Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of BCL-2 family proteins in mitochondrial apoptosis

Abstract

The proteins of the BCL-2 family are key regulators of mitochondrial apoptosis, acting as either promoters or inhibitors of cell death. The functional interplay and balance between the opposing BCL-2 family members control permeabilization of the outer mitochondrial membrane, leading to the release of activators of the caspase cascade into the cytosol and ultimately resulting in cell death. Despite considerable research, our knowledge about the mechanisms of the BCL-2 family of proteins remains insufficient, which complicates cell fate predictions and does not allow us to fully exploit these proteins as targets for drug discovery. Detailed understanding of the formation and molecular architecture of the apoptotic pore in the outer mitochondrial membrane remains a holy grail in the field, but new studies allow us to begin constructing a structural model of its arrangement. Recent literature has also revealed unexpected activities for several BCL-2 family members that challenge established concepts of how they regulate mitochondrial permeabilization. In this Review, we revisit the most important advances in the field and integrate them into a new structure–function-based classification of the BCL-2 family members that intends to provide a comprehensive model for BCL-2 action in apoptosis. We close this Review by discussing the potential of drugging the BCL-2 family in diseases characterized by aberrant apoptosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The BCL-2 family.
Fig. 2: The BCL-2 fold.
Fig. 3: Activation and oligomerization of executioner proteins.

References

  1. Singh, R., Letai, A. & Sarosiek, K. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat. Rev. Mol. Cell Biol. 20, 175–193 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Galluzzi, L. et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 25, 486–541 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  3. McArthur, K. et al. BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis. Science 359, eaao6047 (2018). 

    Article  PubMed  Google Scholar 

  4. Riley, J. S. et al. Mitochondrial inner membrane permeabilisation enables mtDNA release during apoptosis. EMBO J. 37, e99238 (2018). Together with McArthur et al. (2018), this study demonstrates that BAX and/or BAK pores can enable the release of mtDNA during apoptosis to stimulate cGAS–STING signalling.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Rongvaux, A. et al. Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA. Cell 159, 1563–1577 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. White, M. J. et al. Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production. Cell 159, 1549–1562 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lee, E. F. et al. Discovery and molecular characterization of a Bcl-2-regulated cell death pathway in schistosomes. Proc. Natl Acad. Sci. USA 108, 6999–7003 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Popgeorgiev, N. et al. Ancient and conserved functional interplay between Bcl-2 family proteins in the mitochondrial pathway of apoptosis. Sci. Adv. 6, eabc4149 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Letai, A. et al. Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2, 183–192 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Bleicken, S., Hantusch, A., Das, K. K., Frickey, T. & Garcia-Saez, A. J. Quantitative interactome of a membrane Bcl-2 network identifies a hierarchy of complexes for apoptosis regulation. Nat. Commun. 8, 73 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lauterwasser, J. et al. Hexokinases inhibit death receptor-dependent apoptosis on the mitochondria. Proc. Natl Acad. Sci. USA 118, e2021175118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pastorino, J. G., Shulga, N. & Hoek, J. B. Mitochondrial binding of hexokinase II inhibits Bax-induced cytochrome c release and apoptosis. J. Biol. Chem. 277, 7610–7618 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Yamagata, H. et al. Requirement of voltage-dependent anion channel 2 for pro-apoptotic activity of Bax. Oncogene 28, 3563–3572 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Chin, H. S. et al. VDAC2 enables BAX to mediate apoptosis and limit tumor development. Nat. Commun. 9, 4976 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cheng, E. H., Sheiko, T. V., Fisher, J. K., Craigen, W. J. & Korsmeyer, S. J. VDAC2 inhibits BAK activation and mitochondrial apoptosis. Science 301, 513–517 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Ma, S. B. et al. Bax targets mitochondria by distinct mechanisms before or during apoptotic cell death: a requirement for VDAC2 or Bak for efficient Bax apoptotic function. Cell Death Differ. 21, 1925–1935 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Raemy, E. et al. Cardiolipin or MTCH2 can serve as tBID receptors during apoptosis. Cell Death Differ. 23, 1165–1174 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zaltsman, Y. et al. MTCH2/MIMP is a major facilitator of tBID recruitment to mitochondria. Nat. Cell Biol. 12, 553–562 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Montessuit, S. et al. Membrane remodeling induced by the dynamin-related protein Drp1 stimulates Bax oligomerization. Cell 142, 889–901 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Prudent, J. et al. MAPL sumoylation of Drp1 stabilizes an ER/mitochondrial platform required for cell death. Mol. Cell 59, 941–955 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Jenner, A. et al. DRP1 interacts directly with BAX to induce its activation and apoptosis. EMBO J. 41, e108587 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Karbowski, M., Norris, K. L., Cleland, M. M., Jeong, S. Y. & Youle, R. J. Role of Bax and Bak in mitochondrial morphogenesis. Nature 443, 658–662 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Gross, A. & Katz, S. G. Non-apoptotic functions of BCL-2 family proteins. Cell Death Differ. 24, 1348–1358 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Martin, N., Popgeorgiev, N., Ichim, G. & Bernard, D. BCL-2 proteins in senescence: beyond a simple target for senolysis? Nat. Rev. Mol. Cell Biol. https://doi.org/10.1038/s41580-023-00594-y (2023).

    Article  PubMed  Google Scholar 

  25. Kuwana, T. et al. BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly. Mol. Cell 17, 525–535 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Kim, H. et al. Stepwise activation of BAX and BAK by tBID, BIM, and PUMA initiates mitochondrial apoptosis. Mol. Cell 36, 487–499 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Certo, M. et al. Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. Cancer Cell 9, 351–365 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Hockings, C. et al. Bid chimeras indicate that most BH3-only proteins can directly activate Bak and Bax, and show no preference for Bak versus Bax. Cell Death Dis. 6, e1735 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dai, H. et al. Transient binding of an activator BH3 domain to the Bak BH3-binding groove initiates Bak oligomerization. J. Cell Biol. 194, 39–48 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bogner, C. et al. Allosteric regulation of BH3 proteins in Bcl-xL complexes enables switch-like activation of Bax. Mol. Cell 77, 901–912.e9 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Chen, L. et al. Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol. Cell 17, 393–403 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Kvansakul, M. et al. Vaccinia virus anti-apoptotic F1L is a novel Bcl-2-like domain-swapped dimer that binds a highly selective subset of BH3-containing death ligands. Cell Death Differ. 15, 1564–1571 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Chou, J. J., Li, H., Salvesen, G. S., Yuan, J. & Wagner, G. Solution structure of BID, an intracellular amplifier of apoptotic signaling. Cell 96, 615–624 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Li, H., Zhu, H., Xu, C. J. & Yuan, J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94, 491–501 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Wang, Y. & Tjandra, N. Structural insights of tBid, the caspase-8-activated Bid, and its BH3 domain. J. Biol. Chem. 288, 35840–35851 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vaux, D. L., Cory, S. & Adams, J. M. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 335, 440–442 (1988).

    Article  CAS  PubMed  Google Scholar 

  37. Zhai, D., Jin, C., Huang, Z., Satterthwait, A. C. & Reed, J. C. Differential regulation of Bax and Bak by anti-apoptotic Bcl-2 family proteins Bcl-B and Mcl-1. J. Biol. Chem. 283, 9580–9586 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Diepstraten, S. T. et al. The manipulation of apoptosis for cancer therapy using BH3-mimetic drugs. Nat. Rev. Cancer 22, 45–64 (2022).

    Article  CAS  PubMed  Google Scholar 

  39. Sattler, M. et al. Structure of Bcl-xL-Bak peptide complex: recognition between regulators of apoptosis. Science 275, 983–986 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Roberts, A. W. et al. Targeting BCL2 with venetoclax in relapsed chronic lymphocytic leukemia. N. Engl. J. Med. 374, 311–322 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. Pan, R. et al. Selective BCL-2 inhibition by ABT-199 causes on-target cell death in acute myeloid leukemia. Cancer Discov. 4, 362–375 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Edlich, F. et al. Bcl-x(L) retrotranslocates Bax from the mitochondria into the cytosol. Cell 145, 104–116 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Todt, F. et al. Differential retrotranslocation of mitochondrial Bax and Bak. EMBO J. 34, 67–80 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Barclay, L. A. et al. Inhibition of pro-apoptotic BAX by a noncanonical interaction mechanism. Mol. Cell 57, 873–886 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Czabotar, P. E. et al. Structural insights into the degradation of Mcl-1 induced by BH3 domains. Proc. Natl Acad. Sci. USA 104, 6217–6222 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rooswinkel, R. W. et al. Antiapoptotic potency of Bcl-2 proteins primarily relies on their stability, not binding selectivity. Blood 123, 2806–2815 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Simmons, M. J. et al. Bfl-1/A1 functions, similar to Mcl-1, as a selective tBid and Bak antagonist. Oncogene 27, 1421–1428 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Czabotar, P. E., Lessene, G., Strasser, A. & Adams, J. M. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat. Rev. Mol. Cell Biol. 15, 49–63 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Llambi, F. et al. A unified model of mammalian BCL-2 protein family interactions at the mitochondria. Mol. Cell 44, 517–531 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Osterlund, E. J. et al. Efficacy and specificity of inhibitors of BCL-2 family protein interactions assessed by affinity measurements in live cells. Sci. Adv. 8, eabm7375 (2022). This article describes a comprehensive study of interactions between BCL-2 family members, and the effect of BH3 mimetic treatments, within a cellular setting.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Vandenabeele, P., Bultynck, G. & Savvides, S. N. Pore-forming proteins as drivers of membrane permeabilization in cell death pathways. Nat. Rev. Mol. Cell Biol. 24, 312–333 (2023).

    Article  CAS  PubMed  Google Scholar 

  52. Lindsten, T. et al. The combined functions of proapoptotic Bcl-2 family members Bak and Bax are essential for normal development of multiple tissues. Mol. Cell 6, 1389–1399 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Suzuki, M., Youle, R. J. & Tjandra, N. Structure of Bax: coregulation of dimer formation and intracellular localization. Cell 103, 645–654 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Lazarou, M. et al. Inhibition of Bak activation by VDAC2 is dependent on the Bak transmembrane anchor. J. Biol. Chem. 285, 36876–36883 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kale, J. et al. Phosphorylation switches Bax from promoting to inhibiting apoptosis thereby increasing drug resistance. EMBO Rep. 19, e45235 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Bernardini, J. P. et al. Parkin inhibits BAK and BAX apoptotic function by distinct mechanisms during mitophagy. EMBO J. 38, e99916 (2019).

    Article  PubMed  Google Scholar 

  57. Sarosiek, K. A. et al. BID preferentially activates BAK while BIM preferentially activates BAX, affecting chemotherapy response. Mol. Cell 51, 751–765 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Robin, A. Y. et al. Ensemble properties of Bax determine its function. Structure 26, 1346–1359.e5 (2018).

    Article  CAS  PubMed  Google Scholar 

  59. Garner, T. P. et al. An autoinhibited dimeric form of BAX regulates the BAX activation pathway. Mol. Cell 63, 485–497 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kim, H. et al. Hierarchical regulation of mitochondrion-dependent apoptosis by BCL-2 subfamilies. Nat. Cell Biol. 8, 1348–1358 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Gavathiotis, E. et al. BAX activation is initiated at a novel interaction site. Nature 455, 1076–1081 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. O’Neill, K. L., Huang, K., Zhang, J., Chen, Y. & Luo, X. Inactivation of prosurvival Bcl-2 proteins activates Bax/Bak through the outer mitochondrial membrane. Genes Dev. 30, 973–988 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Singh, G. et al. Structural basis of BAK activation in mitochondrial apoptosis initiation. Nat. Commun. 13, 250 (2022). 

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Czabotar, P. E. et al. Bax crystal structures reveal how BH3 domains activate Bax and nucleate its oligomerization to induce apoptosis. Cell 152, 519–531 (2013). 

    Article  CAS  PubMed  Google Scholar 

  65. Iyer, S. et al. Robust autoactivation for apoptosis by BAK but not BAX highlights BAK as an important therapeutic target. Cell Death Dis. 11, 268 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chi, X. et al. The carboxyl-terminal sequence of bim enables bax activation and killing of unprimed cells. eLife 9, e44525 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gavathiotis, E., Reyna, D. E., Davis, M. L., Bird, G. H. & Walensky, L. D. BH3-triggered structural reorganization drives the activation of proapoptotic BAX. Mol. Cell 40, 481–492 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Iyer, S. et al. Identification of an activation site in Bak and mitochondrial Bax triggered by antibodies. Nat. Commun. 7, 11734 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Uchime, O. et al. Synthetic antibodies inhibit Bcl-2-associated X protein (BAX) through blockade of the N-terminal activation site. J. Biol. Chem. 291, 89–102 (2016).

    Article  CAS  PubMed  Google Scholar 

  70. Griffiths, G. J. et al. Cell damage-induced conformational changes of the pro-apoptotic protein Bak in vivo precede the onset of apoptosis. J. Cell Biol. 144, 903–914 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cuconati, A., Degenhardt, K., Sundararajan, R., Anschel, A. & White, E. Bak and Bax function to limit adenovirus replication through apoptosis induction. J. Virol. 76, 4547–4558 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Alsop, A. E. et al. Dissociation of Bak α1 helix from the core and latch domains is required for apoptosis. Nat. Commun. 6, 6841 (2015).

    Article  CAS  PubMed  Google Scholar 

  73. Sandow, J. J. et al. Dynamic reconfiguration of pro-apoptotic BAK on membranes. EMBO J. 40, e107237 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Dewson, G. et al. Bax dimerizes via a symmetric BH3:groove interface during apoptosis. Cell Death Differ. 19, 661–670 (2012).

    Article  CAS  PubMed  Google Scholar 

  75. Dewson, G. et al. To trigger apoptosis, Bak exposes its BH3 domain and homodimerizes via BH3:groove interactions. Mol. Cell 30, 369–380 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Weber, K., Harper, N., Schwabe, J. & Cohen, G. M. BIM-mediated membrane insertion of the BAK pore domain is an essential requirement for apoptosis. Cell Rep. 5, 409–420 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bleicken, S. et al. Structural model of active Bax at the membrane. Mol. Cell 56, 496–505 (2014). Together with Czabotar et al. (2013), this study demonstrates that, upon activation, BAX undergoes a conformation change that releases the ‘core’ domain to free it to form dimers.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Garcia-Saez, A. J. et al. Peptides corresponding to helices 5 and 6 of Bax can independently form large lipid pores. FEBS J. 273, 971–981 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Birkinshaw, R. W. et al. Structure of detergent-activated BAK dimers derived from the inert monomer. Mol. Cell 81, 2123–2134.e5 (2021). Together with Singh et al. (2022), this study uncovers the structural reorganization during BAK activation and provides mechanistic basis for autoactivation.

    Article  CAS  PubMed  Google Scholar 

  80. Cowan, A. D. et al. BAK core dimers bind lipids and can be bridged by them. Nat. Struct. Mol. Biol. 27, 1024–1031 (2020).

    Article  CAS  PubMed  Google Scholar 

  81. Subburaj, Y. et al. Bax monomers form dimer units in the membrane that further self-assemble into multiple oligomeric species. Nat. Commun. 6, 8042 (2015).

    Article  CAS  PubMed  Google Scholar 

  82. Mandal, T. et al. Assembly of Bak homodimers into higher order homooligomers in the mitochondrial apoptotic pore. Sci. Rep. 6, 30763 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Qian, S., Wang, W., Yang, L. & Huang, H. W. Structure of transmembrane pore induced by Bax-derived peptide: evidence for lipidic pores. Proc. Natl Acad. Sci. USA 105, 17379–17383 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Basañez, G. et al. Bax, but not Bcl-xL, decreases the lifetime of planar phospholipid bilayer membranes at subnanomolar concentrations. Proc. Natl Acad. Sci. USA 96, 5492–5497 (1999).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Flores-Romero, H., Ros, U. & Garcia-Saez, A. J. Pore formation in regulated cell death. EMBO J. 39, e105753 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bleicken, S., Landeta, O., Landajuela, A., Basañez, G. & García-Sáez, A. J. Proapoptotic Bax and Bak proteins form stable protein-permeable pores of tunable size. J. Biol. Chem. 288, 33241–33252 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Unsay, J. D., Cosentino, K., Sporbeck, K. & Garcia-Saez, A. J. Pro-apoptotic cBid and Bax exhibit distinct membrane remodeling activities: an AFM study. Biochim. Biophys. Acta 1859, 17–27 (2017).

    Article  CAS  Google Scholar 

  88. García-Sáez, A. J., Chiantia, S., Salgado, J. & Schwille, P. Pore formation by a Bax-derived peptide: effect on the line tension of the membrane probed by AFM. Biophys. J. 93, 103–112 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Salvador-Gallego, R. et al. Bax assembly into rings and arcs in apoptotic mitochondria is linked to membrane pores. EMBO J. 35, 389–401 (2016). 

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Cosentino, K. et al. The interplay between BAX and BAK tunes apoptotic pore growth to control mitochondrial-DNA-mediated inflammation. Mol. Cell 82, 933–949.e9 (2022). This article shows differing kinetics for BAX and BAK pore formation, demonstrating that the growth of the apoptotic pore can be regulated.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Grosse, L. et al. Bax assembles into large ring-like structures remodeling the mitochondrial outer membrane in apoptosis. EMBO J. 35, 402–413 (2016). Together with Salvador-Gallego et al. (2016), this study visualizes for the first time BAX pores in the mitochondria of apoptotic cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bleicken, S. et al. Topology of active, membrane-embedded Bax in the context of a toroidal pore. Cell Death Differ. 25, 1717–1731 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Dewson, G. et al. Bak activation for apoptosis involves oligomerization of dimers via their α6 helices. Mol. Cell 36, 696–703 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Uren, R. T. et al. Disordered clusters of Bak dimers rupture mitochondria during apoptosis. eLife 6, e19944 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Reynwar, B. J. et al. Aggregation and vesiculation of membrane proteins by curvature-mediated interactions. Nature 447, 461–464 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Inohara, N. et al. Mtd, a novel Bcl-2 family member activates apoptosis in the absence of heterodimerization with Bcl-2 and Bcl-X(L). J. Biol. Chem. 273, 8705–8710 (1998).

    Article  CAS  PubMed  Google Scholar 

  97. Kalkat, M. et al. Placental autophagy regulation by the BOK-MCL1 rheostat. Autophagy 9, 2140–2153 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lucendo, E. et al. Mcl-1 and Bok transmembrane domains: unexpected players in the modulation of apoptosis. Proc. Natl Acad. Sci. USA 117, 27980–27988 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hsu, S. Y., Kaipia, A., McGee, E., Lomeli, M. & Hsueh, A. J. W. Bok is a pro-apoptotic Bcl-2 protein with restricted expression in reproductive tissues and heterodimerizes with selective anti-apoptotic Bcl-2 family members. Proc. Natl Acad. Sci. USA 94, 12401–12406 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Echeverry, N. et al. Intracellular localization of the BCL-2 family member BOK and functional implications. Cell Death Differ. 20, 785–799 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Schulman, J. J. et al. The stability and expression level of Bok are governed by binding to inositol 1,4,5-trisphosphate receptors. J. Biol. Chem. 291, 11820–11828 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Carpio, M. A. et al. BOK controls apoptosis by Ca2+ transfer through ER-mitochondrial contact sites. Cell Rep. 34, 108827 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Rong, Y. P. et al. Targeting Bcl-2-IP3 receptor interaction to reverse Bcl-2’s inhibition of apoptotic calcium signals. Mol. Cell 31, 255–265 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Rosa, N. et al. Bcl-xL acts as an inhibitor of IP3R channels, thereby antagonizing Ca2+-driven apoptosis. Cell Death Differ. 29, 788–805 (2022).

    Article  CAS  PubMed  Google Scholar 

  105. Carpio, M. A. et al. BCL-2 family member BOK promotes apoptosis in response to endoplasmic reticulum stress. Proc. Natl Acad. Sci. USA 112, 7201–7206 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Schulman, J. J. et al. Bok regulates mitochondrial fusion and morphology. Cell Death Differ. 26, 2682–2694 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Walter, F., D’Orsi, B., Jagannathan, A., Dussmann, H. & Prehn, J. H. M. BOK controls ER proteostasis and physiological ER stress responses in neurons. Front. Cell Dev. Biol. 10, 915065 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Llambi, F. et al. BOK is a non-canonical BCL-2 family effector of apoptosis regulated by ER-associated degradation. Cell 165, 421–433 (2016). This study demonstrates that BOK possesses executioner activity and is regulated through targeting to the proteasome for degradation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. D’Orsi, B. et al. Bok is not pro-apoptotic but suppresses poly ADP-ribose polymerase-dependent cell death pathways and protects against excitotoxic and seizure-induced neuronal injury. J. Neurosci. 36, 4564–4578 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Ke, F. F. S. et al. Embryogenesis and adult life in the absence of intrinsic apoptosis effectors BAX, BAK, and BOK. Cell 173, 1217–1230.e17 (2018).

    Article  CAS  PubMed  Google Scholar 

  111. Shalaby, R., Diwan, A., Flores-Romero, H., Hertlein, V. & Garcia-Saez, A. J. Visualization of BOK pores independent of BAX and BAK reveals a similar mechanism with differing regulation. Cell Death Differ. 30, 731–741 (2023).

    Article  CAS  PubMed  Google Scholar 

  112. Schulman, J. J., Wright, F. A., Kaufmann, T. & Wojcikiewicz, R. J. H. The Bcl-2 protein family member bok binds to the coupling domain of inositol 1,4,5-trisphosphate receptors and protects them from proteolytic cleavage. J. Biol. Chem. 288, 25340–25349 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zheng, J. H. et al. Intrinsic instability of BOK enables membrane permeabilization in apoptosis. Cell Rep. 23, 2083–2094.e6 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Fernández-Marrero, Y. et al. The membrane activity of BOK involves formation of large, stable toroidal pores and is promoted by cBID. FEBS J. 284, 711–724 (2017).

    Article  PubMed  Google Scholar 

  115. McDonnell, J. M., Fushman, D., Milliman, C. L., Korsmeyer, S. J. & Cowburn, D. Solution structure of the proapoptotic molecule BID: a structural basis for apoptotic agonists and antagonists. Cell 96, 625–634 (1999).

    Article  CAS  PubMed  Google Scholar 

  116. Gong, X. M. et al. Conformation of membrane-associated proapoptotic tBid. J. Biol. Chem. 279, 28954–28960 (2004).

    Article  CAS  PubMed  Google Scholar 

  117. Gonzalvez, F. et al. tBid interaction with cardiolipin primarily orchestrates mitochondrial dysfunctions and subsequently activates Bax and Bak. Cell Death Differ. 12, 614–626 (2005).

    Article  CAS  PubMed  Google Scholar 

  118. Garcia-Saez, A. J., Mingarro, I., Perez-Paya, E. & Salgado, J. Membrane-insertion fragments of Bcl-xL, Bax, and Bid. Biochemistry 43, 10930–10943 (2004).

    Article  CAS  PubMed  Google Scholar 

  119. Garcia-Saez, A. J. et al. Peptides derived from apoptotic Bax and Bid reproduce the poration activity of the parent full-length proteins. Biophys. J. 88, 3976–3990 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Epand, R. F., Martinou, J. C., Fornallaz-Mulhauser, M., Hughes, D. W. & Epand, R. M. The apoptotic protein tBid promotes leakage by altering membrane curvature. J. Biol. Chem. 277, 32632–32639 (2002).

    Article  CAS  PubMed  Google Scholar 

  121. Zhai, D., Huang, X., Han, X. & Yang, F. Characterization of tBid-induced cytochrome c release from mitochondria and liposomes. FEBS Lett. 472, 293–296 (2000).

    Article  CAS  PubMed  Google Scholar 

  122. Schendel, S. L. et al. Ion channel activity of the BH3 only Bcl-2 family member, BID. J. Biol. Chem. 274, 21932–21936 (1999).

    Article  CAS  PubMed  Google Scholar 

  123. Grinberg, M. et al. tBID homooligomerizes in the mitochondrial membrane to induce apoptosis. J. Biol. Chem. 277, 12237–12245 (2002).

    Article  CAS  PubMed  Google Scholar 

  124. Flores‐Romero, H. et al. BCL-2-family protein tBID can act as a BAX-like effector of apoptosis. EMBO J. 41, e108690 (2022).

    Article  PubMed  Google Scholar 

  125. Ke, F. S. et al. The BCL‐2 family member BID plays a role during embryonic development in addition to its BH3‐only protein function by acting in parallel to BAX, BAK and BOK. EMBO J. 41, e110300 (2022). Together with Flores‐Romero et al. (2022), this article describes the surprising discovery that tBID has the capacity to function as an executioner.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Andree, M. et al. BID-dependent release of mitochondrial SMAC dampens XIAP-mediated immunity against Shigella. EMBO J. 33, 2171–2187 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Häcker, G. & Haimovici, A. Sub-lethal signals in the mitochondrial apoptosis apparatus: pernicious by-product or physiological event? Cell Death Differ. 30, 250–257 (2023).

    Article  PubMed  Google Scholar 

  128. Minn, A. J. et al. Bcl-x(L) forms an ion channel in synthetic lipid membranes. Nature 385, 353–356 (1997).

    Article  CAS  PubMed  Google Scholar 

  129. Schlesinger, P. H. et al. Comparison of the ion channel characteristics of proapoptotic BAX and antiapoptotic BCL-2. Proc. Natl Acad. Sci. USA 94, 11357–11362 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Clem, R. J. et al. Modulation of cell death by Bcl-x(L) through caspase interaction. Proc. Natl Acad. Sci. USA 95, 554–559 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Cheng, E. H. Y. et al. Conversion of Bcl-2 to a Bax-like death effector by caspases. Science 278, 1966–1968 (1997).

    Article  CAS  PubMed  Google Scholar 

  132. Basañez, G. et al. Pro-apoptotic cleavage products of Bcl-xL form cytochrome c-conducting pores in pure lipid membranes. J. Biol. Chem. 276, 31083–31091 (2001).

    Article  PubMed  Google Scholar 

  133. Michels, J. et al. Mcl-1 is required for Akata6 B-lymphoma cell survival and is converted to a cell death molecule by efficient caspase-mediated cleavage. Oncogene 23, 4818–4827 (2004).

    Article  CAS  PubMed  Google Scholar 

  134. Landeta, O. et al. Lipid-dependent bimodal MCL1 membrane activity. ACS Chem. Biol. 9, 2852–2863 (2014).

    Article  CAS  PubMed  Google Scholar 

  135. Flores-Romero, H. et al. BFL1 modulates apoptosis at the membrane level through a bifunctional and multimodal mechanism showing key differences with BCLXL. Cell Death Differ. 26, 1880–1894 (2019).

    Article  CAS  PubMed  Google Scholar 

  136. Hellmuth, S. & Stemmann, O. Separase-triggered apoptosis enforces minimal length of mitosis. Nature 580, 542–547 (2020).

    Article  CAS  PubMed  Google Scholar 

  137. Guillemin, Y. et al. Active fragments from pro- and antiapoptotic BCL-2 proteins have distinct membrane behavior reflecting their functional divergence. PLoS ONE 5, e9066 (2010).

    Article  PubMed  Google Scholar 

  138. Lindsay, J., Esposti, M. D. & Gilmore, A. P. Bcl-2 proteins and mitochondria — specificity in membrane targeting for death. Biochim. Biophys. Acta Mol. Cell Res. 1813, 532–539 (2011).

    Article  CAS  Google Scholar 

  139. Kaufmann, T. et al. Characterization of the signal that directs Bcl-x(L), but not Bcl-2, to the mitochondrial outer membrane. J. Cell Biol. 160, 53–64 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Vasquez-Montes, V., Rodnin, M. V., Kyrychenko, A. & Ladokhin, A. S. Lipids modulate the BH3-independent membrane targeting and activation of BAX and Bcl-xL. Proc. Natl Acad. Sci. USA 118, e2025834118 (2021).

    Article  CAS  PubMed  Google Scholar 

  141. Bogner, C., Leber, B. & Andrews, D. W. Apoptosis: embedded in membranes. Curr. Opin. Cell Biol. 22, 845–851 (2010).

    Article  CAS  PubMed  Google Scholar 

  142. Billen, L. P., Kokoski, C. L., Lovell, J. F., Leber, B. & Andrews, D. W. Bcl-XL inhibits membrane permeabilization by competing with Bax. PLoS Biol. 6, e147 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Lovell, J. F. et al. Membrane binding by tBid initiates an ordered series of events culminating in membrane permeabilization by Bax. Cell 135, 1074–1084 (2008).

    Article  CAS  PubMed  Google Scholar 

  144. Garcia-Saez, A. J., Ries, J., Orzaez, M., Perez-Paya, E. & Schwille, P. Membrane promotes tBID interaction with BCL(XL). Nat. Struct. Mol. Biol. 16, 1178–1185 (2009).

    Article  CAS  PubMed  Google Scholar 

  145. King, L. E. et al. Apoptotic priming is defined by the dynamic exchange of Bcl-2 proteins between mitochondria and cytosol. Cell Death Differ. 29, 2262–2274 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Murad, F. & Garcia-Saez, A. J. Bcl-xL inhibits tBid and Bax via distinct mechanisms. Faraday Discuss. 232, 86–102 (2021).

    Article  PubMed  Google Scholar 

  147. Hsu, Y. T. E. & Youle, R. J. Nonionic detergents induce dimerization among members of the Bcl-2 family. J. Biol. Chem. 272, 13829–13834 (1997).

    Article  CAS  PubMed  Google Scholar 

  148. Hsu, Y. T. E. & Youle, R. J. Bax in murine thymus is a soluble monomeric protein that displays differential detergent-induced conformations. J. Biol. Chem. 273, 10777–10783 (1998).

    Article  CAS  PubMed  Google Scholar 

  149. Leber, B., Lin, J. & Andrews, D. W. Still embedded together binding to membranes regulates Bcl-2 protein interactions. Oncogene 29, 5221–5230 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Kuwana, T. et al. Mitochondrial residence of the apoptosis inducer BAX is more important than BAX oligomerization in promoting membrane permeabilization. J. Biol. Chem. 295, 1623–1636 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Renault, T. T. et al. Mitochondrial shape governs BAX-induced membrane permeabilization and apoptosis. Mol. Cell 57, 69–82 (2015).

    Article  CAS  PubMed  Google Scholar 

  152. Terrones, O. et al. Lipidic pore formation by the concerted action of proapoptotic BAX and tBID. J. Biol. Chem. 279, 30081–30091 (2004).

    Article  CAS  PubMed  Google Scholar 

  153. Christenson, E., Merlin, S., Saito, M. & Schlesinger, P. Cholesterol effects on BAX pore activation. J. Mol. Biol. 381, 1168–1183 (2008).

    Article  CAS  PubMed  Google Scholar 

  154. Garcia Fernandez, M. et al. Early changes in intramitochondrial cardiolipin distribution during apoptosis. Cell Growth Differ. 13, 449–455 (2002).

    PubMed  Google Scholar 

  155. Kagan, V. E. et al. Cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factors. Nat. Chem. Biol. 1, 223–232 (2005).

    Article  CAS  PubMed  Google Scholar 

  156. Lutter, M. et al. Cardiolipin provides specificity for targeting of tBid to mitochondria. Nat. Cell Biol. 2, 754–761 (2000).

    Article  CAS  PubMed  Google Scholar 

  157. Kuwana, T. et al. Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell 111, 331–342 (2002).

    Article  CAS  PubMed  Google Scholar 

  158. Lai, Y. C. et al. The role of cardiolipin in promoting the membrane pore-forming activity of BAX oligomers. Biochim. Biophys. Acta Biomembr. 1861, 268–280 (2019).

    Article  CAS  PubMed  Google Scholar 

  159. Landeta, O., Landajuela, A., Garcia-Saez, A. & Basanez, G. Minimalist model systems reveal similarities and differences between membrane interaction modes of MCL1 and BAK. J. Biol. Chem. 290, 17004–17019 (2015).

    Article  CAS  PubMed  Google Scholar 

  160. Smith, N. A. et al. The Bak core dimer focuses triacylglycerides in the membrane. Biophys. J. 121, 347–360 (2022).

    Article  CAS  PubMed  Google Scholar 

  161. Chipuk, J. E. et al. Sphingolipid metabolism cooperates with BAK and BAX to promote the mitochondrial pathway of apoptosis. Cell 148, 988–1000 (2012).

    Article  CAS  PubMed  Google Scholar 

  162. Dadsena, S. et al. Ceramides bind VDAC2 to trigger mitochondrial apoptosis. Nat. Commun. 10, 1832 (2019).

    Article  PubMed  Google Scholar 

  163. Brouwer, J. M. et al. Conversion of Bim-BH3 from activator to inhibitor of Bak through structure-based design. Mol. Cell 68, 659–672.e9 (2017).

    Article  CAS  PubMed  Google Scholar 

  164. Aguilar, F. et al. Peptides from human BNIP5 and PXT1 and non-native binders of proapoptotic BAK can directly activate or inhibit BAK-mediated membrane permeabilization. Structure 31, 265–281.e7 (2023).

    Article  CAS  PubMed  Google Scholar 

  165. Brouwer, J. M. et al. Bak core and latch domains separate during activation, and freed core domains form symmetric homodimers. Mol. Cell 55, 938–946 (2014).

    Article  CAS  PubMed  Google Scholar 

  166. Shamas-Din, A. et al. Multiple partners can kiss-and-run: Bax transfers between multiple membranes and permeabilizes those primed by tBid. Cell Death Dis. 5, e1277 (2014).

    Article  CAS  PubMed  Google Scholar 

  167. Muchmore, S. W. et al. X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Nature 381, 335–341 (1996).

    Article  CAS  PubMed  Google Scholar 

  168. Birkinshaw, R. W. et al. Structures of BCL-2 in complex with venetoclax reveal the molecular basis of resistance mutations. Nat. Commun. 10, 2385 (2019).

    Article  PubMed  Google Scholar 

  169. Moldoveanu, T. et al. The X-ray structure of a BAK homodimer reveals an inhibitory zinc binding site. Mol. Cell 24, 677–688 (2006).

    Article  CAS  PubMed  Google Scholar 

  170. Sperl, L. E., Rührnößl, F., Schiller, A., Haslbeck, M. & Hagn, F. High-resolution analysis of the conformational transition of pro-apoptotic Bak at the lipid membrane. EMBO J. 40, e107159 (2021).

    Article  CAS  PubMed  Google Scholar 

  171. Schredelseker, J. et al. High resolution structure and double electron–electron resonance of the zebrafish voltage-dependent anion channel 2 reveal an oligomeric population. J. Biol. Chem. 289, 12566–12577 (2014).

    Article  CAS  PubMed  Google Scholar 

  172. Cosentino, K. & García-Sáez, A. J. Bax and Bak pores: are we closing the circle? Trends Cell Biol. 27, 266–275 (2017).

    Article  CAS  PubMed  Google Scholar 

  173. Strasser, A., Harris, A. W., Bath, M. L. & Cory, S. Novel primitive lymphoid tumours induced in transgenic mice by cooperation between myc and bcl-2. Nature 348, 331–333 (1990).

    Article  CAS  PubMed  Google Scholar 

  174. Oltersdorf, T. et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435, 677–681 (2005).

    Article  CAS  PubMed  Google Scholar 

  175. Tse, C. et al. ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res. 68, 3421–3428 (2008).

    Article  CAS  PubMed  Google Scholar 

  176. Roberts, A. W. et al. Substantial susceptibility of chronic lymphocytic leukemia to BCL2 inhibition: results of a phase I study of navitoclax in patients with relapsed or refractory disease. J. Clin. Oncol. 30, 488–496 (2012).

    Article  CAS  PubMed  Google Scholar 

  177. Mason, K. D. et al. Programmed anuclear cell death delimits platelet life span. Cell 128, 1173–1186 (2007).

    Article  CAS  PubMed  Google Scholar 

  178. Souers, A. J. et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat. Med. 19, 202–208 (2013). The authors describes the development of Venetoclax (ABT-199), the first FDA-approved BH3 mimetic.

    Article  CAS  PubMed  Google Scholar 

  179. Konopleva, M. et al. Efficacy and biological correlates of response in a phase II study of venetoclax monotherapy in patients with acute myelogenous leukemia. Cancer Discov. 6, 1106–1117 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Lessene, G. et al. Structure-guided design of a selective BCL-X(L) inhibitor. Nat. Chem. Biol. 9, 390–397 (2013).

    Article  CAS  PubMed  Google Scholar 

  181. Wang, L. et al. Discovery of A-1331852, a first-in-class, potent, and orally-bioavailable BCL-XL inhibitor. ACS Med. Chem. Lett. 11, 1829–1836 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Tron, A. E. et al. Discovery of Mcl-1-specific inhibitor AZD5991 and preclinical activity in multiple myeloma and acute myeloid leukemia. Nat. Commun. 9, 5341 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Kotschy, A. et al. The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models. Nature 538, 477–482 (2016).

    Article  PubMed  Google Scholar 

  184. Caenepeel, S. et al. AMG 176, a selective MCL1 inhibitor, is effective in hematologic cancer models alone and in combination with established therapies. Cancer Discov. 8, 1582–1597 (2018).

    Article  CAS  PubMed  Google Scholar 

  185. Kehr, S. & Vogler, M. It’s time to die: BH3 mimetics in solid tumors. Biochim. Biophys. Acta Mol. Cell Res. 1868, 118987 (2021).

    Article  CAS  PubMed  Google Scholar 

  186. Casara, P. et al. S55746 is a novel orally active BCL-2 selective and potent inhibitor that impairs hematological tumor growth. Oncotarget 9, 20075–20088 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Wang, X. et al. Deletion of MCL-1 causes lethal cardiac failure and mitochondrial dysfunction. Genes Dev. 27, 1351–1364 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Blombery, P. et al. Characterization of a novel venetoclax resistance mutation (BCL2 Phe104Ile) observed in follicular lymphoma. Br. J. Haematol. 186, e188–e191 (2019).

    Article  PubMed  Google Scholar 

  189. Blombery, P. et al. Multiple BCL2 mutations cooccurring with Gly101Val emerge in chronic lymphocytic leukemia progression on venetoclax. Blood 135, 773–777 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Blombery, P. et al. Acquisition of the recurrent Gly101Val mutation in BCL2 confers resistance to Venetoclax in patients with progressive chronic lymphocytic leukemia. Cancer Discov. 9, 342–353 (2019).

    Article  CAS  PubMed  Google Scholar 

  191. Fresquet, V., Rieger, M., Carolis, C., García-Barchino, M. J. & Martinez-Climent, J. A. Acquired mutations in BCL2 family proteins conferring resistance to the BH3 mimetic ABT-199 in lymphoma. Blood 123, 4111–4119 (2014).

    Article  CAS  PubMed  Google Scholar 

  192. Moujalled, D. M. et al. Acquired mutations in BAX confer resistance to BH3-mimetic therapy in acute myeloid leukemia. Blood 141, 634–644 (2023).

    Article  CAS  PubMed  Google Scholar 

  193. Blombery, P. et al. Clonal hematopoiesis, myeloid disorders and BAX-mutated myelopoiesis in patients receiving venetoclax for CLL. Blood 139, 1198–1207 (2022).

    Article  CAS  PubMed  Google Scholar 

  194. Tahir, S. K. et al. Potential mechanisms of resistance to Venetoclax and strategies to circumvent it. BMC Cancer 17, 399 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Guièze, R. et al. Mitochondrial reprogramming underlies resistance to BCL-2 inhibition in lymphoid malignancies. Cancer Cell 36, 369–384.e13 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Rehm, M. et al. Dynamics of outer mitochondrial membrane permeabilization during apoptosis. Cell Death Differ. 16, 613–623 (2009).

    Article  CAS  PubMed  Google Scholar 

  197. Ichim, G. et al. Limited mitochondrial permeabilization causes DNA damage and genomic instability in the absence of cell death. Mol. Cell 57, 860–872 (2015). This study demonstrates that, in certain cases, MOMP can be sublethal.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Tigano, M., Vargas, D. C., Tremblay-Belzile, S., Fu, Y. & Sfeir, A. Nuclear sensing of breaks in mitochondrial DNA enhances immune surveillance. Nature 591, 477–481 (2021).

    Article  CAS  PubMed  Google Scholar 

  199. Brokatzky, D. et al. A non-death function of the mitochondrial apoptosis apparatus in immunity. EMBO J. 38, e100907 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Dörflinger, B. et al. Mitochondria supply sub-lethal signals for cytokine secretion and DNA-damage in H. pylori infection. Cell Death Differ. 29, 2218–2232 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Cao, K. et al. Mitochondrial dynamics regulate genome stability via control of caspase-dependent DNA damage. Dev. Cell 57, 1211–1225.e6 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Zacharioudakis, E. et al. Modulating mitofusins to control mitochondrial function and signaling. Nat. Commun. 13, 3775 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Flores-Romero, H., Dadsena, S. & García-Sáez, A. J. Mitochondrial pores at the crossroad between cell death and inflammatory signaling. Mol. Cell 83, 843–856 (2023).

    Article  CAS  PubMed  Google Scholar 

  204. Moldoveanu, T. & Czabotar, P. E. BAX, BAK, and BOK: a coming of age for the BCL-2 family effector proteins. Cold Spring Harb. Perspect. Biol. 12, a036319 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Pogmore, J. P., Uehling, D. & Andrews, D. W. Pharmacological targeting of executioner proteins: controlling life and death. J. Med. Chem. 64, 5276–5290 (2021).

    Article  CAS  PubMed  Google Scholar 

  206. Spitz, A. Z. & Gavathiotis, E. Physiological and pharmacological modulation of BAX. Trends Pharmacol. Sci. 43, 206–220 (2022).

    Article  CAS  PubMed  Google Scholar 

  207. Zhao, G. et al. Activation of the proapoptotic Bcl-2 protein Bax by a small molecule induces tumor cell apoptosis. Mol. Cell Biol. 34, 1198–1207 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Xin, M. et al. Small-molecule Bax agonists for cancer therapy. Nat. Commun. 5, 4935 (2014).

    Article  CAS  PubMed  Google Scholar 

  209. Sekar, G. et al. Small molecule SJ572946 activates BAK to initiate apoptosis. iScience 25, 105064 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Reyna, D. E. et al. Direct activation of BAX by BTSA1 overcomes apoptosis resistance in acute myeloid leukemia. Cancer Cell 32, 490–505.e10 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Stornaiuolo, M. et al. Structure-based lead optimization and biological evaluation of BAX direct activators as novel potential anticancer agents. J. Med. Chem. 58, 2135–2148 (2015).

    Article  CAS  PubMed  Google Scholar 

  212. Gavathiotis, E., Reyna, D. E., Bellairs, J. A., Leshchiner, E. S. & Walensky, L. D. Direct and selective small-molecule activation of proapoptotic BAX. Nat. Chem. Biol. 8, 639–645 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Brahmbhatt, H., Uehling, D., Al-awar, R., Leber, B. & Andrews, D. Small molecules reveal an alternative mechanism of Bax activation. Biochem. J. 473, 1073–1083 (2016).

    Article  CAS  PubMed  Google Scholar 

  214. Amgalan, D. et al. A small-molecule allosteric inhibitor of BAX protects against doxorubicin-induced cardiomyopathy. Nat. Cancer 1, 315–328 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Afreen, S., Weiss, J. M., Strahm, B. & Erlacher, M. Concise review: cheating death for a better transplant. Stem Cell 36, 1646–1654 (2018).

    Article  Google Scholar 

  216. Ma, J. et al. Structural mechanism of Bax inhibition by cytomegalovirus protein vMIA. Proc. Natl Acad. Sci. USA 109, 20901–20906 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Garner, T. P. et al. Small-molecule allosteric inhibitors of BAX. Nat. Chem. Biol. 15, 322–330 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Peixoto, P. M., Ryu, S.-Y., Bombrun, A., Antonsson, B. & Kinnally, K. W. MAC inhibitors suppress mitochondrial apoptosis. Biochem. J. 423, 381–387 (2009).

    Article  CAS  PubMed  Google Scholar 

  219. Spitz, A. Z., Zacharioudakis, E., Reyna, D. E., Garner, T. P. & Gavathiotis, E. Eltrombopag directly inhibits BAX and prevents cell death. Nat. Commun. 12, 1134 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. van Delft, M. F. et al. A small molecule interacts with VDAC2 to block mouse BAK-driven apoptosis. Nat. Chem. Biol. 15, 1057–1066 (2019).

    Article  PubMed  Google Scholar 

  221. Niu, X. et al. A small-molecule inhibitor of Bax and Bak oligomerization prevents genotoxic cell death and promotes neuroprotection. Cell Chem. Biol. 24, 493–506.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Research in the P.E.C.’s laboratory is supported by an NHMRC Ideas Grant (GNT2001406) and Investigator Fellowship (GNT2009062), the Leukaemia and Lymphoma Society (SCOR 7015-1), Victorian State Government Operational Infrastructure Support and the Australian Government NHMRC IRIISS. A.J.G.-S. acknowledges funding by the European Research Council (grant agreement 817758) and the Deutsche Forschungsgemeinschaft (CRC1403 Projektnummer 414786233 and CRC1218 Projektnummer 269925409).

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Peter E. Czabotar or Ana J. Garcia-Saez.

Ethics declarations

Competing interests

P.E.C. is an employee of the Walter and Eliza Hall Institute, which has an agreement with Genentech and AbbVie, and receives milestone and royalty payments related to Venetoclax. Employees of Walter and Eliza Hall Institute may be eligible for financial benefits related to these payments. P.E.C. receives such a financial benefit as a result of previous research related to Venetoclax. P.E.C. has received research funding from Genentech. A.J.G.-S. declares no competing interests.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks Geert Bultynck, Atan Gross and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

ProteomicsDB: https://www.proteomicsdb.org/proteomicsdb/#overview

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Czabotar, P.E., Garcia-Saez, A.J. Mechanisms of BCL-2 family proteins in mitochondrial apoptosis. Nat Rev Mol Cell Biol 24, 732–748 (2023). https://doi.org/10.1038/s41580-023-00629-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-023-00629-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing