Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Context-specific regulation of extracellular vesicle biogenesis and cargo selection

Abstract

To coordinate, adapt and respond to biological signals, cells convey specific messages to other cells. An important aspect of cell–cell communication involves secretion of molecules into the extracellular space. How these molecules are selected for secretion has been a fundamental question in the membrane trafficking field for decades. Recently, extracellular vesicles (EVs) have been recognized as key players in intercellular communication, carrying not only membrane proteins and lipids but also RNAs, cytosolic proteins and other signalling molecules to recipient cells. To communicate the right message, it is essential to sort cargoes into EVs in a regulated and context-specific manner. In recent years, a wealth of lipidomic, proteomic and RNA sequencing studies have revealed that EV cargo composition differs depending upon the donor cell type, metabolic cues and disease states. Analyses of distinct cargo ‘fingerprints’ have uncovered mechanistic linkages between the activation of specific molecular pathways and cargo sorting. In addition, cell biology studies are beginning to reveal novel biogenesis mechanisms regulated by cellular context. Here, we review context-specific mechanisms of EV biogenesis and cargo sorting, focusing on how cell signalling and cell state influence which cellular components are ultimately targeted to EVs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A road map of extracellular vesicle biogenesis.
Fig. 2: Mechanisms of extracellular vesicle biogenesis and cargo sorting.
Fig. 3: Examples of context-specific regulation of cargo sorting.

Similar content being viewed by others

References

  1. Johnstone, R. M., Mathew, A., Mason, A. B. & Teng, K. Exosome formation during maturation of mammalian and avian reticulocytes: evidence that exosome release is a major route for externalization of obsolete membrane proteins. J. Cell Physiol. 147, 27–36 (1991).

    Article  CAS  PubMed  Google Scholar 

  2. Pan, B. T., Teng, K., Wu, C., Adam, M. & Johnstone, R. M. Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J. Cell Biol. 101, 942–948 (1985).

    Article  CAS  PubMed  Google Scholar 

  3. Harding, C., Heuser, J. & Stahl, P. Endocytosis and intracellular processing of transferrin and colloidal gold-transferrin in rat reticulocytes: demonstration of a pathway for receptor shedding. Eur. J. Cell Biol. 35, 256–263 (1984).

    CAS  PubMed  Google Scholar 

  4. van Niel, G. et al. Challenges and directions in studying cell–cell communication by extracellular vesicles. Nat. Rev. Mol. Cell Biol. 23, 369–382 (2022).

    Article  PubMed  Google Scholar 

  5. Maas, S. L. N., Breakefield, X. O. & Weaver, A. M. Extracellular vesicles: unique intercellular delivery vehicles. Trends Cell Biol. 27, 172–188 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. van Niel, G., D’Angelo, G. & Raposo, G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. 19, 213–228 (2018).

    Article  PubMed  Google Scholar 

  7. Raposo, G. & Stoorvogel, W. Extracellular vesicles: exosomes, microvesicles, and friends. J. Cell Biol. 200, 373–383 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ma, L. et al. Discovery of the migrasome, an organelle mediating release of cytoplasmic contents during cell migration. Cell Res. 25, 24–38 (2015). This work reveals the presence of bulges containing internal vesicles along the retraction fibres of migrating cells. These structures, termed ‘migrasomes’, are released into the extracellular space as a type of large EV.

    Article  CAS  PubMed  Google Scholar 

  9. Atkin-Smith, G. K. et al. A novel mechanism of generating extracellular vesicles during apoptosis via a beads-on-a-string membrane structure. Nat. Commun. 6, 7439 (2015).

    Article  PubMed  Google Scholar 

  10. Théry, C. et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles 7, 1535750 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sung, B. H., Ketova, T., Hoshino, D., Zijlstra, A. & Weaver, A. M. Directional cell movement through tissues is controlled by exosome secretion. Nat. Commun. 6, 7164 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Sinha, S. et al. Cortactin promotes exosome secretion by controlling branched actin dynamics. J. Cell Biol. 214, 197–213 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. DeRita, R. M. et al. Tumor-derived extracellular vesicles require β1 integrins to promote anchorage-independent growth. iScience 14, 199–209 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kia, V., Mortazavi, Y., Paryan, M., Biglari, A. & Mohammadi-Yeganeh, S. Exosomal miRNAs from highly metastatic cells can induce metastasis in non-metastatic cells. Life Sci. 220, 162–168 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Kriebel, P. W. et al. Extracellular vesicles direct migration by synthesizing and releasing chemotactic signals. J. Cell Biol. 217, 2891–2910 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. French, K. C., Antonyak, M. A. & Cerione, R. A. Extracellular vesicle docking at the cellular port: extracellular vesicle binding and uptake. Semin. Cell Dev. Biol. 67, 48–55 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mathieu, M., Martin-Jaular, L., Lavieu, G. & Thery, C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat. Cell Biol. 21, 9–17 (2019).

    Article  CAS  PubMed  Google Scholar 

  18. Schwager, S. C. & Reinhart-King, C. A. Mechanobiology of microvesicle release, uptake, and microvesicle-mediated activation. Curr. Top. Membr. 86, 255–278 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Henne, W. M., Buchkovich, N. J. & Emr, S. D. The ESCRT pathway. Dev. Cell 21, 77–91 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Jackson, C. E., Scruggs, B. S., Schaffer, J. E. & Hanson, P. I. Effects of inhibiting VPS4 support a general role for ESCRTs in extracellular vesicle biogenesis. Biophys. J. 113, 1342–1352 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Raiborg, C. & Stenmark, H. The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature 458, 445–452 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Raiborg, C. et al. Hrs sorts ubiquitinated proteins into clathrin-coated microdomains of early endosomes. Nat. Cell Biol. 4, 394–398 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Katzmann, D. J., Odorizzi, G. & Emr, S. D. Receptor downregulation and multivesicular-body sorting. Nat. Rev. Mol. Cell Biol. 3, 893–905 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Raiborg, C., Bache, K. G., Mehlum, A., Stang, E. & Stenmark, H. Hrs recruits clathrin to early endosomes. EMBO J. 20, 5008–5021 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Raiborg, C., Wesche, J., Malerod, L. & Stenmark, H. Flat clathrin coats on endosomes mediate degradative protein sorting by scaffolding Hrs in dynamic microdomains. J. Cell Sci. 119, 2414–2424 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Coonrod, E. M. & Stevens, T. H. The yeast vps class E mutants: the beginning of the molecular genetic analysis of multivesicular body biogenesis. Mol. Biol. Cell 21, 4057–4060 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Colombo, M. et al. Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J. Cell Sci. 126, 5553–5565 (2013).

    CAS  PubMed  Google Scholar 

  28. Hurley, J. H. & Hanson, P. I. Membrane budding and scission by the ESCRT machinery: it’s all in the neck. Nat. Rev. Mol. Cell Biol. 11, 556–566 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Boura, E., Ivanov, V., Carlson, L. A., Mizuuchi, K. & Hurley, J. H. Endosomal sorting complex required for transport (ESCRT) complexes induce phase-separated microdomains in supported lipid bilayers. J. Biol. Chem. 287, 28144–28151 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Booth, A., Marklew, C. J., Ciani, B. & Beales, P. A. The influence of phosphatidylserine localisation and lipid phase on membrane remodelling by the ESCRT-II/ESCRT-III complex. Faraday Discuss. 232, 188–202 (2021).

    Article  PubMed  Google Scholar 

  31. Levental, I., Levental, K. R. & Heberle, F. A. Lipid rafts: controversies resolved, mysteries remain. Trends Cell Biol. 30, 341–353 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Llorente, A. et al. Molecular lipidomics of exosomes released by PC-3 prostate cancer cells. Biochim. Biophys. Acta 1831, 1302–1309 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Larios, J., Mercier, V., Roux, A. & Gruenberg, J. ALIX- and ESCRT-III-dependent sorting of tetraspanins to exosomes. J. Cell Biol. 19, e201904113 (2020). This work demonstrates that expression of an activated ALIX mutant is sufficient to recruit ESCRT-III to endosomes and drive the formation of tetraspanin-containing small EVs.

    Google Scholar 

  34. Lee, I. H., Kai, H., Carlson, L. A., Groves, J. T. & Hurley, J. H. Negative membrane curvature catalyzes nucleation of endosomal sorting complex required for transport (ESCRT)-III assembly. Proc. Natl Acad. Sci. USA 112, 15892–15897 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chiaruttini, N. et al. Relaxation of loaded ESCRT-III spiral springs drives membrane deformation. Cell 163, 866–879 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bertin, A. et al. Human ESCRT-III polymers assemble on positively curved membranes and induce helical membrane tube formation. Nat. Commun. 11, 2663 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Adell, M. A. Y. et al. Recruitment dynamics of ESCRT-III and Vps4 to endosomes and implications for reverse membrane budding. eLife 6, e31652 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Edgar, J. R., Eden, E. R. & Futter, C. E. Hrs- and CD63-dependent competing mechanisms make different sized endosomal intraluminal vesicles. Traffic 15, 197–211 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Baietti, M. F. et al. Syndecan–syntenin–ALIX regulates the biogenesis of exosomes. Nat. Cell Biol. 14, 677–685 (2012). This work reveals the role of syntenin as an adaptor that captures cargoes like syndecan and CD63 for incorporation into exosomes formed through an ALIX–ESCRT pathway.

    Article  CAS  PubMed  Google Scholar 

  40. Stepp, M. A., Pal-Ghosh, S., Tadvalkar, G. & Pajoohesh-Ganji, A. Syndecan-1 and its expanding list of contacts. Adv. Wound Care 4, 235–249 (2015).

    Article  Google Scholar 

  41. Ghossoub, R. et al. Tetraspanin-6 negatively regulates exosome production. Proc. Natl Acad. Sci. USA 117, 5913–5922 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Elias, R. D. et al. Proline-rich domain of human ALIX contains multiple TSG101-UEV interaction sites and forms phosphorylation-mediated reversible amyloids. Proc. Natl Acad. Sci. USA 117, 24274–24284 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Imjeti, N. S. et al. Syntenin mediates SRC function in exosomal cell-to-cell communication. Proc. Natl Acad. Sci. USA 114, 12495–12500 (2017). This work demonstrates that SRC regulates the syndecan–syntenin–ALIX pathway of exosome biogenesis by phosphorylating syndecan 1 and syntenin.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ghossoub, R. et al. Syntenin-ALIX exosome biogenesis and budding into multivesicular bodies are controlled by ARF6 and PLD2. Nat. Commun. 5, 3477 (2014).

    Article  PubMed  Google Scholar 

  45. Muralidharan-Chari, V. et al. ARF6-regulated shedding of tumor cell-derived plasma membrane microvesicles. Curr. Biol. 19, 1875–1885 (2009). This work reveals a pathway in which ARF6–PLD2 activation facilitates large ectosome formation by altering myosin activity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rider, M. A. et al. The interactome of EBV LMP1 evaluated by proximity-based BioID approach. Virology 516, 55–70 (2018).

    Article  CAS  PubMed  Google Scholar 

  47. Nkosi, D. et al. Epstein-Barr virus LMP1 promotes syntenin-1- and Hrs-induced extracellular vesicle formation for its own secretion to increase cell proliferation and migration. mBio 11, e00589-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Marie, P. P. et al. Accessory ESCRT-III proteins selectively regulate Rab11-exosome biogenesis in Drosophila secondary cells. Preprint at bioRxiv https://doi.org/10.1101/2020.06.18.158725 (2020).

    Article  Google Scholar 

  49. Fan, S. J. et al. Glutamine deprivation alters the origin and function of cancer cell exosomes. EMBO J. 39, e103009 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Donoso-Quezada, J., Ayala-Mar, S. & Gonzalez-Valdez, J. The role of lipids in exosome biology and intercellular communication: function, analytics and applications. Traffic 22, 204–220 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rocha, N. et al. Cholesterol sensor ORP1L contacts the ER protein VAP to control Rab7–RILP–p150Glued and late endosome positioning. J. Cell Biol. 185, 1209–1225 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sobo, K. et al. Late endosomal cholesterol accumulation leads to impaired intra-endosomal trafficking. PLoS ONE 2, e851 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Trajkovic, K. et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319, 1244–1247 (2008). This work reveals a ceramide-dependent but ESCRT-independent pathway that produces exosomes containing proteolipid protein.

    Article  CAS  PubMed  Google Scholar 

  54. Knapp, P. E. Proteolipid protein: is it more than just a structural component of myelin? Dev. Neurosci. 18, 297–308 (1996).

    Article  CAS  PubMed  Google Scholar 

  55. Otto, G. P. & Nichols, B. J. The roles of flotillin microdomains — endocytosis and beyond. J. Cell Sci. 124, 3933–3940 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Matsuo, H. et al. Role of LBPA and Alix in multivesicular liposome formation and endosome organization. Science 303, 531–534 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Iguchi, Y. et al. Exosome secretion is a key pathway for clearance of pathological TDP-43. Brain 139, 3187–3201 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Katz-Kiriakos, E. et al. Epithelial IL-33 appropriates exosome trafficking for secretion in chronic airway disease. JCI Insight 6, e136166 (2021).

    PubMed  PubMed Central  Google Scholar 

  59. Choezom, D. & Gross, J. C. Neutral sphingomyelinase 2 controls exosome secretion by counteracting V-ATPase-mediated endosome acidification. J. Cell Sci. 135, jcs259324 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Guo, B. B., Bellingham, S. A. & Hill, A. F. The neutral sphingomyelinase pathway regulates packaging of the prion protein into exosomes. J. Biol. Chem. 290, 3455–3467 (2015).

    Article  CAS  PubMed  Google Scholar 

  61. Kosaka, N. et al. Neutral sphingomyelinase 2 (nSMase2)-dependent exosomal transfer of angiogenic microRNAs regulate cancer cell metastasis. J. Biol. Chem. 288, 10849–10859 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhu, J. et al. Myocardial reparative functions of exosomes from mesenchymal stem cells are enhanced by hypoxia treatment of the cells via transferring microRNA-210 in an nSMase2-dependent way. Artif. Cell Nanomed. Biotechnol. 46, 1659–1670 (2018).

    CAS  Google Scholar 

  63. Cha, D. J. et al. KRAS-dependent sorting of miRNA to exosomes. eLife 4, e07197 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Tahara, H., Kay, M. A., Yasui, W. & Tahara, E. MicroRNAs in cancer: the 22nd Hiroshima Cancer Seminar/the 4th Japanese Association for RNA Interference Joint International Symposium, 30 August 2012, Grand Prince Hotel Hiroshima. Jpn. J. Clin. Oncol. 43, 579–582 (2013).

    Article  PubMed  Google Scholar 

  65. Mittelbrunn, M. et al. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat. Commun. 2, 282 (2011).

    Article  PubMed  Google Scholar 

  66. Kosaka, N. et al. Secretory mechanisms and intercellular transfer of microRNAs in living cells. J. Biol. Chem. 285, 17442–17452 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Menck, K. et al. Neutral sphingomyelinases control extracellular vesicles budding from the plasma membrane. J. Extracell. Vesicles 6, 1378056 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Shamseddine, A. A., Airola, M. V. & Hannun, Y. A. Roles and regulation of neutral sphingomyelinase-2 in cellular and pathological processes. Adv. Biol. Regul. 57, 24–41 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Matsui, T., Osaki, F., Hiragi, S., Sakamaki, Y. & Fukuda, M. ALIX and ceramide differentially control polarized small extracellular vesicle release from epithelial cells. EMBO Rep. 22, e51475 (2021). This work demonstrates that the apical and basolateral surfaces of epithelial cells release small EV subpopulations formed through distinct biogenesis pathways.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Fukushima, M. et al. StAR-related lipid transfer domain 11 (STARD11)-mediated ceramide transport mediates extracellular vesicle biogenesis. J. Biol. Chem. 293, 15277–15289 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Barman, B. et al. VAP-A and its binding partner CERT drive biogenesis of RNA-containing extracellular vesicles at ER membrane contact sites. Dev. Cell 57, 974–994.e8 (2022). This work demonstrates that VAP-A–CERT linkages at ER membrane contact sites regulate the biogenesis of RNA-containing EVs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Crivelli, S. M. et al. Function of ceramide transfer protein for biogenesis and sphingolipid composition of extracellular vesicles. J. Extracell. Vesicles 11, e12233 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kajimoto, T. et al. Involvement of Gβγ subunits of Gi protein coupled with S1P receptor on multivesicular endosomes in F-actin formation and cargo sorting into exosomes. J. Biol. Chem. 293, 245–253 (2018).

    Article  CAS  PubMed  Google Scholar 

  74. Yanez-Mo, M., Barreiro, O., Gordon-Alonso, M., Sala-Valdes, M. & Sanchez-Madrid, F. Tetraspanin-enriched microdomains: a functional unit in cell plasma membranes. Trends Cell Biol. 19, 434–446 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. Perez-Hernandez, D. et al. The intracellular interactome of tetraspanin-enriched microdomains reveals their function as sorting machineries toward exosomes. J. Biol. Chem. 288, 11649–11661 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. McMahon, H. T. & Boucrot, E. Membrane curvature at a glance. J. Cell Sci. 128, 1065–1070 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zimmerman, B. et al. Crystal structure of a full-length human tetraspanin reveals a cholesterol-binding pocket. Cell 167, 1041–1051.e11 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Umeda, R., Nishizawa, T. & Nureki, O. Crystallization of the human tetraspanin protein CD9. Acta Crystallogr. F Struct. Biol. Commun. 75, 254–259 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. van Niel, G. et al. The tetraspanin CD63 regulates ESCRT-independent and -dependent endosomal sorting during melanogenesis. Dev. Cell 21, 708–721 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Hurwitz, S. N., Conlon, M. M., Rider, M. A., Brownstein, N. C. & Meckes, D. G. Jr. Nanoparticle analysis sheds budding insights into genetic drivers of extracellular vesicle biogenesis. J. Extracell. Vesicles 5, 31295 (2016).

    Article  PubMed  Google Scholar 

  81. Rabas, N. et al. PINK1 drives production of mtDNA-containing extracellular vesicles to promote invasiveness. J. Cell Biol. 220, e202006049 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Petersen, S. H. et al. The role of tetraspanin CD63 in antigen presentation via MHC class II. Eur. J. Immunol. 41, 2556–2561 (2011).

    Article  CAS  PubMed  Google Scholar 

  83. Chairoungdua, A., Smith, D. L., Pochard, P., Hull, M. & Caplan, M. J. Exosome release of β-catenin: a novel mechanism that antagonizes Wnt signaling. J. Cell Biol. 190, 1079–1091 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Brzozowski, J. S. et al. Extracellular vesicles with altered tetraspanin CD9 and CD151 levels confer increased prostate cell motility and invasion. Sci. Rep. 8, 8822 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Andreu, Z. & Yanez-Mo, M. Tetraspanins in extracellular vesicle formation and function. Front. Immunol. 5, 442 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Gurung, S., Perocheau, D., Touramanidou, L. & Baruteau, J. The exosome journey: from biogenesis to uptake and intracellular signalling. Cell Commun. Signal. 19, 47 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Fordjour, F. K., Guo, C., Ai, Y., Daaboul, G. G. & Gould, S. J. A shared, stochastic pathway mediates exosome protein budding along plasma and endosome membranes. J. Biol. Chem. 298, 102394 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Sung, B. H. et al. A live cell reporter of exosome secretion and uptake reveals pathfinding behavior of migrating cells. Nat. Commun. 11, 2092 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Mathieu, M. et al. Specificities of exosome versus small ectosome secretion revealed by live intracellular tracking of CD63 and CD9. Nat. Commun. 12, 4389 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Booth, A. M. et al. Exosomes and HIV Gag bud from endosome-like domains of the T cell plasma membrane. J. Cell Biol. 172, 923–935 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Crescitelli, R. et al. Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes. J. Extracell. Vesicles 2, 20677 (2013).

    Article  Google Scholar 

  92. Antonyak, M. A. & Cerione, R. A. Microvesicles as mediators of intercellular communication in cancer. Methods Mol. Biol. 1165, 147–173 (2014).

    Article  PubMed  Google Scholar 

  93. Ratajczak, J., Wysoczynski, M., Hayek, F., Janowska-Wieczorek, A. & Ratajczak, M. Z. Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia 20, 1487–1495 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Nabhan, J. F., Hu, R., Oh, R. S., Cohen, S. N. & Lu, Q. Formation and release of arrestin domain-containing protein 1-mediated microvesicles (ARMMs) at plasma membrane by recruitment of TSG101 protein. Proc. Natl Acad. Sci. USA 109, 4146–4151 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wang, Q. & Lu, Q. Plasma membrane-derived extracellular microvesicles mediate non-canonical intercellular NOTCH signaling. Nat. Commun. 8, 709 (2017). Together with Nabhan et al. (2012), these studies define a class of ARRDC1-dependent ectosomes termed ‘ARRMs’ that form through ESCRT and E3 ubiquitin ligase activity at the plasma membrane.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Umeda, R. et al. Structural insights into tetraspanin CD9 function. Nat. Commun. 11, 1606 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sala-Valdes, M. et al. EWI-2 and EWI-F link the tetraspanin web to the actin cytoskeleton through their direct association with ezrin-radixin-moesin proteins. J. Biol. Chem. 281, 19665–19675 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Huang, C., Hays, F. A., Tomasek, J. J., Benyajati, S. & Zhang, X. A. Tetraspanin CD82 interaction with cholesterol promotes extracellular vesicle-mediated release of ezrin to inhibit tumour cell movement. J. Extracell. Vesicles 9, 1692417 (2020).

    Article  CAS  PubMed  Google Scholar 

  99. Scott, G. Demonstration of melanosome transfer by a shedding microvesicle mechanism. J. Invest. Dermatol. 132, 1073–1074 (2012).

    Article  CAS  PubMed  Google Scholar 

  100. Rilla, K. et al. Hyaluronan production enhances shedding of plasma membrane-derived microvesicles. Exp. Cell Res. 319, 2006–2018 (2013). This work demonstrates a role for hyaluronan in promoting ectosome production on the tips of cell protrusions.

    Article  CAS  PubMed  Google Scholar 

  101. Deen, A. J. et al. UDP-sugar substrates of HAS3 regulate its O-GlcNAcylation, intracellular traffic, extracellular shedding and correlate with melanoma progression. Cell Mol. Life Sci. 73, 3183–3204 (2016).

    Article  CAS  PubMed  Google Scholar 

  102. Noble, J. M. et al. Direct comparison of optical and electron microscopy methods for structural characterization of extracellular vesicles. J. Struct. Biol. 210, 107474 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Nishimura, T. et al. Filopodium-derived vesicles produced by MIM enhance the migration of recipient cells. Dev. Cell 56, 842–859.e8 (2021).

    Article  CAS  PubMed  Google Scholar 

  104. Ando, H. et al. Melanosomes are transferred from melanocytes to keratinocytes through the processes of packaging, release, uptake, and dispersion. J. Invest. Dermatol. 132, 1222–1229 (2012).

    Article  CAS  PubMed  Google Scholar 

  105. Dubreuil, V., Marzesco, A. M., Corbeil, D., Huttner, W. B. & Wilsch-Brauninger, M. Midbody and primary cilium of neural progenitors release extracellular membrane particles enriched in the stem cell marker prominin-1. J. Cell Biol. 176, 483–495 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kesimer, M. et al. Characterization of exosome-like vesicles released from human tracheobronchial ciliated epithelium: a possible role in innate defense. FASEB J. 23, 1858–1868 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Wang, J. et al. Sensory cilia act as a specialized venue for regulated extracellular vesicle biogenesis and signaling. Curr. Biol. 31, 3943–3951.e3 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Cao, M. et al. Uni-directional ciliary membrane protein trafficking by a cytoplasmic retrograde IFT motor and ciliary ectosome shedding. eLife 4, e05242 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Marzesco, A. M. et al. Release of extracellular membrane vesicles from microvilli of epithelial cells is enhanced by depleting membrane cholesterol. FEBS Lett. 583, 897–902 (2009).

    Article  CAS  PubMed  Google Scholar 

  110. Marzesco, A. M. et al. Release of extracellular membrane particles carrying the stem cell marker prominin-1 (CD133) from neural progenitors and other epithelial cells. J. Cell Sci. 118, 2849–2858 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. McConnell, R. E. et al. The enterocyte microvillus is a vesicle-generating organelle. J. Cell Biol. 185, 1285–1298 (2009). This work identifies ectosomes forming at the tips of microvilli in intestinal enterocytes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hara, M. et al. Podocyte membrane vesicles in urine originate from tip vesiculation of podocyte microvilli. Hum. Pathol. 41, 1265–1275 (2010).

    Article  PubMed  Google Scholar 

  113. Mageswaran, S. K., Yang, W. Y., Chakrabarty, Y., Oikonomou, C. M. & Jensen, G. J. A cryo-electron tomography workflow reveals protrusion-mediated shedding on injured plasma membrane. Sci. Adv. 7, eabc6345 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Shurer, C. R. et al. Physical principles of membrane shape regulation by the glycocalyx. Cell 177, 1757–1770.e21 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Han, J. et al. RhoB/ROCK mediates oxygen-glucose deprivation-stimulated syncytiotrophoblast microparticle shedding in preeclampsia. Cell Tissue Res. 366, 411–425 (2016).

    Article  CAS  PubMed  Google Scholar 

  116. Aggarwal, A. et al. Mobilization of HIV spread by diaphanous 2 dependent filopodia in infected dendritic cells. PLoS Pathog. 8, e1002762 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Bracq, L., Xie, M., Benichou, S. & Bouchet, J. Mechanisms for cell-to-cell transmission of HIV-1. Front. Immunol. 9, 260 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Reiter, J. F. & Leroux, M. R. Genes and molecular pathways underpinning ciliopathies. Nat. Rev. Mol. Cell Biol. 18, 533–547 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Wang, J. et al. C. elegans ciliated sensory neurons release extracellular vesicles that function in animal communication. Curr. Biol. 24, 519–525 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Cruz, N. M. et al. Modelling ciliopathy phenotypes in human tissues derived from pluripotent stem cells with genetically ablated cilia. Nat. Biomed. Eng. 6, 463–475 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Volz, A. K. et al. Bardet-Biedl syndrome proteins modulate the release of bioactive extracellular vesicles. Nat. Commun. 12, 5671 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Mohieldin, A. M. et al. Ciliary extracellular vesicles are distinct from the cytosolic extracellular vesicles. J. Extracell. Vesicles 10, e12086 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Salinas, R. Y. et al. Photoreceptor discs form through peripherin-dependent suppression of ciliary ectosome release. J. Cell Biol. 216, 1489–1499 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Di Vizio, D. et al. Oncosome formation in prostate cancer: association with a region of frequent chromosomal deletion in metastatic disease. Cancer Res. 69, 5601–5609 (2009). This work demonstrates that the cytoskeletal protein DIAPH3 inhibits the formation of plasma membrane blebs and large oncosomes in prostate cancer cell lines.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Suzuki, J., Umeda, M., Sims, P. J. & Nagata, S. Calcium-dependent phospholipid scrambling by TMEM16F. Nature 468, 834–838 (2010).

    Article  CAS  PubMed  Google Scholar 

  126. Bricogne, C. et al. TMEM16F activation by Ca2+ triggers plasma membrane expansion and directs PD-1 trafficking. Sci. Rep. 9, 619 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Lima, L. G., Chammas, R., Monteiro, R. Q., Moreira, M. E. & Barcinski, M. A. Tumor-derived microvesicles modulate the establishment of metastatic melanoma in a phosphatidylserine-dependent manner. Cancer Lett. 283, 168–175 (2009).

    Article  CAS  PubMed  Google Scholar 

  128. Beer, K. B. et al. Extracellular vesicle budding is inhibited by redundant regulators of TAT-5 flippase localization and phospholipid asymmetry. Proc. Natl Acad. Sci. USA 115, E1127–E1136 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Wehman, A. M., Poggioli, C., Schweinsberg, P., Grant, B. D. & Nance, J. The P4-ATPase TAT-5 inhibits the budding of extracellular vesicles in C. elegans embryos. Curr. Biol. 21, 1951–1959 (2011). This study demonstrates that membrane asymmetry and lipid composition, specifically phosphatidylethanolamine exposure on the outer leaflet of the plasma membrane, can control the formation of ectosomes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Haraszti, R. A. et al. High-resolution proteomic and lipidomic analysis of exosomes and microvesicles from different cell sources. J. Extracell. Vesicles 5, 32570 (2016).

    Article  PubMed  Google Scholar 

  131. Mariscal, J. et al. Comprehensive palmitoyl-proteomic analysis identifies distinct protein signatures for large and small cancer-derived extracellular vesicles. J. Extracell. Vesicles 9, 1764192 (2020). This is the first global palmitoyl-proteomic analysis to identify proteins enriched in large and small EVs.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Albacete-Albacete, L. et al. ECM deposition is driven by caveolin-1-dependent regulation of exosomal biogenesis and cargo sorting. J. Cell Biol. 219, e202006178 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Crespin, M., Vidal, C., Picard, F., Lacombe, C. & Fontenay, M. Activation of PAK1/2 during the shedding of platelet microvesicles. Blood Coagul. Fibrinolysis 20, 63–70 (2009).

    Article  CAS  PubMed  Google Scholar 

  134. Ciardiello, C. et al. Large oncosomes overexpressing integrin alpha-V promote prostate cancer adhesion and invasion via AKT activation. J. Exp. Clin. Cancer Res. 38, 317 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Bergert, M., Chandradoss, S. D., Desai, R. A. & Paluch, E. Cell mechanics control rapid transitions between blebs and lamellipodia during migration. Proc. Natl Acad. Sci. USA 109, 14434–14439 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Li, B., Antonyak, M. A., Zhang, J. & Cerione, R. A. RhoA triggers a specific signaling pathway that generates transforming microvesicles in cancer cells. Oncogene 31, 4740–4749 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Clancy, J. W., Zhang, Y., Sheehan, C. & D’Souza-Schorey, C. An ARF6–exportin-5 axis delivers pre-miRNA cargo to tumour microvesicles. Nat. Cell Biol. 21, 856–866 (2019). This work reveals a role for ARF6 in trafficking exportin 5 and pre-miRNA to large ectosomes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Boshans, R. L., Szanto, S., van Aelst, L. & D’Souza-Schorey, C. ADP-ribosylation factor 6 regulates actin cytoskeleton remodeling in coordination with Rac1 and RhoA. Mol. Cell Biol. 20, 3685–3694 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Lee, H. et al. Caveolin-1 selectively regulates microRNA sorting into microvesicles after noxious stimuli. J. Exp. Med. 216, 2202–2220 (2019). This work demonstrates that oxidative stress promotes phosphorylation of caveolin 1 to induce O-GlcNAcylation of its binding partner hnRNPA2B1 and downstream sorting of miRNAs into large EVs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Lin, F. et al. YBX-1 mediated sorting of miR-133 into hypoxia/reoxygenation-induced EPC-derived exosomes to increase fibroblast angiogenesis and MEndoT. Stem Cell Res. Ther. 10, 263 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Liu, X. M., Ma, L. & Schekman, R. Selective sorting of microRNAs into exosomes by phase-separated YBX1 condensates. eLife 10, e71982 (2021). Through a mutational analysis of YBX1, this work demonstrates that mutations that block phase separation of YBX1 into liquid-like droplets also block miR-223 trafficking into exosomes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Lu, P. et al. MEX3C interacts with adaptor-related protein complex 2 and involves in miR-451a exosomal sorting. PLoS ONE 12, e0185992 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Hinger, S. A. et al. Diverse long RNAs are differentially sorted into extracellular vesicles secreted by colorectal cancer cells. Cell Rep. 25, 715–725.e4 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Valadi, H. et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 9, 654–659 (2007).

    Article  CAS  PubMed  Google Scholar 

  145. Skog, J. et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat. Cell Biol. 10, 1470–1476 (2008). Together with Valadi et al. (2007), these studies are the first to establish RNA as a bona fide cargo of EVs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Garcia-Martin, R. et al. MicroRNA sequence codes for small extracellular vesicle release and cellular retention. Nature 601, 446–451 (2022).

    Article  CAS  PubMed  Google Scholar 

  147. Lunavat, T. R. et al. Small RNA deep sequencing discriminates subsets of extracellular vesicles released by melanoma cells — evidence of unique microRNA cargos. RNA Biol. 12, 810–823 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Mateescu, B. et al. Obstacles and opportunities in the functional analysis of extracellular vesicle RNA — an ISEV position paper. J. Extracell. Vesicles 6, 1286095 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Wei, Z. et al. Coding and noncoding landscape of extracellular RNA released by human glioma stem cells. Nat. Commun. 8, 1145 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Villarroya-Beltri, C. et al. Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat. Commun. 4, 2980 (2013). This study is the first to report the recruitment of a miRNA to EVs through recognition of an RNA sequence motif by an RBP.

    Article  PubMed  Google Scholar 

  151. Li, C. et al. hnRNPA2B1-mediated extracellular vesicles sorting of miR-122-5p potentially promotes lung cancer progression. Int. J. Mol. Sci. 22, 12866 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Robinson, H. et al. Caveolin-1-driven membrane remodelling regulates hnRNPK-mediated exosomal microRNA sorting in cancer. Clin. Transl. Med. 11, e381 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Santangelo, L. et al. The RNA-binding protein SYNCRIP is a component of the hepatocyte exosomal machinery controlling microRNA sorting. Cell Rep. 17, 799–808 (2016).

    Article  CAS  PubMed  Google Scholar 

  154. Hobor, F. et al. A cryptic RNA-binding domain mediates Syncrip recognition and exosomal partitioning of miRNA targets. Nat. Commun. 9, 831 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Wozniak, A. L. et al. The RNA binding protein FMR1 controls selective exosomal miRNA cargo loading during inflammation. J. Cell Biol. 219, e201912074 (2020). This work demonstrates that the RNA-binding protein FMRP binds to HRS and promotes the exosomal secretion of miRNAs containing an AAUGC consensus sequence in response to inflammasome activation.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Leidal, A. M. et al. The LC3-conjugation machinery specifies the loading of RNA-binding proteins into extracellular vesicles. Nat. Cell Biol. 22, 187–199 (2020). This study demonstrates a dual role of LC3B in inducing EV biogenesis by capturing RBPs and associated miRNAs and activating ceramide synthesis via neutral sphingomyelinase 2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Stenmark, H. et al. Inhibition of rab5 GTPase activity stimulates membrane fusion in endocytosis. EMBO J. 13, 1287–1296 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Nolte-’t Hoen, E. N. et al. Deep sequencing of RNA from immune cell-derived vesicles uncovers the selective incorporation of small non-coding RNA biotypes with potential regulatory functions. Nucleic Acids Res. 40, 9272–9285 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Xiao, D. et al. Identifying mRNA, microRNA and protein profiles of melanoma exosomes. PLoS ONE 7, e46874 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Bolukbasi, M. F. et al. miR-1289 and “zipcode”-like sequence enrich mRNAs in microvesicles. Mol. Ther. Nucleic Acids 1, e10 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Wu, B. et al. Molecular basis for the specific and multivariant recognitions of RNA substrates by human hnRNP A2/B1. Nat. Commun. 9, 420 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  162. D’Souza, A. et al. Microvesicles transfer mitochondria and increase mitochondrial function in brain endothelial cells. J. Control. Rel. 338, 505–526 (2021).

    Article  Google Scholar 

  163. Zhang, H. et al. CAF secreted miR-522 suppresses ferroptosis and promotes acquired chemo-resistance in gastric cancer. Mol. Cancer 19, 43 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Gao, X. et al. Chronic myelogenous leukemia cells remodel the bone marrow niche via exosome-mediated transfer of miR-320. Theranostics 9, 5642–5656 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Li, Y. et al. Heterogeneous nuclear ribonucleoprotein A1 loads batched tumor-promoting microRNAs into small extracellular vesicles with the assist of caveolin-1 in A549 cells. Front. Cell Dev. Biol. 9, 687912 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Perez-Boza, J., Boeckx, A., Lion, M., Dequiedt, F. & Struman, I. hnRNPA2B1 inhibits the exosomal export of miR-503 in endothelial cells. Cell Mol. Life Sci. 77, 4413–4428 (2020).

    Article  CAS  PubMed  Google Scholar 

  167. Chen, C. et al. Exosomal long noncoding RNA LNMAT2 promotes lymphatic metastasis in bladder cancer. J. Clin. Invest. 130, 404–421 (2020).

    Article  CAS  PubMed  Google Scholar 

  168. Lei, Y. et al. Tumor-released lncRNA H19 promotes gefitinib resistance via packaging into exosomes in non-small cell lung cancer. Oncol. Rep. 40, 3438–3446 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Han, M. et al. Exosome-mediated lncRNA AFAP1-AS1 promotes trastuzumab resistance through binding with AUF1 and activating ERBB2 translation. Mol. Cancer 19, 26 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Zheng, Z., Chen, M., Xing, P., Yan, X. & Xie, B. Increased expression of exosomal AGAP2-AS1 (AGAP2 antisense RNA 1) in breast cancer cells inhibits trastuzumab-induced cell cytotoxicity. Med. Sci. Monit. 25, 2211–2220 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Kossinova, O. A. et al. Cytosolic YB-1 and NSUN2 are the only proteins recognizing specific motifs present in mRNAs enriched in exosomes. Biochim. Biophys. Acta Proteins Proteom. 1865, 664–673 (2017).

    Article  CAS  PubMed  Google Scholar 

  172. Grabuschnig, S. et al. Putative origins of cell-free DNA in humans: a review of active and passive nucleic acid release mechanisms. Int. J. Mol. Sci. 21, 8062 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Vagner, T. et al. Large extracellular vesicles carry most of the tumour DNA circulating in prostate cancer patient plasma. J. Extracell. Vesicles 7, 1505403 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Reis-Sobreiro, M. et al. Emerin deregulation links nuclear shape instability to metastatic potential. Cancer Res. 78, 6086–6097 (2018).

    Article  CAS  PubMed  Google Scholar 

  175. Santavanond, J. P., Rutter, S. F., Atkin-Smith, G. K. & Poon, I. K. H. Apoptotic bodies: mechanism of formation, isolation and functional relevance. Subcell. Biochem. 97, 61–88 (2021).

    Article  CAS  PubMed  Google Scholar 

  176. Poon, I. K. et al. Unexpected link between an antibiotic, pannexin channels and apoptosis. Nature 507, 329–334 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Phan, T. K. et al. Pannexin-1 channel regulates nuclear content packaging into apoptotic bodies and their size. Proteomics 21, e2000097 (2021).

    Article  PubMed  Google Scholar 

  178. Thakur, B. K. et al. Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Res. 24, 766–769 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Kahlert, C. et al. Identification of double-stranded genomic DNA spanning all chromosomes with mutated KRAS and p53 DNA in the serum exosomes of patients with pancreatic cancer. J. Biol. Chem. 289, 3869–3875 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Lazaro-Ibanez, E. et al. DNA analysis of low- and high-density fractions defines heterogeneous subpopulations of small extracellular vesicles based on their DNA cargo and topology. J. Extracell. Vesicles 8, 1656993 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Jeppesen, D. K. et al. Reassessment of exosome composition. Cell 177, 428–445.e18 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Takahashi, A. et al. Exosomes maintain cellular homeostasis by excreting harmful DNA from cells. Nat. Commun. 8, 15287 (2017). This work localizes DNA inside MVBs and demonstrates that ALIX and RAB27A reduce levels of cytoplasmic nuclear DNA, suggesting that DNA is expelled from the cell via exosomes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Balaj, L. et al. Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat. Commun. 2, 180 (2011).

    Article  PubMed  Google Scholar 

  184. Yokoi, A. et al. Mechanisms of nuclear content loading to exosomes. Sci. Adv. 5, eaax8849 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Hitomi, K. et al. DNA damage regulates senescence-associated extracellular vesicle release via the ceramide pathway to prevent excessive inflammatory responses. Int. J. Mol. Sci. 21, 3720 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Kumar, R. et al. Basic fibroblast growth factor 2-induced proteome changes endorse Lewy body pathology in hippocampal neurons. iScience 23, 101349 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Kumar, R. et al. Fibroblast growth factor 2-mediated regulation of neuronal exosome release depends on VAMP3/cellubrevin in hippocampal neurons. Adv. Sci. 7, 1902372 (2020).

    Article  CAS  Google Scholar 

  188. de la Cuesta, F. et al. Extracellular vesicle cross-talk between pulmonary artery smooth muscle cells and endothelium during excessive TGF-β signalling: implications for PAH vascular remodelling. Cell Commun. Signal. 17, 143 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Fricke, F. et al. SILAC-based quantification of TGFBR2-regulated protein expression in extracellular vesicles of microsatellite unstable colorectal cancers. Int. J. Mol. Sci. 20, 4162 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Genneback, N. et al. Growth factor stimulation of cardiomyocytes induces changes in the transcriptional contents of secreted exosomes. J. Extracell. Vesicles https://doi.org/10.3402/jev.v2i0.20167 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Ricklefs, F. et al. Extracellular vesicles from high-grade glioma exchange diverse pro-oncogenic signals that maintain intratumoral heterogeneity. Cancer Res. 76, 2876–2881 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Choi, D. et al. The impact of oncogenic EGFRvIII on the proteome of extracellular vesicles released from glioblastoma cells. Mol. Cell Proteom. 17, 1948–1964 (2018).

    Article  CAS  Google Scholar 

  193. Al-Nedawi, K. et al. Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat. Cell Biol. 10, 619–624 (2008).

    Article  CAS  PubMed  Google Scholar 

  194. Kreger, B. T., Dougherty, A. L., Greene, K. S., Cerione, R. A. & Antonyak, M. A. Microvesicle cargo and function changes upon induction of cellular transformation. J. Biol. Chem. 291, 19774–19785 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Timar, J. & Kashofer, K. Molecular epidemiology and diagnostics of KRAS mutations in human cancer. Cancer Metastasis Rev. 39, 1029–1038 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Demory Beckler, M. et al. Proteomic analysis of exosomes from mutant KRAS colon cancer cells identifies intercellular transfer of mutant KRAS. Mol. Cell Proteom. 12, 343–355 (2013).

    Article  Google Scholar 

  197. Clark, D. J., Fondrie, W. E., Yang, A. & Mao, L. Triple SILAC quantitative proteomic analysis reveals differential abundance of cell signaling proteins between normal and lung cancer-derived exosomes. J. Proteom. 133, 161–169 (2016).

    Article  CAS  Google Scholar 

  198. Hinger, S. A. et al. Rab13 regulates sEV secretion in mutant KRAS colorectal cancer cells. Sci. Rep. 10, 15804 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. McKenzie, A. J. et al. KRAS-MEK signaling controls Ago2 sorting into exosomes. Cell Rep. 15, 978–987 (2016). This work demonstrates that KRAS–MEK–ERK signalling inhibits trafficking of AGO2 and miRNAs into small EVs by redirecting AGO2 from MVBs into RNA-processing bodies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Guo, Q. et al. Integrin β1-enriched extracellular vesicles mediate monocyte adhesion and promote liver inflammation in murine NASH. J. Hepatol. 71, 1193–1205 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Speziali, G. et al. Myristic acid induces proteomic and secretomic changes associated with steatosis, cytoskeleton remodeling, endoplasmic reticulum stress, protein turnover and exosome release in HepG2 cells. J. Proteom. 181, 118–130 (2018).

    Article  CAS  Google Scholar 

  202. Schuck, S. Microautophagy — distinct molecular mechanisms handle cargoes of many sizes. J. Cell Sci. 133, jcs246322 (2020).

    Article  CAS  PubMed  Google Scholar 

  203. Murrow, L., Malhotra, R. & Debnath, J. ATG12-ATG3 interacts with Alix to promote basal autophagic flux and late endosome function. Nat. Cell Biol. 17, 300–310 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Kim, Y. H. et al. Secretory autophagy machinery and vesicular trafficking are involved in HMGB1 secretion. Autophagy 17, 2345–2362 (2021).

    Article  CAS  PubMed  Google Scholar 

  205. Fader, C. M., Sanchez, D., Furlan, M. & Colombo, M. I. Induction of autophagy promotes fusion of multivesicular bodies with autophagic vacuoles in K562 cells. Traffic 9, 230–250 (2008).

    Article  CAS  PubMed  Google Scholar 

  206. Hessvik, N. P. et al. PIKfyve inhibition increases exosome release and induces secretory autophagy. Cell Mol. Life Sci. 73, 4717–4737 (2016).

    Article  CAS  PubMed  Google Scholar 

  207. Ferreira, J. V. et al. LAMP2A regulates the loading of proteins into exosomes. Sci. Adv. 8, eabm1140 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Sahu, R. et al. Microautophagy of cytosolic proteins by late endosomes. Dev. Cell 20, 131–139 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Yarana, C. & St Clair, D. K. Chemotherapy-induced tissue injury: an insight into the role of extracellular vesicles-mediated oxidative stress responses. Antioxidants 6, 75 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Kore, R. A. et al. Hypoxia-derived exosomes induce putative altered pathways in biosynthesis and ion regulatory channels in glioblastoma cells. Biochem. Biophys. Rep. 14, 104–113 (2018).

    PubMed  PubMed Central  Google Scholar 

  211. Ramteke, A. et al. Exosomes secreted under hypoxia enhance invasiveness and stemness of prostate cancer cells by targeting adherens junction molecules. Mol. Carcinog. 54, 554–565 (2015).

    Article  CAS  PubMed  Google Scholar 

  212. Samoylenko, A. et al. Time-gated Raman spectroscopy and proteomics analyses of hypoxic and normoxic renal carcinoma extracellular vesicles. Sci. Rep. 11, 19594 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Keulers, T. G. et al. Secretion of pro-angiogenic extracellular vesicles during hypoxia is dependent on the autophagy-related protein GABARAPL1. J. Extracell. Vesicles 10, e12166 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Chen, X. et al. Exosomes derived from hypoxic epithelial ovarian cancer cells deliver microRNAs to macrophages and elicit a tumor-promoted phenotype. Cancer Lett. 435, 80–91 (2018).

    Article  CAS  PubMed  Google Scholar 

  215. Makiguchi, T. et al. Serum extracellular vesicular miR-21-5p is a predictor of the prognosis in idiopathic pulmonary fibrosis. Respir. Res. 17, 110 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Bang, C. et al. Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. J. Clin. Invest. 124, 2136–2146 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. King, H. W., Michael, M. Z. & Gleadle, J. M. Hypoxic enhancement of exosome release by breast cancer cells. BMC Cancer 12, 421 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Tadokoro, H., Umezu, T., Ohyashiki, K., Hirano, T. & Ohyashiki, J. H. Exosomes derived from hypoxic leukemia cells enhance tube formation in endothelial cells. J. Biol. Chem. 288, 34343–34351 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Namazi, H. et al. Exosomes secreted by hypoxic cardiosphere-derived cells enhance tube formation and increase pro-angiogenic miRNA. J. Cell Biochem. 119, 4150–4160 (2018).

    Article  CAS  PubMed  Google Scholar 

  220. Zhang, J. et al. Overexpression of exosomal cardioprotective miRNAs mitigates hypoxia-induced H9c2 cells apoptosis. Int. J. Mol. Sci. 18, 711 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Hsu, Y. L. et al. Hypoxic lung cancer-secreted exosomal miR-23a increased angiogenesis and vascular permeability by targeting prolyl hydroxylase and tight junction protein ZO-1. Oncogene 36, 4929–4942 (2017).

    Article  CAS  PubMed  Google Scholar 

  222. Umezu, T. et al. Exosomal miR-135b shed from hypoxic multiple myeloma cells enhances angiogenesis by targeting factor-inhibiting HIF-1. Blood 124, 3748–3757 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Bister, N. et al. Hypoxia and extracellular vesicles: a review on methods, vesicular cargo and functions. J. Extracell. Vesicles 10, e12002 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  224. Zeng, Z. et al. Hypoxic exosomal HIF-1α-stabilizing circZNF91 promotes chemoresistance of normoxic pancreatic cancer cells via enhancing glycolysis. Oncogene 40, 5505–5517 (2021).

    Article  CAS  PubMed  Google Scholar 

  225. Yang, K., Zhang, J. & Bao, C. Exosomal circEIF3K from cancer-associated fibroblast promotes colorectal cancer (CRC) progression via miR-214/PD-L1 axis. BMC Cancer 21, 933 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Zhang, C., Wang, H., Li, J. & Ma, L. Circular RNA involvement in the protective effect of human umbilical cord mesenchymal stromal cell-derived extracellular vesicles against hypoxia/reoxygenation injury in cardiac cells. Front. Cardiovasc. Med. 8, 626878 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Ye, L. et al. Exosomal circEhmt1 released from hypoxia-pretreated pericytes regulates high glucose-induced microvascular dysfunction via the NFIA/NLRP3 pathway. Oxid. Med. Cell Longev. 2021, 8833098 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  228. Yang, H. et al. Hypoxia induced exosomal circRNA promotes metastasis of colorectal cancer via targeting GEF-H1/RhoA axis. Theranostics 10, 8211–8226 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Wang, Y. et al. Exosomal circHIPK3 released from hypoxia-pretreated cardiomyocytes regulates oxidative damage in cardiac microvascular endothelial cells via the miR-29a/IGF-1 pathway. Oxid. Med. Cell Longev. 2019, 7954657 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  230. Kucharzewska, P. et al. Exosomes reflect the hypoxic status of glioma cells and mediate hypoxia-dependent activation of vascular cells during tumor development. Proc. Natl Acad. Sci. USA 110, 7312–7317 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Kenneweg, F. et al. Long noncoding RNA-enriched vesicles secreted by hypoxic cardiomyocytes drive cardiac fibrosis. Mol. Ther. Nucleic Acids 18, 363–374 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Lee, H., Zhang, D., Zhu, Z., Dela Cruz, C. S. & Jin, Y. Epithelial cell-derived microvesicles activate macrophages and promote inflammation via microvesicle-containing microRNAs. Sci. Rep. 6, 35250 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Moon, H. G. et al. Lung epithelial cell-derived extracellular vesicles activate macrophage-mediated inflammatory responses via ROCK1 pathway. Cell Death Dis. 6, e2016 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Ali, A. et al. Hyperoxia-activated circulating extracellular vesicles induce lung and brain injury in neonatal rats. Sci. Rep. 11, 8791 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Alibhai, F. J. et al. Cellular senescence contributes to age-dependent changes in circulating extracellular vesicle cargo and function. Aging Cell 19, e13103 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Terlecki-Zaniewicz, L. et al. Small extracellular vesicles and their miRNA cargo are anti-apoptotic members of the senescence-associated secretory phenotype. Aging 10, 1103–1132 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Borghesan, M. et al. Small extracellular vesicles are key regulators of non-cell autonomous intercellular communication in senescence via the interferon protein IFITM3. Cell Rep. 27, 3956–3971.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Kosaka, N. et al. Exploiting the message from cancer: the diagnostic value of extracellular vesicles for clinical applications. Exp. Mol. Med. 51, 1–9 (2019).

    Article  CAS  PubMed  Google Scholar 

  239. Wortzel, I., Dror, S., Kenific, C. M. & Lyden, D. Exosome-mediated metastasis: communication from a distance. Dev. Cell 49, 347–360 (2019).

    Article  CAS  PubMed  Google Scholar 

  240. Costa-Silva, B. et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat. Cell Biol. 17, 816–826 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Hoshino, A. et al. Tumour exosome integrins determine organotropic metastasis. Nature 527, 329–335 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Garcia-Silva, S. et al. Melanoma-derived small extracellular vesicles induce lymphangiogenesis and metastasis through an NGFR-dependent mechanism. Nat. Cancer 2, 1387–1405 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Li, X. Q., Zhang, R., Lu, H., Yue, X. M. & Huang, Y. F. Extracellular vesicle-packaged CDH11 and ITGA5 induce the premetastatic niche for bone colonization of breast cancer cells. Cancer Res. 82, 1560–1574 (2022).

    Article  CAS  PubMed  Google Scholar 

  244. Hsu, Y. L. et al. Bone-marrow-derived cell-released extracellular vesicle miR-92a regulates hepatic pre-metastatic niche in lung cancer. Oncogene 39, 739–753 (2020).

    Article  CAS  PubMed  Google Scholar 

  245. Wills, C. A. et al. Chemotherapy-induced upregulation of small extracellular vesicle-associated PTX3 accelerates breast cancer metastasis. Cancer Res. 81, 452–463 (2021).

    Article  CAS  PubMed  Google Scholar 

  246. Peinado, H. et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat. Med. 18, 883–891 (2012). This manuscript is the first to describe a role for small EVs secreted from cancer cells in seeding premetastatic niches.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Hosseini-Beheshti, E., Pham, S., Adomat, H., Li, N. & Tomlinson Guns, E. S. Exosomes as biomarker enriched microvesicles: characterization of exosomal proteins derived from a panel of prostate cell lines with distinct AR phenotypes. Mol. Cell Proteom. 11, 863–885 (2012).

    Article  CAS  Google Scholar 

  248. Zhang, Q. et al. Mutant KRAS exosomes alter the metabolic state of recipient colonic epithelial cells. Cell Mol. Gastroenterol. Hepatol. 5, 627–629.e6 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  249. Preet, R. & Dixon, D. A. Mutant KRAS exosomes influence the metabolic state of the colon microenvironment. Cell Mol. Gastroenterol. Hepatol. 5, 647–648 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  250. Zhao, H. et al. Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism. eLife 5, e10250 (2016). This work demonstrates that stromal fibroblasts release EVs rich in metabolites that promote the growth of nutrient-deprived recipient tumour cells.

    Article  PubMed  PubMed Central  Google Scholar 

  251. Yi, H. et al. Exosomes mediated pentose phosphate pathway in ovarian cancer metastasis: a proteomics analysis. Int. J. Clin. Exp. Pathol. 8, 15719–15728 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  252. Wan, L. et al. Exosomes from activated hepatic stellate cells contain GLUT1 and PKM2: a role for exosomes in metabolic switch of liver nonparenchymal cells. FASEB J. 33, 8530–8542 (2019).

    Article  CAS  PubMed  Google Scholar 

  253. Lim, A. R., Vincent, B. G., Weaver, A. M. & Rathmell, W. K. Sunitinib and axitinib increase secretion and glycolytic activity of small extracellular vesicles in renal cell carcinoma. Cancer Gene Ther. 29, 683–696 (2022).

    Article  CAS  PubMed  Google Scholar 

  254. Minciacchi, V. R. et al. Large oncosomes contain distinct protein cargo and represent a separate functional class of tumor-derived extracellular vesicles. Oncotarget 6, 11327–11341 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  255. Crescitelli, R. et al. Subpopulations of extracellular vesicles from human metastatic melanoma tissue identified by quantitative proteomics after optimized isolation. J. Extracell. Vesicles 9, 1722433 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Lischnig, A., Bergqvist, M., Ochiya, T. & Lasser, C. Quantitative proteomics identifies proteins enriched in large and small extracellular vesicles. Mol. Cell Proteom. 21, 100273 (2022).

    Article  CAS  Google Scholar 

  257. Phinney, D. G. et al. Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs. Nat. Commun. 6, 8472 (2015).

    Article  CAS  PubMed  Google Scholar 

  258. Jiao, H. et al. Mitocytosis, a migrasome-mediated mitochondrial quality-control process. Cell 184, 2896–2910.e13 (2021).

    Article  CAS  PubMed  Google Scholar 

  259. D’Acunzo, P. et al. Mitovesicles are a novel population of extracellular vesicles of mitochondrial origin altered in Down syndrome. Sci. Adv. 7, eabe5085 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  260. Temoche-Diaz, M. M. et al. Distinct mechanisms of microRNA sorting into cancer cell-derived extracellular vesicle subtypes. eLife 8, e47544 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Tuzesi, A. et al. Pediatric brain tumor cells release exosomes with a miRNA repertoire that differs from exosomes secreted by normal cells. Oncotarget 8, 90164–90175 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  262. Ye, S. B. et al. Tumor-derived exosomes promote tumor progression and T-cell dysfunction through the regulation of enriched exosomal microRNAs in human nasopharyngeal carcinoma. Oncotarget 5, 5439–5452 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  263. Teng, Y. et al. MVP-mediated exosomal sorting of miR-193a promotes colon cancer progression. Nat. Commun. 8, 14448 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Hu, X. et al. Exosomes derived from hypoxic colorectal cancer cells transfer miR-410-3p to regulate tumor progression. J. Cancer 11, 4724–4735 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Jiang, M. J. et al. Dying tumor cell-derived exosomal miR-194-5p potentiates survival and repopulation of tumor repopulating cells upon radiotherapy in pancreatic cancer. Mol. Cancer 19, 68 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Cao, M. et al. Cancer-cell-secreted extracellular vesicles suppress insulin secretion through miR-122 to impair systemic glucose homeostasis and contribute to tumour growth. Nat. Cell Biol. 24, 954–967 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Roche, P. A. & Furuta, K. The ins and outs of MHC class II-mediated antigen processing and presentation. Nat. Rev. Immunol. 15, 203–216 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Raposo, G. et al. B lymphocytes secrete antigen-presenting vesicles. J. Exp. Med. 183, 1161–1172 (1996).

    Article  CAS  PubMed  Google Scholar 

  269. Wheway, J., Latham, S. L., Combes, V. & Grau, G. E. Endothelial microparticles interact with and support the proliferation of T cells. J. Immunol. 193, 3378–3387 (2014).

    Article  CAS  PubMed  Google Scholar 

  270. Tkach, M. et al. Qualitative differences in T-cell activation by dendritic cell-derived extracellular vesicle subtypes. EMBO J. 36, 3012–3028 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Buschow, S. I. et al. MHC II in dendritic cells is targeted to lysosomes or T cell-induced exosomes via distinct multivesicular body pathways. Traffic 10, 1528–1542 (2009).

    Article  CAS  PubMed  Google Scholar 

  272. Théry, C. et al. Indirect activation of naïve CD4+ T cells by dendritic cell–derived exosomes. Nat. Immunol. 3, 1156–1162 (2002).

    Article  PubMed  Google Scholar 

  273. Muntasell, A., Berger, A. C. & Roche, P. A. T cell-induced secretion of MHC class II-peptide complexes on B cell exosomes. EMBO J. 26, 4263–4272 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Chen, G. et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature 560, 382–386 (2018). This study identifies exosomes as key carriers of PD-L1 checkpoint molecule and demonstrates that the dynamics of circulating exosomal PD-L1 during checkpoint therapy correlate with response to therapy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Monypenny, J. et al. ALIX regulates tumor-mediated immunosuppression by controlling EGFR activity and PD-L1 presentation. Cell Rep. 24, 630–641 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Yang, Y. et al. Exosomal PD-L1 harbors active defense function to suppress T cell killing of breast cancer cells and promote tumor growth. Cell Res. 28, 862–864 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Ricklefs, F. L. et al. Immune evasion mediated by PD-L1 on glioblastoma-derived extracellular vesicles. Sci. Adv. 4, eaar2766 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  278. Lundholm, M. et al. Prostate tumor-derived exosomes down-regulate NKG2D expression on natural killer cells and CD8+ T cells: mechanism of immune evasion. PLoS ONE 9, e108925 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  279. Ashiru, O. et al. Natural killer cell cytotoxicity is suppressed by exposure to the human NKG2D ligand MICA*008 that is shed by tumor cells in exosomes. Cancer Res. 70, 481–489 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Plebanek, M. P. et al. Pre-metastatic cancer exosomes induce immune surveillance by patrolling monocytes at the metastatic niche. Nat. Commun. 8, 1319 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  281. Chiou, N. T., Kageyama, R. & Ansel, K. M. Selective export into extracellular vesicles and function of tRNA fragments during T cell activation. Cell Rep. 25, 3356–3370.e4 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Keam, S. P., Sobala, A., Ten Have, S. & Hutvagner, G. tRNA-derived RNA fragments associate with human multisynthetase complex (MSC) and modulate ribosomal protein translation. J. Proteome Res. 16, 413–420 (2017).

    Article  CAS  PubMed  Google Scholar 

  283. Kim, H. K. et al. A transfer-RNA-derived small RNA regulates ribosome biogenesis. Nature 552, 57–62 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Goodarzi, H. et al. Endogenous tRNA-derived fragments suppress breast cancer progression via YBX1 displacement. Cell 161, 790–802 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Saikia, M. et al. Angiogenin-cleaved tRNA halves interact with cytochrome c, protecting cells from apoptosis during osmotic stress. Mol. Cell Biol. 34, 2450–2463 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  286. Alexander, M. et al. Rab27-dependent exosome production inhibits chronic inflammation and enables acute responses to inflammatory stimuli. J. Immunol. 199, 3559–3570 (2017).

    Article  CAS  PubMed  Google Scholar 

  287. Driedonks, T. A. P. et al. Immune stimuli shape the small non-coding transcriptome of extracellular vesicles released by dendritic cells. Cell Mol. Life Sci. 75, 3857–3875 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Patel, M. R. & Weaver, A. M. Astrocyte-derived small extracellular vesicles promote synapse formation via fibulin-2-mediated TGF-β signaling. Cell Rep. 34, 108829 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Vilcaes, A. A., Chanaday, N. L. & Kavalali, E. T. Interneuronal exchange and functional integration of synaptobrevin via extracellular vesicles. Neuron 109, 971–983.e5 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Silverman, J. M. et al. CNS-derived extracellular vesicles from superoxide dismutase 1 (SOD1)G93A ALS mice originate from astrocytes and neurons and carry misfolded SOD1. J. Biol. Chem. 294, 3744–3759 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Kramer-Albers, E. M. et al. Oligodendrocytes secrete exosomes containing major myelin and stress-protective proteins: trophic support for axons? Proteom. Clin. Appl. 1, 1446–1461 (2007).

    Article  Google Scholar 

  292. Korkut, C. et al. Trans-synaptic transmission of vesicular Wnt signals through Evi/Wntless. Cell 139, 393–404 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Fruhbeis, C. et al. Neurotransmitter-triggered transfer of exosomes mediates oligodendrocyte–neuron communication. PLoS Biol. 11, e1001604 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  294. Lachenal, G. et al. Release of exosomes from differentiated neurons and its regulation by synaptic glutamatergic activity. Mol. Cell Neurosci. 46, 409–418 (2011).

    Article  CAS  PubMed  Google Scholar 

  295. Ibanez, F., Montesinos, J., Urena-Peralta, J. R., Guerri, C. & Pascual, M. TLR4 participates in the transmission of ethanol-induced neuroinflammation via astrocyte-derived extracellular vesicles. J. Neuroinflammation 16, 136 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  296. Datta Chaudhuri, A. et al. Stimulus-dependent modifications in astrocyte-derived extracellular vesicle cargo regulate neuronal excitability. Glia 68, 128–144 (2019).

    Article  PubMed  Google Scholar 

  297. Hill, A. F. Extracellular vesicles and neurodegenerative diseases. J. Neurosci. 39, 9269–9273 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  298. Miyoshi, E. et al. Exosomal tau with seeding activity is released from Alzheimer’s disease synapses, and seeding potential is associated with amyloid beta. Lab. Invest. 101, 1605–1617 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Dujardin, S. et al. Ectosomes: a new mechanism for non-exosomal secretion of tau protein. PLoS ONE 9, e100760 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  300. Podvin, S. et al. Dysregulation of exosome cargo by mutant tau expressed in human-induced pluripotent stem cell (iPSC) neurons revealed by proteomics analyses. Mol. Cell Proteom. 19, 1017–1034 (2020).

    Article  CAS  Google Scholar 

  301. Guix, F. X. et al. Tetraspanin 6: a pivotal protein of the multiple vesicular body determining exosome release and lysosomal degradation of amyloid precursor protein fragments. Mol. Neurodegener. 12, 25 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  302. Sinning, J. M. et al. Circulating CD31+/annexin V+ microparticles correlate with cardiovascular outcomes. Eur. Heart J. 32, 2034–2041 (2011).

    Article  CAS  PubMed  Google Scholar 

  303. Gidlof, O. et al. Proteomic profiling of extracellular vesicles reveals additional diagnostic biomarkers for myocardial infarction compared to plasma alone. Sci. Rep. 9, 8991 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  304. de Hoog, V. C. et al. Serum extracellular vesicle protein levels are associated with acute coronary syndrome. Eur. Heart J. Acute Cardiovasc. Care 2, 53–60 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  305. Loyer, X. et al. Intra-cardiac release of extracellular vesicles shapes inflammation following myocardial infarction. Circ. Res. 123, 100–106 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Goettsch, C. et al. Sortilin mediates vascular calcification via its recruitment into extracellular vesicles. J. Clin. Invest. 126, 1323–1336 (2016). This work demonstrates that smooth muscle calcification requires the deposition of EVs carrying TNAP and sortillin.

    Article  PubMed  PubMed Central  Google Scholar 

  307. Garcia-Martin, R., Brandao, B. B., Thomou, T., Altindis, E. & Kahn, C. R. Tissue differences in the exosomal/small extracellular vesicle proteome and their potential as indicators of altered tissue metabolism. Cell Rep. 38, 110277 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Durcin, M. et al. Characterisation of adipocyte-derived extracellular vesicle subtypes identifies distinct protein and lipid signatures for large and small extracellular vesicles. J. Extracell. Vesicles 6, 1305677 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  309. Sano, S. et al. Lipid synthesis is promoted by hypoxic adipocyte-derived exosomes in 3T3-L1 cells. Biochem. Biophys. Res. Commun. 445, 327–333 (2014).

    Article  CAS  PubMed  Google Scholar 

  310. Kwan, H. Y., Chen, M., Xu, K. & Chen, B. The impact of obesity on adipocyte-derived extracellular vesicles. Cell Mol. Life Sci. 78, 7275–7288 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  311. Kim, J. I. et al. Lipid-overloaded enlarged adipocytes provoke insulin resistance independent of inflammation. Mol. Cell Biol. 35, 1686–1699 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  312. Li, Y., Talbot, C. L. & Chaurasia, B. Ceramides in adipose tissue. Front. Endocrinol. 11, 407 (2020).

    Article  Google Scholar 

  313. Giordano, C. et al. Leptin modulates exosome biogenesis in breast cancer cells: an additional mechanism in cell-to-cell communication. J. Clin. Med. 8, 1027 (2019). This work reveals a feed-forward mechanism to propagate leptin signalling by EVs to recipient cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. Gelsomino, L. et al. Proteomic profiling of extracellular vesicles released by leptin-treated breast cancer cells: a potential role in cancer metabolism. Int. J. Mol. Sci. 23, 12941 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  315. Ramos-Andrade, I. et al. Obese adipose tissue extracellular vesicles raise breast cancer cell malignancy. Endocr. Relat. Cancer 27, 571–582 (2020).

    Article  CAS  PubMed  Google Scholar 

  316. Giordano, C. et al. Leptin increases HER2 protein levels through a STAT3-mediated up-regulation of Hsp90 in breast cancer cells. Mol. Oncol. 7, 379–391 (2013).

    Article  CAS  PubMed  Google Scholar 

  317. Yan, C. et al. A high-fat diet attenuates AMPK α1 in adipocytes to induce exosome shedding and nonalcoholic fatty liver development in vivo. Diabetes 70, 577–588 (2021).

    Article  CAS  PubMed  Google Scholar 

  318. Zhao, S. et al. Gallbladder cancer cell-derived exosome-mediated transfer of leptin promotes cell invasion and migration by modulating STAT3-mediated M2 macrophage polarization. Anal. Cell Pathol. 2022, 9994906 (2022).

    Article  Google Scholar 

  319. Guay, C. & Regazzi, R. Exosomes as new players in metabolic organ cross-talk. Diabetes Obes. Metab. 19 (Suppl. 1), 137–146 (2017).

    Article  PubMed  Google Scholar 

  320. Rome, S., Blandin, A. & Le Lay, S. Adipocyte-derived extracellular vesicles: state of the art. Int. J. Mol. Sci. 22, 1788 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  321. Mazurov, D., Barbashova, L. & Filatov, A. Tetraspanin protein CD9 interacts with metalloprotease CD10 and enhances its release via exosomes. FEBS J. 280, 1200–1213 (2013).

    Article  CAS  PubMed  Google Scholar 

  322. Kim, S. B. et al. Caspase-8 controls the secretion of inflammatory lysyl-tRNA synthetase in exosomes from cancer cells. J. Cell Biol. 216, 2201–2216 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  323. Dores, M. R. et al. ALIX binds a YPX(3)L motif of the GPCR PAR1 and mediates ubiquitin-independent ESCRT-III/MVB sorting. J. Cell Biol. 197, 407–419 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  324. Han, Q. et al. Vps4A mediates the localization and exosome release of β-catenin to inhibit epithelial-mesenchymal transition in hepatocellular carcinoma. Cancer Lett. 457, 47–59 (2019).

    Article  CAS  PubMed  Google Scholar 

  325. Zietzer, A. et al. The RNA-binding protein hnRNPU regulates the sorting of microRNA-30c-5p into large extracellular vesicles. J. Extracell. Vesicles 9, 1786967 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  326. Terlecki-Zaniewicz, L. et al. Extracellular vesicles in human skin: cross-talk from senescent fibroblasts to keratinocytes by miRNAs. J. Invest. Dermatol. 139, 2425–2436.e5 (2019).

    Article  CAS  PubMed  Google Scholar 

  327. Mukherjee, K. et al. Reversible HuR-microRNA binding controls extracellular export of miR-122 and augments stress response. EMBO Rep. 17, 1184–1203 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  328. Nikitidou, E. et al. Increased release of apolipoprotein E in extracellular vesicles following amyloid-β protofibril exposure of neuroglial co-cultures. J. Alzheimers Dis. 60, 305–321 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  329. Bin, B. H. et al. Fibronectin-containing extracellular vesicles protect melanocytes against ultraviolet radiation-induced cytotoxicity. J. Invest. Dermatol. 136, 957–966 (2016).

    Article  CAS  PubMed  Google Scholar 

  330. Wang, G. et al. LPS-induced macrophage HMGB1-loaded extracellular vesicles trigger hepatocyte pyroptosis by activating the NLRP3 inflammasome. Cell Death Discov. 7, 337 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  331. Kreger, B. T., Johansen, E. R., Cerione, R. A. & Antonyak, M. A. The enrichment of survivin in exosomes from breast cancer cells treated with paclitaxel promotes cell survival and chemoresistance. Cancers 8, 111 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  332. Di Vizio, D. et al. Large oncosomes in human prostate cancer tissues and in the circulation of mice with metastatic disease. Am. J. Pathol. 181, 1573–1584 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  333. McConnell, R. E. & Tyska, M. J. Myosin-1a powers the sliding of apical membrane along microvillar actin bundles. J. Cell Biol. 177, 671–681 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  334. Grootjans, J. J. et al. Syntenin, a PDZ protein that binds syndecan cytoplasmic domains. Proc. Natl Acad. Sci. USA 94, 13683–13688 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  335. Solvik, T. A. et al. Secretory autophagy maintains proteostasis upon lysosome inhibition. J. Cell Biol. 221, e202110151 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  336. Verweij, F. J. et al. Quantifying exosome secretion from single cells reveals a modulatory role for GPCR signaling. J. Cell Biol. 217, 1129–1142 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  337. McNamara, R. P. et al. Imaging of surface microdomains on individual extracellular vesicles in 3-D. J. Extracell. Vesicles 11, e12191 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  338. Hilton, S. H. & White, I. M. Advances in the analysis of single extracellular vesicles: a critical review. Sens. Actuators Rep. 3, 100052 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  339. Tosar, J. P., Witwer, K. & Cayota, A. Revisiting extracellular RNA release, processing, and function. Trends Biochem. Sci. 46, 438–445 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  340. Lobert, V. H. et al. Ubiquitination of α5β1 integrin controls fibroblast migration through lysosomal degradation of fibronectin-integrin complexes. Dev. Cell 19, 148–159 (2010).

    Article  CAS  PubMed  Google Scholar 

  341. Wang, J. H. et al. Anti-HER2 scFv-directed extracellular vesicle-mediated mRNA-based gene delivery inhibits growth of HER2-positive human breast tumor xenografts by prodrug activation. Mol. Cancer Ther. 17, 1133–1142 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  342. Komuro, H. et al. Engineering extracellular vesicles to target pancreatic tissue in vivo. Nanotheranostics 5, 378–390 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  343. Delcayre, A. et al. Exosome display technology: applications to the development of new diagnostics and therapeutics. Blood Cell Mol. Dis. 35, 158–168 (2005).

    Article  CAS  Google Scholar 

  344. Liang, G. et al. Engineered exosome-mediated delivery of functionally active miR-26a and its enhanced suppression effect in HepG2 cells. Int. J. Nanomed. 13, 585–599 (2018).

    Article  CAS  Google Scholar 

  345. Lai, C. P. et al. Visualization and tracking of tumour extracellular vesicle delivery and RNA translation using multiplexed reporters. Nat. Commun. 6, 7029 (2015).

    Article  CAS  PubMed  Google Scholar 

  346. Yim, N. et al. Exosome engineering for efficient intracellular delivery of soluble proteins using optically reversible protein-protein interaction module. Nat. Commun. 7, 12277 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  347. Dooley, K. et al. A versatile platform for generating engineered extracellular vesicles with defined therapeutic properties. Mol. Ther. 29, 1729–1743 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  348. Zomer, A. et al. In vivo imaging reveals extracellular vesicle-mediated phenocopying of metastatic behavior. Cell 161, 1046–1057 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  349. Ridder, K. et al. Extracellular vesicle-mediated transfer of functional RNA in the tumor microenvironment. Oncoimmunology 4, e1008371 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  350. Schneider, J. et al. Cre mRNA is not transferred by EVs from endothelial and adipose-derived stromal/stem cells during vascular network formation. Int. J. Mol. Sci. 22, 4050 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  351. Reshke, R. et al. Reduction of the therapeutic dose of silencing RNA by packaging it in extracellular vesicles via a pre-microRNA backbone. Nat. Biomed. Eng. 4, 52–68 (2020). This study shows that the pre-miRNA backbone affects sorting of miRNAs to EVs and can be used to engineer therapeutic small interfering RNAs with enhanced sorting to EVs.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the members of the Weaver and Di Vizio groups for many helpful discussions. Funding support came from NIH/NSF grants (R01CA206458, R01CA249684, P01CA229123, R01CA249424, U54 CA217450, U01CA224276 and NSF-2036809 to A.M.W.) and from NIH/NCI (R01CA234557 and R01CA218526 to D.D.V.). A.C.D. was also supported by a NIH T32 training grant (1T32GM137793-01) and NSF GRFP #1937963. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation or the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

A.C.D. and T.R.D. researched data for the article and wrote the majority of the initial manuscript. D.D.V. and A.M.W. researched data for the article and also wrote sections of the manuscript. A.C.D. drafted the figures with input and edits from T.R.D., A.M.W. and D.D.V. T.R.D. drafted the tables with input and edits from A.C.D., D.D.V. and A.M.W. All authors contributed substantially to discussion of the content. All authors reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Alissa M. Weaver.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks Deborah Goberdhan, Clotilde Théry and Pascale Zimmermann who co-reviewed with Lukas Hyka for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Argonaute 2

(AGO2). The central component of the RNA-induced silencing complex. AGO2 is guided by a microRNA to the open reading frame or 3′ untranslated region of a target mRNA, where it recruits other factors for translational silencing, depolyadenylation and/or degradation of the target mRNA. Alternatively, AGO2 activates its ‘slicer’ (endonuclease) activity when directed to an mRNA target by an exogenous small interfering RNA that is perfectly complementary to the target mRNA.

BAR domain

BIN, amphiphysin and Rvs161 and Rvs167 domain; a conserved protein domain that promotes and/or senses positive membrane curvature. Conversely, inverse BAR domains associate with negatively curved membranes.

Blebs

Bulbous protrusions of plasma membrane that form when the cortical cytoskeleton decouples from the plasma membrane.

Circular RNAs

Single-stranded RNAs that arise when the 3′ end of one exon back-splices to its own 5′ end or the 5′ end of another exon.

ERK

Extracellular-signal-regulated kinase, also known as mitogen-activated protein kinase (MAPK); an oncoprotein and serine/threonine-protein kinase activated by epidermal growth factor receptor (EGFR) and RAS–RAF–MEK signalling.

ERM proteins

Ezrin, radixin and moesin proteins; proteins that link the actin cytoskeleton to transmembrane proteins in the plasma membrane, playing roles in cytoskeleton organization at the cell cortex and in signal transduction.

ESCRT

Cargo sorting, membrane remodelling and scission machinery made up of four cytosolic protein complexes, known as ESCRT-0, ESCRT-I, ESCRT-II and ESCRT-III, which work alongside a fifth complex containing the VPS4 ATPase.

EWI proteins

A subfamily of immunoglobulin proteins containing an extracellular Glu-Trp-Ile (EWI) motif.

Focal adhesion kinase

(FAK). A tyrosine kinase activated by integrin and growth factor signalling that controls the actin cytoskeleton to influence cell shape, focal adhesion assembly and disassembly, and cell migration.

Gasdermin D

Effector of pyroptosis activated by caspase 1-mediated proteolytic cleavage downstream of the inflammasome. Cleaved gasdermin D forms pores in the plasma membrane and organelle membranes, resulting in cell death.

Glycocalyx

From Greek, meaning sweet husk; a tough casing consisting of glycoproteins, proteoglycans and glycolipids that covers a cell.

Hyaluronan

A long, linear polymer of disaccharides that forms a part of the extracellular matrix and resists compression.

Hypoxia-inducible factor 1α

(HIF1α). A transcription factor activated under low-oxygen conditions that regulates angiogenesis, apoptosis and many other cellular processes.

Inflammasome

A high molecular weight protein complex that activates pyroptosis, a pro-inflammatory and lytic type of programmed cell death, especially in response to infection.

Leptin

A hormone secreted by fat cells that regulates hunger and body mass.

Lipopolysaccharide

A potent immunostimulatory glycolipid present on the outer membrane of Gram-negative bacteria.

Major histocompatibility complex class II

(MHC-II). A transmembrane protein complex found on antigen-presenting cells that binds to exogenous antigen peptides and presents these peptides to immune cells.

Membrane contact sites

Regions where two organelle membranes are tethered together (typically at a distance of ~10–40 nm) to perform a function other than fusion.

Membrane trafficking

The process of sorting molecular cargoes, especially lipids and proteins, into different compartments within the cell.

Myristic acid

A saturated fatty acid with 14 carbons (14:0).

Nonalcoholic steatotic hepatitis

A chronic, severe inflammatory liver disease caused by metabolic alterations associated with obesity and typified by fat accumulation in the liver.

Palmitic acid

A saturated fatty acid with 16 carbons (16:0).

PD-L1

A ligand that activates its receptor (PD-1) on T cells to inhibit T cell activation.

Reticulocytes

Nucleated precursor cell type to red blood cells.

ROCK

RHO-associated coiled-coil-containing protein kinase that acts downstream of the small GTPase RHOA in cytoskeleton remodelling and membrane blebbing.

Small nucleolar RNAs

RNAs that function to perform direct covalent modification of ribosomal RNAs, small nuclear RNAs and other RNAs. Two classes of small nucleolar RNAs include C/D box small nucleolar RNAs, which direct 2′-O-ribose methylation, and H/ACA box small nucleolar RNAs, which direct pseudouridylation.

SRC

Membrane-associated non-receptor tyrosine kinase that localizes to endosomes and regulates exosome biogenesis and cargo sorting.

Tetraspanins

A conserved family of four-pass transmembrane proteins that organize lipid and signalling domains in membranes. Tetraspanins are enriched in many extracellular vesicles (EVs) and in some cases regulate EV biogenesis.

Warburg effect

The tendency of cancer cells to upregulate glucose uptake and aerobic glycolysis.

Y-RNA

A subtype of RNA transcribed by RNA polymerase III that is conserved among vertebrates but has poorly understood functions. Four Y-RNA genes are present in humans.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dixson, A.C., Dawson, T.R., Di Vizio, D. et al. Context-specific regulation of extracellular vesicle biogenesis and cargo selection. Nat Rev Mol Cell Biol 24, 454–476 (2023). https://doi.org/10.1038/s41580-023-00576-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-023-00576-0

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research