An activin receptor IIA ligand trap promotes erythropoiesis resulting in a rapid induction of red blood cells and haemoglobin. Br. J. Haematol. 165, 870–882 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Iancu-Rubin, C. et al. Stromal cell-mediated inhibition of erythropoiesis can be attenuated by sotatercept (ACE-011), an activin receptor type II ligand trap. Exp. Hematol. 41, 155–166.e17 (2013).

    Article  CAS  PubMed  Google Scholar 

  203. Tinsley-Vance, S. M., Davis, M. & Ajayi, O. Role of luspatercept in the management of lower-risk myelodysplastic syndromes. J. Adv. Pract. Oncol. 14, 82–87 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Smilde, B. J. et al. Protocol paper: a multi-center, double-blinded, randomized, 6-month, placebo-controlled study followed by 12-month open label extension to evaluate the safety and efficacy of Saracatinib in Fibrodysplasia Ossificans Progressiva (STOPFOP). BMC Musculoskelet. Disord. 23, 519 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Humbert, M. et al. Sotatercept for the treatment of pulmonary arterial hypertension: PULSAR open-label extension. Eur. Respir. J. 61, 2201347 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Brandes, A. A. et al. A phase II randomized study of galunisertib monotherapy or galunisertib plus lomustine compared with lomustine monotherapy in patients with recurrent glioblastoma. Neuro Oncol. 18, 1146–1156 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Sepulveda-Sanchez, J. et al. Brain perfusion and permeability in patients with advanced, refractory glioblastoma treated with lomustine and the transforming growth factor-β receptor I kinase inhibitor LY2157299 monohydrate. Oncol. Lett. 9, 2442–2448 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Faivre, S. et al. Novel transforming growth factor β receptor I kinase inhibitor galunisertib (LY2157299) in advanced hepatocellular carcinoma. Liver Int. 39, 1468–1477 (2019).

    Article  CAS  PubMed  Google Scholar 

  209. Giannelli, G. et al. Biomarkers and overall survival in patients with advanced hepatocellular carcinoma treated with TGF-βRI inhibitor galunisertib. PLoS ONE 15, e0222259 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Melisi, D. et al. TGFβ receptor inhibitor galunisertib is linked to inflammation- and remodeling-related proteins in patients with pancreatic cancer. Cancer Chemother. Pharmacol. 83, 975–991 (2019).

    Article  CAS  PubMed  Google Scholar 

  211. Tauriello, D. V. F., Sancho, E. & Batlle, E. Overcoming TGFβ-mediated immune evasion in cancer. Nat. Rev. Cancer 22, 25–44 (2022).

    Article  CAS  PubMed  Google Scholar 

  212. Ayuso-Inigo, B., Mendez-Garcia, L., Pericacho, M. & Munoz-Felix, J. M. The dual effect of the BMP9-ALK1 pathway in blood vessels: an opportunity for cancer therapy improvement? Cancers 13, 5412 (2021).

  213. Evans, J. D. et al. BMPR2 mutations and survival in pulmonary arterial hypertension: an individual participant data meta-analysis. Lancet Respir. Med. 4, 129–137 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Wang, X. J. et al. Germline BMP9 mutation causes idiopathic pulmonary arterial hypertension. Eur. Respir. J. 53, 1801609 (2019).

    Article  CAS  PubMed  Google Scholar 

  215. Eyries, M. et al. Widening the landscape of heritable pulmonary hypertension mutations in paediatric and adult cases. Eur. Respir. J. 53, 1801371 (2019).

    Article  CAS  PubMed  Google Scholar 

  216. Eichstaedt, C. A. et al. Gene panel diagnostics reveals new pathogenic variants in pulmonary arterial hypertension. Respir. Res. 23, 74 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Sakai, L. Y., Keene, D. R., Renard, M. & De Backer, J. FBN1: the disease-causing gene for Marfan syndrome and other genetic disorders. Gene 591, 279–291 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Schepers, D. et al. A mutation update on the LDS-associated genes TGFB2/3 and SMAD2/3. Hum. Mutat. 39, 621–634 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Han, H. J., Jain, P. & Resnick, A. C. Shared ACVR1 mutations in FOP and DIPG: opportunities and challenges in extending biological and clinical implications across rare diseases. Bone 109, 91–100 (2018).

    Article  CAS  PubMed  Google Scholar 

  220. Srikanthan, D. et al. Diffuse intrinsic pontine glioma: current insights and future directions. Chin. Neurosurg. J. 7, 6 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Davis, H., Raja, E., Miyazono, K., Tsubakihara, Y. & Moustakas, A. Mechanisms of action of bone morphogenetic proteins in cancer. Cytokine Growth Factor Rev. 27, 81–92 (2016).

    Article  CAS  PubMed  Google Scholar 

  222. Jaeger, E. et al. Hereditary mixed polyposis syndrome is caused by a 40-kb upstream duplication that leads to increased and ectopic expression of the BMP antagonist GREM1. Nat. Genet. 44, 699–703 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Howe, J. R. et al. Germline mutations of the gene encoding bone morphogenetic protein receptor 1A in juvenile polyposis. Nat. Genet. 28, 184–187 (2001).

    Article  CAS  PubMed  Google Scholar 

  224. Xu, Y. & Pasche, B. TGF-β signaling alterations and susceptibility to colorectal cancer. Hum. Mol. Genet. 16, R14–R20 (2007).

    Article  CAS  PubMed  Google Scholar 

  225. Woodford-Richens, K. L. et al. SMAD4 mutations in colorectal cancer probably occur before chromosomal instability, but after divergence of the microsatellite instability pathway. Proc. Natl Acad. Sci. USA 98, 9719–9723 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Wang, F. et al. SMAD4 gene mutation renders pancreatic cancer resistance to radiotherapy through promotion of autophagy. Clin. Cancer Res. 24, 3176–3185 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Ho, D. M., Chan, J., Bayliss, P. & Whitman, M. Inhibitor-resistant type I receptors reveal specific requirements for TGF-β signaling in vivo. Dev. Biol. 295, 730–742 (2006).

    Article  CAS  PubMed  Google Scholar 

  228. Inman, G. J., Nicolas, F. J. & Hill, C. S. Nucleocytoplasmic shuttling of Smads 2, 3, and 4 permits sensing of TGF-β receptor activity. Mol. Cell 10, 283–294 (2002).

    Article  CAS  PubMed  Google Scholar 

  229. Hagos, E. G. & Dougan, S. T. Time-dependent patterning of the mesoderm and endoderm by Nodal signals in zebrafish. BMC Dev. Biol. 7, 22 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  230. Rodon, J. et al. First-in-human dose study of the novel transforming growth factor-β receptor I kinase inhibitor LY2157299 monohydrate in patients with advanced cancer and glioma. Clin. Cancer Res. 21, 553–560 (2015).

    Article  CAS  PubMed  Google Scholar 

  231. Kovacs, R. J. et al. Cardiac safety of TGF-β receptor I kinase inhibitor LY2157299 monohydrate in cancer patients in a first-in-human dose study. Cardiovasc. Toxicol. 15, 309–323 (2015).

    Article  CAS  PubMed  Google Scholar 

  232. Melisi, D. et al. Galunisertib plus gemcitabine vs. gemcitabine for first-line treatment of patients with unresectable pancreatic cancer. Br. J. Cancer 119, 1208–1214 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Ciardiello, D., Elez, E., Tabernero, J. & Seoane, J. Clinical development of therapies targeting TGFβ: current knowledge and future perspectives. Ann. Oncol. 31, 1336–1349 (2020).

    Article  CAS  PubMed  Google Scholar 

  234. Yap, T. A. et al. First-in-human phase I study of a next-generation, oral, TGFβ receptor 1 inhibitor, LY3200882, in patients with advanced cancer. Clin. Cancer Res. 27, 6666–6676 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. He, X. et al. Mechanism of action and efficacy of LY2109761, a TGF-β receptor inhibitor, targeting tumor microenvironment in liver cancer after TACE. Oncotarget 9, 1130–1142 (2018).

    Article  PubMed  Google Scholar 

  236. Melisi, D. et al. LY2109761, a novel transforming growth factor β receptor type I and type II dual inhibitor, as a therapeutic approach to suppressing pancreatic cancer metastasis. Mol. Cancer Ther. 7, 829–840 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank T. Evan and Ł. Wieteska for helpful comments on the manuscript. Work in the Hill laboratory is supported by the Francis Crick Institute, which receives its core funding from Cancer Research UK (CC2021), the UK Medical Research Council (CC2021) and the Wellcome Trust (CC2021), and by the Engineering and Physical Sciences Research Council (EPSRC) (EP/V038028/1).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Caroline S. Hill.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

The Cancer Genome Atlas program: https://www.cancer.gov/ccg/research/genome-sequencing/tcga

Glossary

Aortic aneurysms

Swellings of the aorta, the largest artery of the body that carries blood from the heart to the circulatory system. This condition occurs when the wall of the aorta weakens and may be fatal if the bulge (aneurysm) bursts.

BMP antagonists

Bone morphogenetic protein (BMP) antagonists operate by directly sequestrating BMPs, preventing them from attaching to their relevant receptors. Examples of BMP antagonists are Noggin (NOG), CHRD and members of the DAN/Cerberus family, including Gremlin-1 (GREM1), GREM2, PRDC and DAND5 (also known as Gremlin-3). BMPs may also be inhibited by follistatin.

Endochondral ossification

The process of bone formation through the replacement of growing cartilage with bone tissue.

Gastruloids

Embryonic stem cells differentiated on a substrate or in three dimensions to form embryo-like aggregates that exhibit germ-layer patterning.

Heterotopic ossification

The formation of extra skeletal bone in muscle and soft tissues.

Immune checkpoint inhibitors

A type of immunotherapy that blocks immune-suppressive signalling molecules expressed at the surface of cancer or immune cells. For example, CTLA4 inhibitors, PD1 inhibitors and PDL1 inhibitors.

MS2–MCP system

The introduction of bacteriophage MS2 stem–loop structures into RNA enables binding by fluorescently tagged MS2 coat protein (MCP) for live visualization of RNAs.

Yolk syncytium

Extra-embryonic tissue composed of a multinucleated syncytium located at the margin between the yolk and the blastoderm of the zebrafish embryo.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Richardson, L., Wilcockson, S.G., Guglielmi, L. et al. Context-dependent TGFβ family signalling in cell fate regulation. Nat Rev Mol Cell Biol 24, 876–894 (2023). https://doi.org/10.1038/s41580-023-00638-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-023-00638-3

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer