Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms and roles of podosomes and invadopodia

Abstract

Cell invasion into the surrounding extracellular matrix or across tissue boundaries and endothelial barriers occurs in both physiological and pathological scenarios such as immune surveillance or cancer metastasis. Podosomes and invadopodia, collectively called ‘invadosomes’, are actin-based structures that drive the proteolytic invasion of cells, by forming highly regulated platforms for the localized release of lytic enzymes that degrade the matrix. Recent advances in high-resolution microscopy techniques, in vivo imaging and high-throughput analyses have led to considerable progress in understanding mechanisms of invadosomes, revealing the intricate inner architecture of these structures, as well as their growing repertoire of functions that extends well beyond matrix degradation. In this Review, we discuss the known functions, architecture and regulatory mechanisms of podosomes and invadopodia. In particular, we describe the molecular mechanisms of localized actin turnover and microtubule-based cargo delivery, with a special focus on matrix-lytic enzymes that enable proteolytic invasion. Finally, we point out topics that should become important in the invadosome field in the future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Invadosome architecture and maturation stages.
Fig. 2: Mechanisms of invadosome extension and dynamics.
Fig. 3: Regulation of invadosome activity in proteolysis of the ECM.

Similar content being viewed by others

References

  1. Trepat, X., Chen, Z. & Jacobson, K. Cell migration. Compr. Physiol. 2, 2369–2392 (2012).

    Article  Google Scholar 

  2. Schumacher, L. Collective cell migration in development. Adv. Exp. Med. Biol. 1146, 105–116 (2019).

    Article  CAS  Google Scholar 

  3. Yamaguchi, H., Wyckoff, J. & Condeelis, J. Cell migration in tumors. Curr. Opin. Cell Biol. 17, 559–564 (2005).

    Article  CAS  Google Scholar 

  4. Ridley, A. J. et al. Cell migration: integrating signals from front to back. Science 302, 1704–1709 (2003).

    Article  CAS  Google Scholar 

  5. Parsons, J. T., Horwitz, A. R. & Schwartz, M. A. Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nat. Rev. Mol. Cell Biol. 11, 633–643 (2010).

    Article  CAS  Google Scholar 

  6. Renkawitz, J. et al. Nuclear positioning facilitates amoeboid migration along the path of least resistance. Nature 568, 546–550 (2019).

    Article  CAS  Google Scholar 

  7. Wolf, K. et al. Physical limits of cell migration: control by ECM space and nuclear deformation and tuning by proteolysis and traction force. J. Cell Biol. 201, 1069–1084 (2013).

    Article  CAS  Google Scholar 

  8. Marchisio, P. C. et al. Cell-substratum interaction of cultured avian osteoclasts is mediated by specific adhesion structures. J. Cell Biol. 99, 1696–1705 (1984).

    Article  CAS  Google Scholar 

  9. Monsky, W. L. et al. Binding and localization of Mr 72,000 matrix metalloproteinase at cell surface invadopodia. Cancer Res. 53, 3159–3164 (1993).

    CAS  Google Scholar 

  10. Alexander, N. R. et al. Extracellular matrix rigidity promotes invadopodia activity. Curr. Biol. 18, 1295–1299 (2008). This highly innovative work introduces a novel microscopic technique for measuring protrusive forces at all podosomes of several cells simultaneously.

    Article  CAS  Google Scholar 

  11. Pourfarhangi, K. E., Bergman, A. & Gligorijevic, B. ECM cross-linking regulates invadopodia dynamics. Biophys. J. 114, 1455–1466 (2018).

    Article  CAS  Google Scholar 

  12. Gong, Z., van den Dries, K., Cambi, A. & Shenoy, V. B. Chemo-mechanical diffusion waves orchestrate collective dynamics of immune cell podosomes. bioRxiv https://doi.org/10.1101/2021.11.23.469591 (2021).

    Article  Google Scholar 

  13. Spuul, P. et al. VEGF-A/notch-induced podosomes proteolyse basement membrane collagen-IV during retinal sprouting angiogenesis. Cell Rep. 17, 484–500 (2016). This detailed and beautiful work demonstrates the relevance of endothelial podosomes in vivo, by using a model of retinal neovascularization.

    Article  CAS  Google Scholar 

  14. Hagedorn, E. J. et al. The netrin receptor DCC focuses invadopodia-driven basement membrane transmigration in vivo. J. Cell Biol. 201, 903–913 (2013).

    Article  CAS  Google Scholar 

  15. Ferrari, R. et al. MT1-MMP directs force-producing proteolytic contacts that drive tumor cell invasion. Nat. Commun. 10, 4886 (2019). This highly interesting study investigates the ultrastructure and dynamics of collagenolytic invadopdia and demonstrates a dual role for MT1-MMP as both an initiator and a proteolytic effector of invadopodia.

    Article  Google Scholar 

  16. Albiges-Rizo, C., Destaing, O., Fourcade, B., Planus, E. & Block, M. R. Actin machinery and mechanosensitivity in invadopodia, podosomes and focal adhesions. J. Cell Sci. 122, 3037–3049 (2009).

    Article  CAS  Google Scholar 

  17. Linder, S. The matrix corroded: podosomes and invadopodia in extracellular matrix degradation. Trends Cell Biol. 17, 107–117 (2007).

    Article  CAS  Google Scholar 

  18. Linder, S. & Wiesner, C. Tools of the trade: podosomes as multipurpose organelles of monocytic cells. Cell. Mol. life Sci. 72, 121–135 (2015).

    Article  CAS  Google Scholar 

  19. Linder, S., Wiesner, C. & Himmel, M. Degrading devices: invadosomes in proteolytic cell invasion. Annu. Rev. Cell Dev. Biol. 27, 185–211 (2011).

    Article  CAS  Google Scholar 

  20. Murphy, D. A. & Courtneidge, S. A. The ‘ins’ and ‘outs’ of podosomes and invadopodia: characteristics, formation and function. Nat. Rev. Mol. Cell Biol. 12, 413–426 (2011).

    Article  CAS  Google Scholar 

  21. van den Dries, K., Bolomini-Vittori, M. & Cambi, A. Spatiotemporal organization and mechanosensory function of podosomes. Cell Adhes. Migr. 8, 268–272 (2014).

    Article  Google Scholar 

  22. Revach, O. Y. & Geiger, B. The interplay between the proteolytic, invasive, and adhesive domains of invadopodia and their roles in cancer invasion. Cell Adhes. Migr. 8, 215–225 (2014).

    Article  Google Scholar 

  23. Revach, O. Y., Grosheva, I. & Geiger, B. Biomechanical regulation of focal adhesion and invadopodia formation. J. Cell Sci. https://doi.org/10.1242/jcs.244848 (2020).

    Article  Google Scholar 

  24. Eddy, R. J., Weidmann, M. D., Sharma, V. P. & Condeelis, J. S. Tumor cell invadopodia: invasive protrusions that orchestrate metastasis. Trends Cell Biol. 27, 595–607 (2017).

    Article  CAS  Google Scholar 

  25. Marchisio, P. C. Fortuitous birth, convivial baptism and early youth of podosomes. Eur. J. Cell Biol. 91, 820–823 (2012).

    Article  CAS  Google Scholar 

  26. Maurin, J., Blangy, A. & Bompard, G. Regulation of invadosomes by microtubules: not only a matter of railways. Eur. J. Cell Biol. 99, 151109 (2020).

    Article  CAS  Google Scholar 

  27. Cambi, A. & Chavrier, P. Tissue remodeling by invadosomes. Fac. Rev. 10, 39 (2021).

    Article  CAS  Google Scholar 

  28. Weber, K., Hey, S., Cervero, P. & Linder, S. The circle of life: phases of podosome formation, turnover and reemergence. Eur. J. Cell Biol. 101, 151218 (2022).

    Article  CAS  Google Scholar 

  29. Magalhaes, M. A. et al. Cortactin phosphorylation regulates cell invasion through a pH-dependent pathway. J. Cell Biol. 195, 903–920 (2011). This study demonstrates that dynamic cycles of invadopodium protrusion are regulated by NHE1-dependent changes in pH which regulate the interaction of cofilin and cortactin at invadopodia.

    Article  CAS  Google Scholar 

  30. Gaertner, F. et al. WASp triggers mechanosensitive actin patches to facilitate immune cell migration in dense tissues. Dev. Cell https://doi.org/10.1016/j.devcel.2021.11.024 (2021).

    Article  Google Scholar 

  31. Linder, S., Nelson, D., Weiss, M. & Aepfelbacher, M. Wiskott-Aldrich syndrome protein regulates podosomes in primary human macrophages. Proc. Natl Acad. Sci. USA 96, 9648–9653 (1999). This study reveals the first cellular function for WASP and a respective role in human disease, and introduces podosomes to a wider scientific audience.

    Article  CAS  Google Scholar 

  32. Luxenburg, C. et al. The architecture of the adhesive apparatus of cultured osteoclasts: from podosome formation to sealing zone assembly. PLoS ONE 2, e179 (2007).

    Article  Google Scholar 

  33. Wiesner, C., Faix, J., Himmel, M., Bentzien, F. & Linder, S. KIF5B and KIF3A/KIF3B kinesins drive MT1-MMP surface exposure, CD44 shedding, and extracellular matrix degradation in primary macrophages. Blood 116, 1559–1569 (2010).

    Article  CAS  Google Scholar 

  34. Moreau, V., Tatin, F., Varon, C. & Genot, E. Actin can reorganize into podosomes in aortic endothelial cells, a process controlled by Cdc42 and RhoA. Mol. Cell. Biol. 23, 6809–6822 (2003).

    Article  CAS  Google Scholar 

  35. Tarone, G., Cirillo, D., Giancotti, F. G., Comoglio, P. M. & Marchisio, P. C. Rous sarcoma virus-transformed fibroblasts adhere primarily at discrete protrusions of the ventral membrane called podosomes. Exp. Cell Res. 159, 141–157 (1985).

    Article  CAS  Google Scholar 

  36. Revach, O. Y. et al. Mechanical interplay between invadopodia and the nucleus in cultured cancer cells. Sci. Rep. 5, 9466 (2015). This study expertly uses correlative light and electron microscopy to show that invadopodia apply forces on the cell nucleus, which likely supports protrusion into the matrix.

    Article  CAS  Google Scholar 

  37. Van Goethem, E., Poincloux, R., Gauffre, F., Maridonneau-Parini, I. & Le Cabec, V. Matrix architecture dictates three-dimensional migration modes of human macrophages: differential involvement of proteases and podosome-like structures. J. Immunol. 184, 1049–1061 (2010).

    Article  Google Scholar 

  38. Wiesner, C., El Azzouzi, K. & Linder, S. A specific subset of RabGTPases controls cell surface exposure of MT1-MMP, extracellular matrix degradation and three-dimensional invasion of macrophages. J. Cell Sci. 126, 2820–2833 (2013).

    CAS  Google Scholar 

  39. Juin, A. et al. Physiological type I collagen organization induces the formation of a novel class of linear invadosomes. Mol. Biol. Cell 23, 297–309 (2012).

    Article  CAS  Google Scholar 

  40. Infante, E. et al. LINC complex-Lis1 interplay controls MT1-MMP matrix digest-on-demand response for confined tumor cell migration. Nat. Commun. 9, 2443 (2018).

    Article  Google Scholar 

  41. Cervero, P., Himmel, M., Kruger, M. & Linder, S. Proteomic analysis of podosome fractions from macrophages reveals similarities to spreading initiation centres. Eur. J. Cell Biol. 91, 908–922 (2012).

    Article  CAS  Google Scholar 

  42. Ezzoukhry, Z. et al. Combining laser capture microdissection and proteomics reveals an active translation machinery controlling invadosome formation. Nat. Commun. 9, 2031 (2018).

    Article  Google Scholar 

  43. Attanasio, F. et al. Novel invadopodia components revealed by differential proteomic analysis. Eur. J. Cell Biol. 90, 115–127 (2011).

    Article  CAS  Google Scholar 

  44. Linder, S. et al. The polarization defect of Wiskott-Aldrich syndrome macrophages is linked to dislocalization of the Arp2/3 complex. J. Immunol. 165, 221–225 (2000).

    Article  CAS  Google Scholar 

  45. Tehrani, S., Faccio, R., Chandrasekar, I., Ross, F. P. & Cooper, J. A. Cortactin has an essential and specific role in osteoclast actin assembly. Mol. Biol. Cell 17, 2882–2895 (2006).

    Article  CAS  Google Scholar 

  46. Linder, S. & Aepfelbacher, M. Podosomes: adhesion hot-spots of invasive cells. Trends Cell Biol. 13, 376–385 (2003).

    Article  CAS  Google Scholar 

  47. Seals, D. F. et al. The adaptor protein Tks5/Fish is required for podosome formation and function, and for the protease-driven invasion of cancer cells. Cancer Cell 7, 155–165 (2005).

    Article  CAS  Google Scholar 

  48. Crimaldi, L., Courtneidge, S. A. & Gimona, M. Tks5 recruits AFAP-110, p190RhoGAP, and cortactin for podosome formation. Exp. Cell Res. 315, 2581–2592 (2009).

    Article  CAS  Google Scholar 

  49. van den Dries, K. et al. Dual-color superresolution microscopy reveals nanoscale organization of mechanosensory podosomes. Mol. Biol. Cell 24, 2112–2123 (2013).

    Article  Google Scholar 

  50. Marchisio, P. C. et al. Vinculin, talin, and integrins are localized at specific adhesion sites of malignant B lymphocytes. Blood 72, 830–833 (1988).

    Article  CAS  Google Scholar 

  51. van den Dries, K. et al. Modular actin nano-architecture enables podosome protrusion and mechanosensing. Nat. Commun. 10, 5171 (2019).

    Article  Google Scholar 

  52. Panzer, L. et al. The formins FHOD1 and INF2 regulate inter- and intra-structural contractility of podosomes. J. Cell Sci. 129, 298–313 (2016).

    CAS  Google Scholar 

  53. Cervero, P., Wiesner, C., Bouissou, A., Poincloux, R. & Linder, S. Lymphocyte-specific protein 1 regulates mechanosensory oscillation of podosomes and actin isoform-based actomyosin symmetry breaking. Nat. Commun. 9, 515 (2018). This study identifies LSP1 as a central regulator of actomyosin contractility at podosomes and, by its differentially binding to actin isoforms, also of cellular symmetry breaking.

    Article  Google Scholar 

  54. Linder, S. & Cervero, P. The podosome cap: past, present, perspective. Eur. J. Cell Biol. 99, 151087 (2020).

    Article  CAS  Google Scholar 

  55. Artym, V. V., Zhang, Y., Seillier-Moiseiwitsch, F., Yamada, K. M. & Mueller, S. C. Dynamic interactions of cortactin and membrane type 1 matrix metalloproteinase at invadopodia: defining the stages of invadopodia formation and function. Cancer Res. 66, 3034–3043 (2006). This study establishes distinct stages of invadopodium assembly and shows that MT1-MMP is required for function of invadopodia during matrix degradation but not their initiation.

    Article  CAS  Google Scholar 

  56. Yamaguchi, H. et al. Molecular mechanisms of invadopodium formation: the role of the N-WASP-Arp2/3 complex pathway and cofilin. J. Cell Biol. 168, 441–452 (2005). This study reveals that invadopodium formation induced by the growth factor EGF is dependent on N-WASP and the Arp2/3 complex and their upstream regulators, CDC42, NCK1 and WIP.

    Article  CAS  Google Scholar 

  57. Stylli, S. S. et al. Nck adaptor proteins link Tks5 to invadopodia actin regulation and ECM degradation. J. Cell Sci. 122, 2727–2740 (2009).

    Article  CAS  Google Scholar 

  58. Sharma, V. P. et al. Tks5 and SHIP2 regulate invadopodium maturation, but not initiation, in breast carcinoma cells. Curr. Biol. 23, 2079–2089 (2013). This study uses live cell imaging to establish the kinetics of arrival of the actin-regulatory proteins cortactin, N-WASP and cofilin at nascent invadopodia and their stabilization by TKS5 binding to membrane-bound phosphatidylinositol 3,4-bisphosphate.

    Article  CAS  Google Scholar 

  59. Schoumacher, M., Goldman, R. D., Louvard, D. & Vignjevic, D. M. Actin, microtubules, and vimentin intermediate filaments cooperate for elongation of invadopodia. J. Cell Biol. 189, 541–556 (2010). This beautiful study reveals different stages for invadopodium formation and elongation as well as the respective roles of the actin, microtubule and intermediate filament cytoskeletons.

    Article  CAS  Google Scholar 

  60. Lizarraga, F. et al. Diaphanous-related formins are required for invadopodia formation and invasion of breast tumor cells. Cancer Res. 69, 2792–2800 (2009).

    Article  CAS  Google Scholar 

  61. Branch, K. M., Hoshino, D. & Weaver, A. M. Adhesion rings surround invadopodia and promote maturation. Biol. Open 1, 711–722 (2012). This study reports that the formation of integrin-dependent adhesion rings around newly forming invadopodia is required for their maturation and function.

    Article  CAS  Google Scholar 

  62. Zambonin-Zallone, A. et al. Immunocytochemical distribution of extracellular matrix receptors in human osteoclasts: a beta 3 integrin is colocalized with vinculin and talin in the podosomes of osteoclastoma giant cells. Exp. Cell Res. 182, 645–652 (1989).

    Article  CAS  Google Scholar 

  63. Gaidano, G. et al. Integrin distribution and cytoskeleton organization in normal and malignant monocytes. Leukemia 4, 682–687 (1990).

    CAS  Google Scholar 

  64. Chen, W. T. & Wang, J. Y. Specialized surface protrusions of invasive cells, invadopodia and lamellipodia, have differential MT1-MMP, MMP-2, and TIMP-2 localization. Ann. N. Y. Acad. Sci. 878, 361–371 (1999).

    Article  CAS  Google Scholar 

  65. Veillat, V. et al. Podosomes: Multipurpose organelles? Int. J. Biochem. Cell Biol. 65, 52–60 (2015).

    Article  CAS  Google Scholar 

  66. Chabadel, A. et al. CD44 and beta3 integrin organize two functionally distinct actin-based domains in osteoclasts. Mol. Biol. Cell 18, 4899–4910 (2007).

    Article  CAS  Google Scholar 

  67. Juin, A. et al. Discoidin domain receptor 1 controls linear invadosome formation via a Cdc42-Tuba pathway. J. Cell Biol. 207, 517–533 (2014).

    Article  CAS  Google Scholar 

  68. El Azzouzi, K., Wiesner, C. & Linder, S. Metalloproteinase MT1-MMP islets act as memory devices for podosome reemergence. J. Cell Biol. 213, 109–125 (2016). This study reveals a novel phase in the podosome life cycle and shows that MT1-MMP also has a protease-independent function at podosomes, by providing spatial memory for podosome reformation.

    Article  CAS  Google Scholar 

  69. Osiak, A. E., Zenner, G. & Linder, S. Subconfluent endothelial cells form podosomes downstream of cytokine and RhoGTPase signaling. Exp. Cell Res. 307, 342–353 (2005).

    Article  CAS  Google Scholar 

  70. Tatin, F., Varon, C., Genot, E. & Moreau, V. A signalling cascade involving PKC, Src and Cdc42 regulates podosome assembly in cultured endothelial cells in response to phorbol ester. J. Cell Sci. 119, 769–781 (2006).

    Article  CAS  Google Scholar 

  71. Xiao, H. & Liu, M. Atypical protein kinase C in cell motility. Cell. Mol. Life Sci. 70, 3057–3066 (2013).

    Article  CAS  Google Scholar 

  72. Thatcher, S. E. et al. Matrix metalloproteinases -14, -9 and -2 are localized to the podosome and involved in podosome development in the A7r5 smooth muscle cell. J. Cardiobiol. https://doi.org/10.13188/2332-3671.1000020 (2017).

    Article  Google Scholar 

  73. Redondo-Munoz, J. et al. Alpha4beta1 integrin and 190-kDa CD44v constitute a cell surface docking complex for gelatinase B/MMP-9 in chronic leukemic but not in normal B cells. Blood 112, 169–178 (2008).

    Article  CAS  Google Scholar 

  74. Lagarrigue, F. et al. Matrix metalloproteinase-9 is upregulated in nucleophosmin-anaplastic lymphoma kinase-positive anaplastic lymphomas and activated at the cell surface by the chaperone heat shock protein 90 to promote cell invasion. Cancer Res. 70, 6978–6987 (2010).

    Article  CAS  Google Scholar 

  75. Jacob, A., Linklater, E., Bayless, B. A., Lyons, T. & Prekeris, R. The role and regulation of Rab40b-Tks5 complex during invadopodia formation and cancer cell invasion. J. Cell Sci. 129, 4341–4353 (2016).

    CAS  Google Scholar 

  76. Greco, M. R. et al. Protease activity at invadopodial focal digestive areas is dependent on NHE1-driven acidic pHe. Oncol. Rep. 31, 940–946 (2014).

    Article  CAS  Google Scholar 

  77. Cabron, A. S. et al. Structural and functional analyses of the shedding protease ADAM17 in HoxB8-immortalized macrophages and dendritic-like cells. J. Immunol. 201, 3106–3118 (2018).

    Article  CAS  Google Scholar 

  78. Xiao, L. J. et al. ADAM17 targets MMP-2 and MMP-9 via EGFR-MEK-ERK pathway activation to promote prostate cancer cell invasion. Int. J. Oncol. 40, 1714–1724 (2012).

    Google Scholar 

  79. Ghersi, G. et al. Regulation of fibroblast migration on collagenous matrix by a cell surface peptidase complex. J. Biol. Chem. 277, 29231–29241 (2002).

    Article  CAS  Google Scholar 

  80. Ros, M. et al. ER-resident oxidoreductases are glycosylated and trafficked to the cell surface to promote matrix degradation by tumour cells. Nat. Cell Biol. 22, 1371–1381 (2020).

    Article  CAS  Google Scholar 

  81. Pal, K., Zhao, Y., Wang, Y. & Wang, X. Ubiquitous membrane-bound DNase activity in podosomes and invadopodia. J. Cell Biol. https://doi.org/10.1083/jcb.202008079 (2021).

    Article  Google Scholar 

  82. Linder, S. & Wiesner, C. Feel the force: podosomes in mechanosensing. Exp. Cell Res. 343, 67–72 (2016).

    Article  CAS  Google Scholar 

  83. Collin, O. et al. Spatiotemporal dynamics of actin-rich adhesion microdomains: influence of substrate flexibility. J. Cell Sci. 119, 1914–1925 (2006).

    Article  CAS  Google Scholar 

  84. Collin, O. et al. Self-organized podosomes are dynamic mechanosensors. Curr. Biol. 18, 1288–1294 (2008).

    Article  CAS  Google Scholar 

  85. Labernadie, A. et al. Protrusion force microscopy reveals oscillatory force generation and mechanosensing activity of human macrophage podosomes. Nat. Commun. 5, 5343 (2014).

    Article  CAS  Google Scholar 

  86. Proag, A. et al. Working together: spatial synchrony in the force and actin dynamics of podosome first neighbors. ACS Nano 9, 3800–3813 (2015).

    Article  CAS  Google Scholar 

  87. Proag, A., Bouissou, A., Vieu, C., Maridonneau-Parini, I. & Poincloux, R. Evaluation of the force and spatial dynamics of macrophage podosomes by multi-particle tracking. Methods 94, 75–84 (2016).

    Article  CAS  Google Scholar 

  88. Kronenberg, N. M. et al. Long-term imaging of cellular forces with high precision by elastic resonator interference stress microscopy. Nat. Cell Biol. 19, 864–872 (2017). This highly innovative work introduces a novel microscopic technique for measuring protrusive forces at all podosomes of several cells simultaneously.

    Article  CAS  Google Scholar 

  89. Geblinger, D., Geiger, B. & Addadi, L. Surface-induced regulation of podosome organization and dynamics in cultured osteoclasts. Chembiochem 10, 158–165 (2009).

    Article  CAS  Google Scholar 

  90. van den Dries, K. et al. Geometry sensing by dendritic cells dictates spatial organization and PGE(2)-induced dissolution of podosomes. Cell. Mol. Life Sci. 69, 1889–1901 (2012).

    Article  Google Scholar 

  91. Parekh, A. et al. Sensing and modulation of invadopodia across a wide range of rigidities. Biophys. J. 100, 573–582 (2011). This important study confirms the role of tumour matrix rigidity in regulating invadopodia and establishes the optimal range of stiffness for invadopodium activity.

    Article  CAS  Google Scholar 

  92. Dalaka, E. et al. Direct measurement of vertical forces shows correlation between mechanical activity and proteolytic ability of invadopodia. Sci. Adv. 6, eaax6912 (2020).

    Article  CAS  Google Scholar 

  93. Dovas, A. et al. Regulation of podosome dynamics by WASp phosphorylation: implication in matrix degradation and chemotaxis in macrophages. J. Cell Sci. 122, 3873–3882 (2009).

    Article  CAS  Google Scholar 

  94. Evans, J. G., Correia, I., Krasavina, O., Watson, N. & Matsudaira, P. Macrophage podosomes assemble at the leading lamella by growth and fragmentation. J. Cell Biol. 161, 697–705 (2003).

    Article  CAS  Google Scholar 

  95. Kopp, P. et al. The kinesin KIF1C and microtubule plus ends regulate podosome dynamics in macrophages. Mol. Biol. Cell 17, 2811–2823 (2006). This study is the first to implicate a kinesin and microtubule-dependent transport as regulatory factors for podosomes.

    Article  CAS  Google Scholar 

  96. Burns, S. et al. Maturation of DC is associated with changes in motile characteristics and adherence. Cell Motil. Cytoskeleton 57, 118–132 (2004).

    Article  Google Scholar 

  97. Desmarais, V. et al. N-WASP and cortactin are involved in invadopodium-dependent chemotaxis to EGF in breast tumor cells. Cell Motil. Cytoskeleton 66, 303–316 (2009).

    Article  CAS  Google Scholar 

  98. Proszynski, T. J., Gingras, J., Valdez, G., Krzewski, K. & Sanes, J. R. Podosomes are present in a postsynaptic apparatus and participate in its maturation. Proc. Natl Acad. Sci. Usa. 106, 18373–18378 (2009).

    Article  CAS  Google Scholar 

  99. Proszynski, T. J. & Sanes, J. R. Amotl2 interacts with LL5beta, localizes to podosomes and regulates postsynaptic differentiation in muscle. J. Cell Sci. 126, 2225–2235 (2013).

    CAS  Google Scholar 

  100. Pezinski, M. et al. Tks5 regulates synaptic podosome formation and stabilization of the postsynaptic machinery at the neuromuscular junction. Int. J. Mol. Sci. https://doi.org/10.3390/ijms222112051 (2021).

    Article  Google Scholar 

  101. Chan, Z. C. et al. Site-directed MT1-MMP trafficking and surface insertion regulate AChR clustering and remodeling at developing NMJs. eLife https://doi.org/10.7554/eLife.54379 (2020).

    Article  Google Scholar 

  102. Gawden-Bone, C. et al. Dendritic cell podosomes are protrusive and invade the extracellular matrix using metalloproteinase MMP-14. J. Cell Sci. 123, 1427–1437 (2010).

    Article  CAS  Google Scholar 

  103. Baranov, M. V. et al. Podosomes of dendritic cells facilitate antigen sampling. J. Cell Sci. 127, 1052–1064 (2014).

    CAS  Google Scholar 

  104. Burgdorf, S., Lukacs-Kornek, V. & Kurts, C. The mannose receptor mediates uptake of soluble but not of cell-associated antigen for cross-presentation. J. Immunol. 176, 6770–6776 (2006).

    Article  CAS  Google Scholar 

  105. Geijtenbeek, T. B. et al. DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 100, 587–597 (2000).

    Article  CAS  Google Scholar 

  106. Oikawa, T. et al. Tks5-dependent formation of circumferential podosomes/invadopodia mediates cell-cell fusion. J. Cell Biol. 197, 553–568 (2012).

    Article  CAS  Google Scholar 

  107. Balabiyev, A. et al. Transition of podosomes into zipper-like structures in macrophage-derived multinucleated giant cells. Mol. Biol. Cell 31, 2002–2020 (2020).

    Article  CAS  Google Scholar 

  108. Sens, K. L. et al. An invasive podosome-like structure promotes fusion pore formation during myoblast fusion. J. Cell Biol. 191, 1013–1027 (2010).

    Article  CAS  Google Scholar 

  109. Deng, S., Bothe, I. & Baylies, M. K. The formin diaphanous regulates myoblast fusion through actin polymerization and Arp2/3 regulation. PLoS Genet. 11, e1005381 (2015).

    Article  Google Scholar 

  110. Chuang, M. C. et al. Tks5 and dynamin-2 enhance actin bundle rigidity in invadosomes to promote myoblast fusion. J. Cell Biol. 218, 1670–1685 (2019).

    Article  CAS  Google Scholar 

  111. Kaverina, I., Stradal, T. E. & Gimona, M. Podosome formation in cultured A7r5 vascular smooth muscle cells requires Arp2/3-dependent de-novo actin polymerization at discrete microdomains. J. Cell Sci. 116, 4915–4924 (2003).

    Article  CAS  Google Scholar 

  112. Burgstaller, G. & Gimona, M. Actin cytoskeleton remodelling via local inhibition of contractility at discrete microdomains. J. Cell Sci. 117, 223–231 (2004).

    Article  CAS  Google Scholar 

  113. Huveneers, S., Arslan, S., van de Water, B., Sonnenberg, A. & Danen, E. H. Integrins uncouple Src-induced morphological and oncogenic transformation. J. Biol. Chem. 283, 13243–13251 (2008).

    Article  CAS  Google Scholar 

  114. Luxenburg, C., Winograd-Katz, S., Addadi, L. & Geiger, B. Involvement of actin polymerization in podosome dynamics. J. Cell Sci. 125, 1666–1672 (2012).

    CAS  Google Scholar 

  115. Gavazzi, I., Nermut, M. V. & Marchisio, P. C. Ultrastructure and gold-immunolabelling of cell-substratum adhesions (podosomes) in RSV-transformed BHK cells. J. Cell Sci. 94, 85–99 (1989).

    Article  Google Scholar 

  116. Zhou, Y. et al. Abl-mediated PI3K activation regulates macrophage podosome formation. J. Cell Sci. https://doi.org/10.1242/jcs.234385 (2020).

    Article  Google Scholar 

  117. Oikawa, T., Itoh, T. & Takenawa, T. Sequential signals toward podosome formation in NIH-src cells. J. Cell Biol. 182, 157–169 (2008).

    Article  CAS  Google Scholar 

  118. Bhuwania, R. et al. Supervillin couples myosin-dependent contractility to podosomes and enables their turnover. J. Cell Sci. 125, 2300–2314 (2012).

    CAS  Google Scholar 

  119. Destaing, O., Saltel, F., Geminard, J. C., Jurdic, P. & Bard, F. Podosomes display actin turnover and dynamic self-organization in osteoclasts expressing actin-green fluorescent protein. Mol. Biol. Cell 14, 407–416 (2003).

    Article  CAS  Google Scholar 

  120. Moshfegh, Y., Bravo-Cordero, J. J., Miskolci, V., Condeelis, J. & Hodgson, L. A Trio-Rac1-Pak1 signalling axis drives invadopodia disassembly. Nat. Cell Biol. 17, 350 (2015). Using a unique RAC1 biosensor, this elegant study identifies a TRIO–RAC1–PAK1 signalling axis that is correlated with the disassembly and turnover of invadopodia.

    Article  Google Scholar 

  121. Pollard, T. D. Rate constants for the reactions of ATP- and ADP-actin with the ends of actin filaments. J. Cell Biol. 103, 2747–2754 (1986).

    Article  CAS  Google Scholar 

  122. Amann, K. J. & Pollard, T. D. Cellular regulation of actin network assembly. Curr. Biol. 10, R728–R730 (2000).

    Article  CAS  Google Scholar 

  123. Peskin, C. S., Odell, G. M. & Oster, G. F. Cellular motions and thermal fluctuations: the Brownian ratchet. Biophys. J. 65, 316–324 (1993).

    Article  CAS  Google Scholar 

  124. Footer, M. J., Kerssemakers, J. W., Theriot, J. A. & Dogterom, M. Direct measurement of force generation by actin filament polymerization using an optical trap. Proc. Natl Acad. Sci. USA 104, 2181–2186 (2007).

    Article  CAS  Google Scholar 

  125. Parekh, S. H., Chaudhuri, O., Theriot, J. A. & Fletcher, D. A. Loading history determines the velocity of actin-network growth. Nat. Cell Biol. 7, 1219–1223 (2005).

    Article  Google Scholar 

  126. Abraham, V. C., Krishnamurthi, V., Taylor, D. L. & Lanni, F. The actin-based nanomachine at the leading edge of migrating cells. Biophys. J. 77, 1721–1732 (1999).

    Article  CAS  Google Scholar 

  127. Giardini, P. A., Fletcher, D. A. & Theriot, J. A. Compression forces generated by actin comet tails on lipid vesicles. Proc. Natl Acad. Sci. USA 100, 6493–6498 (2003).

    Article  CAS  Google Scholar 

  128. Lorenz, M., Yamaguchi, H., Wang, Y., Singer, R. H. & Condeelis, J. Imaging sites of N-wasp activity in lamellipodia and invadopodia of carcinoma cells. Curr. Biol. 14, 697–703 (2004). This study is the first to visualize the spatial and temporal activity of the actin-regulatory protein N-WASP using a full-length fluorescence resonance energy transfer biosensor during invadopodium formation.

    Article  CAS  Google Scholar 

  129. Varma, R. & Mayor, S. GPI-anchored proteins are organized in submicron domains at the cell surface. Nature 394, 798–801 (1998).

    Article  CAS  Google Scholar 

  130. Caldieri, G. et al. Invadopodia biogenesis is regulated by caveolin-mediated modulation of membrane cholesterol levels. J. Cell. Mol. Med. 13, 1728–1740 (2009).

    Article  Google Scholar 

  131. Yu, C. H. et al. Integrin-matrix clusters form podosome-like adhesions in the absence of traction forces. Cell Rep. 5, 1456–1468 (2013).

    Article  CAS  Google Scholar 

  132. Rohatgi, R., Ho, H. Y. & Kirschner, M. W. Mechanism of N-WASP activation by CDC42 and phosphatidylinositol 4,5-bisphosphate. J. Cell Biol. 150, 1299–1310 (2000).

    Article  CAS  Google Scholar 

  133. Revach, O. Y., Sandler, O., Samuels, Y. & Geiger, B. Cross-talk between receptor tyrosine kinases AXL and ERBB3 regulates invadopodia formation in melanoma cells. Cancer Res. 79, 2634–2648 (2019).

    Article  CAS  Google Scholar 

  134. Gawden-Bone, C. et al. A critical role for beta2 integrins in podosome formation, dynamics and TLR-signaled disassembly in dendritic cells. J. Cell Sci. https://doi.org/10.1242/jcs.151167 (2014).

    Article  Google Scholar 

  135. Hsu, L. C., Reddy, S. V., Yilmaz, O. & Yu, H. Sphingosine-1-phosphate receptor 2 controls podosome components induced by RANKL affecting osteoclastogenesis and bone resorption. Cells https://doi.org/10.3390/cells8010017 (2019).

    Article  Google Scholar 

  136. Tsuboi, S. et al. FBP17 mediates a common molecular step in the formation of podosomes and phagocytic cups in macrophages. J. Biol. Chem. 284, 8548–8556 (2009).

    Article  CAS  Google Scholar 

  137. Destaing, O. et al. The tyrosine kinase activity of c-Src regulates actin dynamics and organization of podosomes in osteoclasts. Mol. Biol. Cell 19, 394–404 (2008).

    Article  CAS  Google Scholar 

  138. Dalecka, M. et al. Invadopodia structure in 3D environment resolved by near-infrared branding protocol combining correlative confocal and FIB-SEM microscopy. Int. J. Mol. Sci. https://doi.org/10.3390/ijms22157805 (2021).

    Article  Google Scholar 

  139. van den Dries, K. et al. Interplay between myosin IIA-mediated contractility and actin network integrity orchestrates podosome composition and oscillations. Nat. Commun. 4, 1412 (2013). This highly influential work provides mechanistic insight into how podosome core protrusion and force generation on the podosome ring structure are coordinated by actomyosin activity.

    Article  Google Scholar 

  140. Labernadie, A., Thibault, C., Vieu, C., Maridonneau-Parini, I. & Charriere, G. M. Dynamics of podosome stiffness revealed by atomic force microscopy. Proc. Natl Acad. Sci. Usa. 107, 21016–21021 (2010). This groundbreaking work is the first to measure podosome-associated forces and shows that podosomes undergo actomyosin-based cycles of contractility.

    Article  CAS  Google Scholar 

  141. Ferrari, R., Infante, E. & Chavrier, P. Nucleus-invadopodia duo during cancer invasion. Trends Cell Biol. 29, 93–96 (2019).

    Article  CAS  Google Scholar 

  142. Jasnin, M. et al. Elasticity of dense actin networks produces nanonewton protrusive forces. bioRxiv https://doi.org/10.1101/2021.04.13.439622 (2021).

    Article  Google Scholar 

  143. Burger, K. L., Davis, A. L., Isom, S., Mishra, N. & Seals, D. F. The podosome marker protein Tks5 regulates macrophage invasive behavior. Cytoskeleton 68, 694–711 (2011).

    Article  CAS  Google Scholar 

  144. Oser, M. & Condeelis, J. The cofilin activity cycle in lamellipodia and invadopodia. J. Cell. Biochem. 108, 1252–1262 (2009).

    Article  CAS  Google Scholar 

  145. Courtemanche, N. Mechanisms of formin-mediated actin assembly and dynamics. Biophys. Rev. 10, 1553–1569 (2018).

    Article  CAS  Google Scholar 

  146. Mellor, H. The role of formins in filopodia formation. Biochim. Biophys. Acta 1803, 191–200 (2010).

    Article  CAS  Google Scholar 

  147. Gaillard, J. et al. Differential interactions of the formins INF2, mDia1, and mDia2 with microtubules. Mol. Biol. Cell 22, 4575–4587 (2011).

    Article  CAS  Google Scholar 

  148. Kim, D. et al. mDia1 regulates breast cancer invasion by controlling membrane type 1-matrix metalloproteinase localization. Oncotarget 7, 17829–17843 (2016).

    Article  Google Scholar 

  149. Ren, X. L. et al. Cortactin recruits FMNL2 to promote actin polymerization and endosome motility in invadopodia formation. Cancer Lett. 419, 245–256 (2018).

    Article  CAS  Google Scholar 

  150. Gardberg, M. et al. FHOD1, a formin upregulated in epithelial-mesenchymal transition, participates in cancer cell migration and invasion. PLoS ONE 8, e74923 (2013).

    Article  CAS  Google Scholar 

  151. Yan, T. et al. Integrin αvβ3-associated DAAM1 is essential for collagen-induced invadopodia extension and cell haptotaxis in breast cancer cells. J. Biol. Chem. 293, 10172–10185 (2018).

    Article  CAS  Google Scholar 

  152. Calle, Y., Carragher, N. O., Thrasher, A. J. & Jones, G. E. Inhibition of calpain stabilises podosomes and impairs dendritic cell motility. J. Cell Sci. 119, 2375–2385 (2006).

    Article  CAS  Google Scholar 

  153. Badowski, C. et al. Paxillin phosphorylation controls invadopodia/podosomes spatiotemporal organization. Mol. Biol. Cell 19, 633–645 (2008).

    Article  CAS  Google Scholar 

  154. Rafiq, N. B. M. et al. Forces and constraints controlling podosome assembly and disassembly. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20180228 (2019).

    Article  CAS  Google Scholar 

  155. van Helden, S. F. et al. PGE2-mediated podosome loss in dendritic cells is dependent on actomyosin contraction downstream of the RhoA-Rho-kinase axis. J. Cell Sci. 121, 1096–1106 (2008).

    Article  Google Scholar 

  156. Rafiq, N. B. et al. Podosome assembly is controlled by the GTPase ARF1 and its nucleotide exchange factor ARNO. J. Cell Biol. 216, 181–197 (2017).

    Article  CAS  Google Scholar 

  157. Murrell, M. P. & Gardel, M. L. F-actin buckling coordinates contractility and severing in a biomimetic actomyosin cortex. Proc. Natl Acad. Sci. USA 109, 20820–20825 (2012).

    Article  CAS  Google Scholar 

  158. van Rheenen, J., Condeelis, J. & Glogauer, M. A common cofilin activity cycle in invasive tumor cells and inflammatory cells. J. Cell Sci. 122, 305–311 (2009).

    Article  Google Scholar 

  159. Mazurkiewicz, E. et al. Gelsolin contributes to the motility of A375 melanoma cells and this activity is mediated by the fibrous extracellular matrix protein profile. Cells https://doi.org/10.3390/cells10081848 (2021).

    Article  Google Scholar 

  160. Webb, B. A., Eves, R. & Mak, A. S. Cortactin regulates podosome formation: roles of the protein interaction domains. Exp. Cell Res. 312, 760–769 (2006).

    Article  CAS  Google Scholar 

  161. Rafiq, N. B. M. et al. A mechano-signalling network linking microtubules, myosin IIA filaments and integrin-based adhesions. Nat. Mater. 18, 638–649 (2019). This groundbreaking study reveals the interplay between the actin and microtubule cytoskeletons in actomyosin-dependent podosome regulation and identifies the RHO GEF H1 as a central player in this phenomenon.

    Article  CAS  Google Scholar 

  162. Spuul, P. et al. Importance of RhoGTPases in formation, characteristics, and functions of invadosomes. Small GTPases 5, e28195 (2014).

    Article  Google Scholar 

  163. Rivier, P., Mubalama, M. & Destaing, O. Small GTPases all over invadosomes. Small GTPases 12, 429–439 (2021).

    Article  CAS  Google Scholar 

  164. Machesky, L. M. & Insall, R. H. Scar1 and the related Wiskott–Aldrich syndrome protein, WASP, regulate the actin cytoskeleton through the Arp2/3 complex. Curr. Biol. 8, 1347–1356 (1998).

    Article  CAS  Google Scholar 

  165. Kuhn, S. & Geyer, M. Formins as effector proteins of Rho GTPases. Small GTPases 5, e29513 (2014).

    Article  Google Scholar 

  166. Wheeler, A. P. & Ridley, A. J. RhoB affects macrophage adhesion, integrin expression and migration. Exp. Cell Res. 313, 3505–3516 (2007).

    Article  CAS  Google Scholar 

  167. Lener, T., Burgstaller, G., Crimaldi, L., Lach, S. & Gimona, M. Matrix-degrading podosomes in smooth muscle cells. Eur. J. Cell Biol. 85, 183–189 (2006).

    Article  CAS  Google Scholar 

  168. Georgess, D. et al. Comparative transcriptomics reveals RhoE as a novel regulator of actin dynamics in bone-resorbing osteoclasts. Mol. Biol. Cell 25, 380–396 (2014).

    Article  Google Scholar 

  169. Destaing, O. et al. A novel Rho-mDia2-HDAC6 pathway controls podosome patterning through microtubule acetylation in osteoclasts. J. Cell Sci. 118, 2901–2911 (2005).

    Article  CAS  Google Scholar 

  170. Masi, I., Caprara, V., Bagnato, A. & Rosano, L. Tumor cellular and microenvironmental cues controlling invadopodia formation. Front. Cell Dev. Biol. 8, 584181 (2020).

    Article  Google Scholar 

  171. Bravo-Cordero, J. J. et al. A novel spatiotemporal RhoC activation pathway locally regulates cofilin activity at invadopodia. Curr. Biol. 21, 635–644 (2011). Using a unique RHOC biosensor, this study demonstrates the spatio-temporal regulation of RHOC activity by p190RHOGEF and p190RHOGAP resulting in restricted cofilin-dependent actin polymerization and focused invadopodium protrusion.

    Article  CAS  Google Scholar 

  172. Sakurai-Yageta, M. et al. The interaction of IQGAP1 with the exocyst complex is required for tumor cell invasion downstream of Cdc42 and RhoA. J. Cell Biol. 181, 985–998 (2008). This influential study demonstrates that an interaction between the vesicle-tethering exocyst complex and the polarity protein IQGAP1 is required for MT1-MMP delivery to invadopodia.

    Article  CAS  Google Scholar 

  173. Revach, O. Y., Winograd-Katz, S. E., Samuels, Y. & Geiger, B. The involvement of mutant Rac1 in the formation of invadopodia in cultured melanoma cells. Exp. Cell Res. 343, 82–88 (2016).

    Article  CAS  Google Scholar 

  174. Kwiatkowska, A. et al. The small GTPase RhoG mediates glioblastoma cell invasion. Mol. Cancer 11, 65 (2012).

    Article  CAS  Google Scholar 

  175. Goicoechea, S. M., Zinn, A., Awadia, S. S., Snyder, K. & Garcia-Mata, R. A RhoG-mediated signaling pathway that modulates invadopodia dynamics in breast cancer cells. J. Cell Sci. 130, 1064–1077 (2017).

    CAS  Google Scholar 

  176. Rosenberg, B. J. et al. Phosphorylated cortactin recruits Vav2 guanine nucleotide exchange factor to activate Rac3 and promote invadopodial function in invasive breast cancer cells. Mol. Biol. Cell 28, 1347–1360 (2017).

    Article  CAS  Google Scholar 

  177. Donnelly, S. K. et al. Rac3 regulates breast cancer invasion and metastasis by controlling adhesion and matrix degradation. J. Cell Biol. 216, 4331–4349 (2017).

    Article  CAS  Google Scholar 

  178. Hulsemann, M. et al. TC10 regulates breast cancer invasion and metastasis by controlling membrane type-1 matrix metalloproteinase at invadopodia. Commun. Biol. 4, 1091 (2021).

    Article  CAS  Google Scholar 

  179. Aung, A. et al. 3D traction stresses activate protease-dependent invasion of cancer cells. Biophys. J. 107, 2528–2537 (2014).

    Article  CAS  Google Scholar 

  180. Berger, A. J. et al. Scaffold stiffness influences breast cancer cell invasion via EGFR-linked Mena upregulation and matrix remodeling. Matrix Biol. 85–86, 80–93 (2020).

    Article  Google Scholar 

  181. Chang, J., Pang, E. M., Adebowale, K., Wisdom, K. M. & Chaudhuri, O. Increased stiffness inhibits invadopodia formation and cell migration in 3D. Biophys. J. 119, 726–736 (2020).

    Article  CAS  Google Scholar 

  182. Williams, K. C. et al. Invadopodia are chemosensing protrusions that guide cancer cell extravasation to promote brain tropism in metastasis. Oncogene 38, 3598–3615 (2019).

    Article  CAS  Google Scholar 

  183. van den Dries, K., Linder, S., Maridonneau-Parini, I. & Poincloux, R. Probing the mechanical landscape - new insights into podosome architecture and mechanics. J. Cell Sci. https://doi.org/10.1242/jcs.236828 (2019).

    Article  Google Scholar 

  184. del Rio, A. et al. Stretching single talin rod molecules activates vinculin binding. Science 323, 638–641 (2009).

    Article  Google Scholar 

  185. Sawada, Y. et al. Force sensing by mechanical extension of the Src family kinase substrate p130Cas. Cell 127, 1015–1026 (2006).

    Article  CAS  Google Scholar 

  186. Gong, Z. et al. Recursive feedback between matrix dissipation and chemo-mechanical signaling drives oscillatory growth of cancer cell invadopodia. Cell Rep. 35, 109047 (2021).

    Article  CAS  Google Scholar 

  187. Parekh, A. & Weaver, A. M. Regulation of cancer invasiveness by the physical extracellular matrix environment. Cell Adhes. Migr. 3, 288–292 (2009).

    Article  Google Scholar 

  188. Jerrell, R. J. & Parekh, A. Cellular traction stresses mediate extracellular matrix degradation by invadopodia. Acta Biomater. 10, 1886–1896 (2014).

    Article  CAS  Google Scholar 

  189. Gad, A., Lach, S., Crimaldi, L. & Gimona, M. Plectin deposition at podosome rings requires myosin contractility. Cell Motil. Cytoskeleton 65, 614–625 (2008).

    Article  CAS  Google Scholar 

  190. Schramp, M., Ying, O., Kim, T. Y. & Martin, G. S. ERK5 promotes Src-induced podosome formation by limiting Rho activation. J. Cell Biol. 181, 1195–1210 (2008).

    Article  CAS  Google Scholar 

  191. Meddens, M. B. et al. Actomyosin-dependent dynamic spatial patterns of cytoskeletal components drive mesoscale podosome organization. Nat. Commun. 7, 13127 (2016).

    Article  CAS  Google Scholar 

  192. Etienne-Manneville, S. Microtubules in cell migration. Annu. Rev. Cell Dev. Biol. 29, 471–499 (2013).

    Article  CAS  Google Scholar 

  193. Linder, S., Hufner, K., Wintergerst, U. & Aepfelbacher, M. Microtubule-dependent formation of podosomal adhesion structures in primary human macrophages. J. Cell Sci. 113, 4165–4176 (2000).

    Article  CAS  Google Scholar 

  194. Theisen, U., Straube, E. & Straube, A. Directional persistence of migrating cells requires Kif1C-mediated stabilization of trailing adhesions. Dev. Cell 23, 1153–1166 (2012).

    Article  CAS  Google Scholar 

  195. Efimova, N. et al. Podosome-regulating kinesin KIF1C translocates to the cell periphery in a CLASP-dependent manner. J. Cell Sci. 127, 5179–5188 (2014).

    Google Scholar 

  196. Cornfine, S. et al. The kinesin KIF9 and reggie/flotillin proteins regulate matrix degradation by macrophage podosomes. Mol. Biol. Cell 22, 202–215 (2011).

    Article  CAS  Google Scholar 

  197. Marchesin, V. et al. ARF6-JIP3/4 regulate endosomal tubules for MT1-MMP exocytosis in cancer invasion. J. Cell Biol. 211, 339–358 (2015).

    Article  CAS  Google Scholar 

  198. Noordstra, I. & Akhmanova, A. Linking cortical microtubule attachment and exocytosis. F1000Research 6, 469 (2017).

    Article  Google Scholar 

  199. Bouchet, B. P. et al. Talin-KANK1 interaction controls the recruitment of cortical microtubule stabilizing complexes to focal adhesions. eLife https://doi.org/10.7554/eLife.18124 (2016).

    Article  Google Scholar 

  200. Praekelt, U. et al. New isoform-specific monoclonal antibodies reveal different sub-cellular localisations for talin1 and talin2. Eur. J. Cell Biol. 91, 180–191 (2012).

    Article  CAS  Google Scholar 

  201. Beaty, B. T. et al. Talin regulates moesin-NHE-1 recruitment to invadopodia and promotes mammary tumor metastasis. J. Cell Biol. 205, 737–751 (2014).

    Article  CAS  Google Scholar 

  202. Sala, K., Raimondi, A., Tonoli, D., Tacchetti, C. & de Curtis, I. Identification of a membrane-less compartment regulating invadosome function and motility. Sci. Rep. 8, 1164 (2018).

    Article  Google Scholar 

  203. Fukata, M. et al. Rac1 and Cdc42 capture microtubules through IQGAP1 and CLIP-170. Cell 109, 873–885 (2002).

    Article  CAS  Google Scholar 

  204. Hanania, R. et al. Classically activated macrophages use stable microtubules for matrix metalloproteinase-9 (MMP-9) secretion. J. Biol. Chem. 287, 8468–8483 (2012).

    Article  CAS  Google Scholar 

  205. Sharma, P. et al. SNX27-retromer assembly recycles MT1-MMP to invadopodia and promotes breast cancer metastasis. J. Cell Biol. https://doi.org/10.1083/jcb.201812098 (2020). This study demonstrates that the SNX27–retromer complex is associated with endosomes containing MT1-MMP, but not MT2-MMP, and mediates its recycling to invadopodia.

    Article  Google Scholar 

  206. Wang, Z. et al. Binding of PLD2-generated phosphatidic acid to KIF5B promotes MT1-MMP surface trafficking and lung metastasis of mouse breast cancer cells. Dev. Cell 43, 186–197 e187 (2017).

    Article  CAS  Google Scholar 

  207. Gifford, V. et al. Coordination of KIF3A and KIF13A regulates leading edge localization of MT1-MMP to promote cancer cell invasion. bioRxiv https://doi.org/10.1101/2021.05.24.445438 (2021).

    Article  Google Scholar 

  208. Bravo-Cordero, J. J. et al. MT1-MMP proinvasive activity is regulated by a novel Rab8-dependent exocytic pathway. EMBO J. 26, 1499–1510 (2007).

    Article  CAS  Google Scholar 

  209. Frittoli, E. et al. A RAB5/RAB4 recycling circuitry induces a proteolytic invasive program and promotes tumor dissemination. J. Cell Biol. 206, 307–328 (2014).

    Article  CAS  Google Scholar 

  210. Miyagawa, T. et al. MT1-MMP recruits the ER-Golgi SNARE Bet1 for efficient MT1-MMP transport to the plasma membrane. J. Cell Biol. 218, 3355–3371 (2019).

    Article  CAS  Google Scholar 

  211. Steffen, A. et al. MT1-MMP-dependent invasion is regulated by TI-VAMP/VAMP7. Curr. Biol. 18, 926–931 (2008).

    Article  CAS  Google Scholar 

  212. Williams, K. C. & Coppolino, M. G. Phosphorylation of membrane type 1-matrix metalloproteinase (MT1-MMP) and its vesicle-associated membrane protein 7 (VAMP7)-dependent trafficking facilitate cell invasion and migration. J. Biol. Chem. 286, 43405–43416 (2011).

    Article  CAS  Google Scholar 

  213. Rohl, J. et al. Invasion by activated macrophages requires delivery of nascent membrane-type-1 matrix metalloproteinase through late endosomes/lysosomes to the cell surface. Traffic 20, 661–673 (2019).

    Google Scholar 

  214. Pedersen, N. M. et al. Protrudin-mediated ER-endosome contact sites promote MT1-MMP exocytosis and cell invasion. J. Cell Biol. https://doi.org/10.1083/jcb.202003063 (2020).

    Article  Google Scholar 

  215. Yu, X. et al. N-WASP coordinates the delivery and F-actin-mediated capture of MT1-MMP at invasive pseudopods. J. Cell Biol. 199, 527–544 (2012).

    Article  CAS  Google Scholar 

  216. Qiang, L. et al. Pancreatic tumor cell metastasis is restricted by MT1-MMP binding protein MTCBP-1. J. Cell Biol. 218, 317–332 (2019).

    Article  CAS  Google Scholar 

  217. Petropoulos, C. et al. Roles of paxillin family members in adhesion and ECM degradation coupling at invadosomes. J. Cell Biol. 213, 585–599 (2016).

    Article  CAS  Google Scholar 

  218. Vellino, S. et al. Cross-talk between the calcium channel TRPV4 and reactive oxygen species interlocks adhesive and degradative functions of invadosomes. J. Cell Biol. https://doi.org/10.1083/jcb.201910079 (2021).

    Article  Google Scholar 

  219. Jurdic, P., Saltel, F., Chabadel, A. & Destaing, O. Podosome and sealing zone: specificity of the osteoclast model. Eur. J. Cell Biol. 85, 195–202 (2006).

    Article  CAS  Google Scholar 

  220. Cougoule, C. et al. Podosomes, but not the maturation status, determine the protease-dependent 3D migration in human dendritic cells. Front. Immunol. 9, 846 (2018).

    Article  Google Scholar 

  221. Guiet, R. et al. Macrophage mesenchymal migration requires podosome stabilization by filamin A. J. Biol. Chem. 287, 13051–13062 (2012).

    Article  CAS  Google Scholar 

  222. Siddiqui, T., Lively, S., Ferreira, R., Wong, R. & Schlichter, L. C. Expression and contributions of TRPM7 and KCa2.3/SK3 channels to the increased migration and invasion of microglia in anti-inflammatory activation states. PLoS ONE 9, e106087 (2014).

    Article  Google Scholar 

  223. Georgess, D., Machuca-Gayet, I., Blangy, A. & Jurdic, P. Podosome organization drives osteoclast-mediated bone resorption. Cell Adhes. Migr. 8, 191–204 (2014).

    Article  Google Scholar 

  224. Schachtner, H. et al. Megakaryocytes assemble podosomes that degrade matrix and protrude through basement membrane. Blood 121, 2542–2552 (2013).

    Article  CAS  Google Scholar 

  225. Quintavalle, M., Elia, L., Condorelli, G. & Courtneidge, S. A. MicroRNA control of podosome formation in vascular smooth muscle cells in vivo and in vitro. J. Cell Biol. 189, 13–22 (2010).

    Article  CAS  Google Scholar 

  226. Kim, N. Y. et al. Biophysical induction of vascular smooth muscle cell podosomes. PLoS ONE 10, e0119008 (2015).

    Article  Google Scholar 

  227. Swiatlowska, P. et al. Matrix stiffness and blood pressure together regulate vascular smooth muscle cell phenotype switching. bioRxiv https://doi.org/10.1101/2020.12.27.424498 (2021).

    Article  Google Scholar 

  228. Seano, G. et al. Endothelial podosome rosettes regulate vascular branching in tumour angiogenesis. Nat. Cell Biol. 16, 931–941 (2014).

    Article  CAS  Google Scholar 

  229. Murphy, D. A. et al. A Src-Tks5 pathway is required for neural crest cell migration during embryonic development. PLoS ONE 6, e22499 (2011).

    Article  CAS  Google Scholar 

  230. Cortesio, C. L., Wernimont, S. A., Kastner, D. L., Cooper, K. M. & Huttenlocher, A. Impaired podosome formation and invasive migration of macrophages from patients with a PSTPIP1 mutation and PAPA syndrome. Arthritis Rheum. 62, 2556–2558 (2010).

    Article  Google Scholar 

  231. Iqbal, Z. et al. Disruption of the podosome adaptor protein TKS4 (SH3PXD2B) causes the skeletal dysplasia, eye, and cardiac abnormalities of Frank-Ter Haar Syndrome. Am. J. Hum. Genet. 86, 254–261 (2010).

    Article  CAS  Google Scholar 

  232. Gligorijevic, B., Bergman, A. & Condeelis, J. Multiparametric classification links tumor microenvironments with tumor cell phenotype. PLoS Biol. 12, e1001995 (2014).

    Article  Google Scholar 

  233. Paz, H., Pathak, N. & Yang, J. Invading one step at a time: the role of invadopodia in tumor metastasis. Oncogene 33, 4193–4202 (2014).

    Article  CAS  Google Scholar 

  234. Sharma, V. P. et al. Live tumor imaging shows macrophage induction and TMEM-mediated enrichment of cancer stem cells during metastatic dissemination. Nat. Commun. 12, 7300 (2021).

    Article  CAS  Google Scholar 

  235. Moreau, V. et al. Cdc42-driven podosome formation in endothelial cells. Eur. J. Cell Biol. 85, 319–325 (2006).

    Article  CAS  Google Scholar 

  236. Billottet, C. et al. Regulatory signals for endothelial podosome formation. Eur. J. Cell Biol. 87, 543–554 (2008).

    Article  CAS  Google Scholar 

  237. Razzouk, S., Lieberherr, M. & Cournot, G. Rac-GTPase, osteoclast cytoskeleton and bone resorption. Eur. J. Cell Biol. 78, 249–255 (1999).

    Article  CAS  Google Scholar 

  238. Croke, M. et al. Rac deletion in osteoclasts causes severe osteopetrosis. J. Cell Sci. 124, 3811–3821 (2011).

    Article  CAS  Google Scholar 

  239. Wheeler, A. P. et al. Rac1 and Rac2 regulate macrophage morphology but are not essential for migration. J. Cell Sci. 119, 2749–2757 (2006).

    Article  CAS  Google Scholar 

  240. Gringel, A. et al. PAK4 and alphaPIX determine podosome size and number in macrophages through localized actin regulation. J. Cell. Physiol. 209, 568–579 (2006).

    Article  CAS  Google Scholar 

  241. Ory, S., Munari-Silem, Y., Fort, P. & Jurdic, P. Rho and Rac exert antagonistic functions on spreading of macrophage-derived multinucleated cells and are not required for actin fiber formation. J. Cell Sci. 113, 1177–1188 (2000).

    Article  CAS  Google Scholar 

  242. Cortesio, C. L. et al. Calpain 2 and PTP1B function in a novel pathway with Src to regulate invadopodia dynamics and breast cancer cell invasion. J. Cell Biol. 180, 957–971 (2008).

    Article  CAS  Google Scholar 

  243. Burns, S., Thrasher, A. J., Blundell, M. P., Machesky, L. & Jones, G. E. Configuration of human dendritic cell cytoskeleton by Rho GTPases, the WAS protein, and differentiation. Blood 98, 1142–1149 (2001).

    Article  CAS  Google Scholar 

  244. Daubon, T., Buccione, R. & Genot, E. The Aarskog-Scott syndrome protein Fgd1 regulates podosome formation and extracellular matrix remodeling in transforming growth factor beta-stimulated aortic endothelial cells. Mol. Cell. Biol. 31, 4430–4441 (2011).

    Article  CAS  Google Scholar 

  245. Burgstaller, G. & Gimona, M. Podosome-mediated matrix resorption and cell motility in vascular smooth muscle cells. Am. J. Physiol. Heart Circ. Physiol. 288, H3001–H3005 (2005).

    Article  CAS  Google Scholar 

  246. Abram, C. L. et al. The adaptor protein fish associates with members of the ADAMs family and localizes to podosomes of Src-transformed cells. J. Biol. Chem. 278, 16844–16851 (2003).

    Article  CAS  Google Scholar 

  247. Mizutani, K., Miki, H., He, H., Maruta, H. & Takenawa, T. Essential role of neural Wiskott-Aldrich syndrome protein in podosome formation and degradation of extracellular matrix in src-transformed fibroblasts. Cancer Res. 62, 669–674 (2002).

    CAS  Google Scholar 

  248. Chen, W. T. et al. Membrane proteases as potential diagnostic and therapeutic targets for breast malignancy. Breast Cancer Res. Treat. 31, 217–226 (1994).

    Article  CAS  Google Scholar 

  249. Hwang, Y. S., Park, K. K. & Chung, W. Y. Invadopodia formation in oral squamous cell carcinoma: the role of epidermal growth factor receptor signalling. Arch. Oral. Biol. 57, 335–343 (2012).

    Article  CAS  Google Scholar 

  250. Sutoh, M. et al. Invadopodia formation by bladder tumor cells. Oncol. Res. 19, 85–92 (2010).

    Article  CAS  Google Scholar 

  251. Monsky, W. L. et al. A potential marker protease of invasiveness, seprase, is localized on invadopodia of human malignant melanoma cells. Cancer Res. 54, 5702–5710 (1994).

    CAS  Google Scholar 

  252. Desai, B., Ma, T., Zhu, J. & Chellaiah, M. A. Characterization of the expression of variant and standard CD44 in prostate cancer cells: identification of the possible molecular mechanism of CD44/MMP9 complex formation on the cell surface. J. Cell. Biochem. 108, 272–284 (2009).

    Article  CAS  Google Scholar 

  253. Gligorijevic, B. et al. N-WASP-mediated invadopodium formation is involved in intravasation and lung metastasis of mammary tumors. J. Cell Sci. 125, 724–734 (2012).

    Article  CAS  Google Scholar 

  254. Di Martino, J. et al. The microenvironment controls invadosome plasticity. J. Cell Sci. 129, 1759–1768 (2016).

    Google Scholar 

  255. Oprescu, A. et al. Megakaryocytes form linear podosomes devoid of digestive properties to remodel medullar matrix. Sci. Rep. 12, 6255 (2022).

    Article  CAS  Google Scholar 

  256. van Zwam, M. C. et al. IntAct: a non-disruptive internal tagging strategy to study actin isoform organization and function. bioRxiv https://doi.org/10.1101/2021.10.25.465733 (2021).

    Article  Google Scholar 

  257. Herbert, S. P. & Costa, G. Sending messages in moving cells: mRNA localization and the regulation of cell migration. Essays Biochem. 63, 595–606 (2019).

    Article  CAS  Google Scholar 

  258. Leverrier-Penna, S., Destaing, O. & Penna, A. Insights and perspectives on calcium channel functions in the cockpit of cancerous space invaders. Cell Calcium 90, 102251 (2020).

    Article  CAS  Google Scholar 

  259. Siddiqui, T. A., Lively, S., Vincent, C. & Schlichter, L. C. Regulation of podosome formation, microglial migration and invasion by Ca2+-signaling molecules expressed in podosomes. J. Neuroinflammation 9, 250 (2012).

    Article  CAS  Google Scholar 

  260. Sun, J. et al. STIM1- and Orai1-mediated Ca2+ oscillation orchestrates invadopodium formation and melanoma invasion. J. Cell Biol. 207, 535–548 (2014).

    Article  CAS  Google Scholar 

  261. Chen, Y. W. et al. STIM1-dependent Ca2+ signaling regulates podosome formation to facilitate cancer cell invasion. Sci. Rep. 7, 11523 (2017).

    Article  Google Scholar 

  262. Lu, F. et al. Imaging elemental events of store-operated Ca2+ entry in invading cancer cells with plasmalemmal targeted sensors. J. Cell Sci. https://doi.org/10.1242/jcs.224923 (2019).

    Article  Google Scholar 

  263. Bayarmagnai, B. et al. Invadopodia-mediated ECM degradation is enhanced in the G1 phase of the cell cycle. J. Cell Sci. https://doi.org/10.1242/jcs.227116 (2019).

    Article  Google Scholar 

  264. Huang, S. S. et al. A novel invadopodia-specific marker for invasive and pro-metastatic cancer stem cells. Front. Oncol. 11, 638311 (2021).

    Article  Google Scholar 

  265. Varon, C. et al. TGFbeta1-induced aortic endothelial morphogenesis requires signaling by small GTPases Rac1 and RhoA. Exp. Cell Res. 312, 3604–3619 (2006).

    Article  CAS  Google Scholar 

  266. Artym, V. V. et al. Dense fibrillar collagen is a potent inducer of invadopodia via a specific signaling network. J. Cell Biol. 208, 331–350 (2015).

    Article  Google Scholar 

  267. Genot, E. & Gligorijevic, B. Invadosomes in their natural habitat. Eur. J. Cell Biol. 93, 367–379 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

S.L. and P.C. thank A. Mordhorst for expert technical assistance, the UKE Microscopy Imaging Facility for support with imaging and M. Aepfelbacher for continuous support. Work on podosomes and matrix metalloproteinases in the S.L. laboratory is supported by the Deutsche Forschungsgemeinschaft (LI925/8-1 and CRC877/B13), and work on invadopodia in the J.C. laboratory is supported by grants from the US National Cancer Institute (CA216248 and CA255153). The authors apologize to all authors whose work has not been mentioned due to space limitations.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Stefan Linder or John Condeelis.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology Frédéric Saltel, Cheng-han Yu and Alessandra Cambi for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Invadosome consortium: http://www.invadosomes.org/

Supplementary information

Glossary

Sealing zone

A band of close attachment between bone-resorbing osteoclasts and underlying bone, consisting of densely packed podosome cores.

Resorption lacuna

The space delineated by the sealing zone of osteoclasts into which lytic enzymes and protons are secreted to induce degradation of bone.

(N-)WASP

(Neural) Wiskott–Aldrich syndrome protein, a nucleation promotion factor that activates the ARP2/3 complex to induce formation of branched actin networks.

ARP2/3 complex

A seven-subunit complex containing two actin-related proteins (ARP2 and ARP3) which binds to the sides of actin filaments and nucleates a daughter filament, giving rise to branched actin networks.

Cortactin

An actin-binding protein that also recruits the ARP2/3 complex, thus facilitating formation and supporting stabilization of branched actin networks in invadosomes.

Cofilin

A member of the ADF/cofilin family of proteins involved in actin filament severing; supports actin nucleation and turnover at invadosomes.

Formin

A member of a family of proteins involved in nucleation and regulation of unbranched actin filaments.

Discoidin domain receptor 1

(DDR1). A receptor tyrosine kinase that is activated by contact with collagen and is present in linear invadosomes.

ADAM proteins

A family of transmembrane proteins that cleave a variety of cell surface-associated substrates.

Phorbol ester

A class of tetracyclic diterpenoids known to induce tumours; used to induced podosome formation through activation of protein kinase C, which regulates phosphorylation cascades through the MEK–ERK pathway.

Motin family

A family of proteins involved in cytoskeletal organization, serving as scaffolds for polarity-organizing proteins and signalling cascades.

RANKL

Receptor activator of NF-κB ligand, a protein of the tumour necrosis factor family which induces differentiation of monocytes to osteoclasts by binding to RANK.

Supervillin

A member of the villin protein family that localizes to the podosome cap and regulates actomyosin contractility.

Tumour microenvironment of metastasis doorways

Portals for tumour cell intravasation and dissemination composed of a vascular endothelial cell, a macrophage and a Mena-expressing tumour cell with invadopodia, all in direct and stable cell–cell contact, the densities of which are prognostic for distant metastasis.

MenaINV

An invasion-promoting isoform of Mena required for tumour cell invadopodium assembly, invasion and dissemination.

Treadmilling

Turnover of actin filaments in the steady state, driven by net growth on the plus end and net shrinkage at the minus end of filaments.

Multinucleated giant cells

Multinucleated cells arising from cell fusion; multinucleated giant cells of monocytic origin are used as osteoclast models.

NCK1

An upstream activator of N-WASP localized to tumour cell invadopodia but not podosomes and is important for invadopodium formation and activity.

DAAM1

Dishevelled-associated activator of morphogenesis 1, a member of the formin family that regulates invadopodium extension through a signalling cascade involving integrins and RHO.

PYK2

A cytoplasmic protein tyrosine kinase, a member of the focal adhesion kinase (FAK) family, expressed in haematopoietic cells and part of the podosome ring structure.

Gelsolin

A member of the gelsolin/villin family of proteins involved in severing of actin filaments.

Exocyst complex

An octameric protein complex involved in trafficking of vesicles, and especially in their targeting and tethering to the plasma membrane.

GIT1

A GTPase-activating protein for ARF family GTPases.

Microtubule-associated proteins

A group of proteins that can bind to microtubules or tubulin dimers, often regulating stability or disassembly of microtubules or attachment to other structures such as invadosomes (see also the glossary entry “+TIPs”).

+TIPs

A diverse group of proteins that are present at the growing end of microtubules.

Cortical microtubule-stabilizing complexes

(CMSCs). Multiprotein complexes involved in capturing microtubules at the cell cortex, thus supporting exocytosis; prominent members include KANK1, liprins and ELKS.

SNARE proteins

Proteins that mediate membrane fusion, which includes the formation of a complex between vesicle-localized SNAREs and target membrane-localized SNAREs.

Nesprin 2

An actin-binding protein located in the outer nuclear membrane linking the nucleoskeleton to the cytoskeleton.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Linder, S., Cervero, P., Eddy, R. et al. Mechanisms and roles of podosomes and invadopodia. Nat Rev Mol Cell Biol 24, 86–106 (2023). https://doi.org/10.1038/s41580-022-00530-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-022-00530-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing