Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Emerging roles and functional mechanisms of PIWI-interacting RNAs

Subjects

A Publisher Correction to this article was published on 04 October 2022

This article has been updated

Abstract

PIWI-interacting RNAs (piRNAs) are a class of small non-coding RNAs that associate with proteins of the PIWI clade of the Argonaute family. First identified in animal germ line cells, piRNAs have essential roles in germ line development. The first function of PIWI–piRNA complexes to be described was the silencing of transposable elements, which is crucial for maintaining the integrity of the germ line genome. Later studies provided new insights into the functions of PIWI–piRNA complexes by demonstrating that they regulate protein-coding genes. Recent studies of piRNA biology, including in new model organisms such as golden hamsters, have deepened our understanding of both piRNA biogenesis and piRNA function. In this Review, we discuss the most recent advances in our understanding of piRNA biogenesis, the molecular mechanisms of piRNA function and the emerging roles of piRNAs in germ line development mainly in flies and mice, and in infertility, cancer and neurological diseases in humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: piRNA transcription and biogenesis in Drosophila melanogaster ovaries.
Fig. 2: piRNA transcription and biogenesis in the mouse.
Fig. 3: piRNA-dependent transcriptional TE silencing.
Fig. 4: Mechanisms of action of piRNAs and PIWI proteins in protein-coding gene regulation.

Similar content being viewed by others

Change history

References

  1. Lau, N. C. et al. Characterization of the piRNA complex from rat testes. Science 313, 363–367 (2006).

    Article  CAS  Google Scholar 

  2. Grivna, S. T., Beyret, E., Wang, Z. & Lin, H. A novel class of small RNAs in mouse spermatogenic cells. Genes Dev. 20, 1709–1714 (2006).

    Article  CAS  Google Scholar 

  3. Girard, A., Sachidanandam, R., Hannon, G. J. & Carmell, M. A. A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature 442, 199–202 (2006).

    Article  Google Scholar 

  4. Aravin, A. et al. A novel class of small RNAs bind to MILI protein in mouse testes. Nature 442, 203–207 (2006).

    Article  CAS  Google Scholar 

  5. Vagin, V. V. et al. A distinct small RNA pathway silences selfish genetic elements in the germline. Science 313, 320–324 (2006).

    Article  CAS  Google Scholar 

  6. Aravin, A. A. et al. The small RNA profile during Drosophila melanogaster development. Dev. Cell 5, 337–350 (2003).

    Article  CAS  Google Scholar 

  7. Aravin, A. A. et al. Double-stranded RNA-mediated silencing of genomic tandem repeats and transposable elements in the D. melanogaster germline. Curr. Biol. 11, 1017–1027 (2001).

    Article  CAS  Google Scholar 

  8. Ozata, D. M., Gainetdinov, I., Zoch, A., O’Carroll, D. & Zamore, P. D. PIWI-interacting RNAs: small RNAs with big functions. Nat. Rev. Genet. 20, 89–108 (2019).

    Article  CAS  Google Scholar 

  9. Czech, B. et al. piRNA-guided genome defense: from biogenesis to silencing. Annu. Rev. Genet. 52, 131–157 (2018).

    Article  CAS  Google Scholar 

  10. Iwasaki, Y. W., Siomi, M. C. & Siomi, H. PIWI-interacting RNA: its biogenesis and functions. Annu. Rev. Biochem. 84, 405–433 (2015).

    Article  CAS  Google Scholar 

  11. Siomi, M. C., Sato, K., Pezic, D. & Aravin, A. A. PIWI-interacting small RNAs: the vanguard of genome defence. Nat. Rev. Mol. Cell Biol. 12, 246–258 (2011).

    Article  CAS  Google Scholar 

  12. Bartel, D. P. Metazoan microRNAs. Cell 173, 20–51 (2018).

    Article  CAS  Google Scholar 

  13. Peters, L. & Meister, G. Argonaute proteins: mediators of RNA silencing. Mol. Cell 26, 611–623 (2007).

    Article  CAS  Google Scholar 

  14. Anzelon, T. A. et al. Structural basis for piRNA targeting. Nature 597, 285–289 (2021).

    Article  CAS  Google Scholar 

  15. Schirle, N. T., Sheu-Gruttadauria, J. & MacRae, I. J. Structural basis for microRNA targeting. Science 346, 608–613 (2014).

    Article  CAS  Google Scholar 

  16. Ozata, D. M. et al. Evolutionarily conserved pachytene piRNA loci are highly divergent among modern humans. Nat. Ecol. Evol. 4, 156–168 (2020).

    Article  Google Scholar 

  17. Beyret, E., Liu, N. & Lin, H. piRNA biogenesis during adult spermatogenesis in mice is independent of the ping-pong mechanism. Cell Res. 22, 1429–1439 (2012).

    Article  CAS  Google Scholar 

  18. Ramat, A. & Simonelig, M. Functions of PIWI proteins in gene regulation: new arrows added to the piRNA quiver. Trends Genet. 37, 188–200 (2021).

    Article  CAS  Google Scholar 

  19. Rojas-Rios, P. & Simonelig, M. piRNAs and PIWI proteins: regulators of gene expression in development and stem cells. Development 145, dev161786 (2018).

    Article  Google Scholar 

  20. Wang, X., Gou, L. T. & Liu, M. F. Noncanonical functions of PIWIL1/piRNAs in animal male germ cells and human diseases. Biol. Reprod. 107, 101–108 (2022).

    Article  Google Scholar 

  21. Dai, P., Wang, X. & Liu, M. F. A dual role of the PIWI/piRNA machinery in regulating mRNAs during mouse spermiogenesis. Sci. China Life Sci. 63, 447–449 (2020).

    Article  Google Scholar 

  22. Houwing, S., Berezikov, E. & Ketting, R. F. Zili is required for germ cell differentiation and meiosis in zebrafish. EMBO J. 27, 2702–2711 (2008).

    Article  CAS  Google Scholar 

  23. Houwing, S. et al. A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in zebrafish. Cell 129, 69–82 (2007).

    Article  CAS  Google Scholar 

  24. Cox, D. N., Chao, A. & Lin, H. piwi encodes a nucleoplasmic factor whose activity modulates the number and division rate of germline stem cells. Development 127, 503–514 (2000).

    Article  CAS  Google Scholar 

  25. Cox, D. N. et al. A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal. Genes Dev. 12, 3715–3727 (1998).

    Article  CAS  Google Scholar 

  26. Li, C. et al. Collapse of germline piRNAs in the absence of Argonaute3 reveals somatic piRNAs in flies. Cell 137, 509–521 (2009).

    Article  CAS  Google Scholar 

  27. Harris, A. N. & Macdonald, P. M. Aubergine encodes a Drosophila polar granule component required for pole cell formation and related to eIF2C. Development 128, 2823–2832 (2001).

    Article  CAS  Google Scholar 

  28. Schmidt, A. et al. Genetic and molecular characterization of sting, a gene involved in crystal formation and meiotic drive in the male germ line of Drosophila melanogaster. Genetics 151, 749–760 (1999).

    Article  CAS  Google Scholar 

  29. Zhang, H. et al. The piRNA pathway is essential for generating functional oocytes in golden hamsters. Nat. Cell Biol. 23, 1013–1022 (2021).

    Article  CAS  Google Scholar 

  30. Loubalova, Z. et al. Formation of spermatogonia and fertile oocytes in golden hamsters requires piRNAs. Nat. Cell Biol. 23, 992–1001 (2021).

    Article  CAS  Google Scholar 

  31. Hasuwa, H. et al. Production of functional oocytes requires maternally expressed PIWI genes and piRNAs in golden hamsters. Nat. Cell Biol. 23, 1002–1012 (2021). Zhang et al. (Nat. Cell Biol., 2021), Loubalova et al. (2021) and Hasuwa et al. (2021) suggest that piRNA pathway components are required for both male and female germ line development in golden hamsters.

    Article  CAS  Google Scholar 

  32. Carmell, M. A. et al. MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. Dev. Cell 12, 503–514 (2007).

    Article  CAS  Google Scholar 

  33. Kuramochi-Miyagawa, S. et al. Mili, a mammalian member of piwi family gene, is essential for spermatogenesis. Development 131, 839–849 (2004).

    Article  CAS  Google Scholar 

  34. Deng, W. & Lin, H. miwi, a murine homolog of piwi, encodes a cytoplasmic protein essential for spermatogenesis. Dev. Cell 2, 819–830 (2002).

    Article  CAS  Google Scholar 

  35. Kumar, M. S. & Chen, K. C. Evolution of animal Piwi-interacting RNAs and prokaryotic CRISPRs. Brief. Funct. Genomics 11, 277–288 (2012).

    Article  CAS  Google Scholar 

  36. Grimson, A. et al. Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals. Nature 455, 1193–1197 (2008).

    Article  CAS  Google Scholar 

  37. Lewis, S. H. et al. Pan-arthropod analysis reveals somatic piRNAs as an ancestral defence against transposable elements. Nat. Ecol. Evol. 2, 174–181 (2018).

    Article  Google Scholar 

  38. Juliano, C., Wang, J. & Lin, H. Uniting germline and stem cells: the function of Piwi proteins and the piRNA pathway in diverse organisms. Annu. Rev. Genet. 45, 447–469 (2011).

    Article  CAS  Google Scholar 

  39. Grishok, A. Small RNAs worm up transgenerational epigenetics research. DNA 1, 37–48 (2021).

    Article  Google Scholar 

  40. Cecere, G. Small RNAs in epigenetic inheritance: from mechanisms to trait transmission. FEBS Lett. 595, 2953–2977 (2021).

    Article  CAS  Google Scholar 

  41. Barckmann, B. et al. The somatic piRNA pathway controls germline transposition over generations. Nucleic Acids Res. 46, 9524–9536 (2018).

    Article  CAS  Google Scholar 

  42. Gunawardane, L. S. et al. A slicer-mediated mechanism for repeat-associated siRNA 5′ end formation in Drosophila. Science 315, 1587–1590 (2007).

    Article  CAS  Google Scholar 

  43. Brennecke, J. et al. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 128, 1089–1103 (2007). Gunawardane et al. (2007) and Brennecke et al. (2007) propose the ping-pong cycle for piRNA biogenesis in D. melanogaster.

    Article  CAS  Google Scholar 

  44. Le Thomas, A. et al. Transgenerationally inherited piRNAs trigger piRNA biogenesis by changing the chromatin of piRNA clusters and inducing precursor processing. Genes Dev. 28, 1667–1680 (2014).

    Article  Google Scholar 

  45. Mohn, F., Sienski, G., Handler, D. & Brennecke, J. The Rhino-Deadlock-Cutoff complex licenses noncanonical transcription of dual-strand piRNA clusters in Drosophila. Cell 157, 1364–1379 (2014).

    Article  CAS  Google Scholar 

  46. Klattenhoff, C. et al. The Drosophila HP1 homolog Rhino is required for transposon silencing and piRNA production by dual-strand clusters. Cell 138, 1137–1149 (2009).

    Article  CAS  Google Scholar 

  47. Zhang, Z. et al. The HP1 homolog Rhino anchors a nuclear complex that suppresses piRNA precursor splicing. Cell 157, 1353–1363 (2014). Mohn et al. (2014), Klattenhoff et al. (2009) and Zhang et al. (Cell, 2014) show that the RDC complex activates the transcription of dual-strand piRNA clusters in the D. melanogaster germ line via a non-canonical mechanism.

    Article  CAS  Google Scholar 

  48. Andersen, P. R., Tirian, L., Vunjak, M. & Brennecke, J. A heterochromatin-dependent transcription machinery drives piRNA expression. Nature 549, 54–59 (2017).

    Article  CAS  Google Scholar 

  49. Hur, J. K. et al. Splicing-independent loading of TREX on nascent RNA is required for efficient expression of dual-strand piRNA clusters in Drosophila. Genes Dev. 30, 840–855 (2016).

    Article  CAS  Google Scholar 

  50. Chen, Y. A. et al. Cutoff suppresses RNA polymerase II termination to ensure expression of piRNA precursors. Mol. Cell 63, 97–109 (2016).

    Article  CAS  Google Scholar 

  51. ElMaghraby, M. F. et al. A heterochromatin-specific RNA export pathway facilitates piRNA production. Cell 178, 964–979 e920 (2019).

    Article  CAS  Google Scholar 

  52. Kneuss, E. et al. Specialization of the Drosophila nuclear export family protein Nxf3 for piRNA precursor export. Genes Dev. 33, 1208–1220 (2019).

    Article  CAS  Google Scholar 

  53. Chen, P., Luo, Y. & Aravin, A. A. RDC complex executes a dynamic piRNA program during Drosophila spermatogenesis to safeguard male fertility. PLoS Genet. 17, e1009591 (2021).

    Article  CAS  Google Scholar 

  54. Chen, P. et al. piRNA-mediated gene regulation and adaptation to sex-specific transposon expression in D. melanogaster male germline. Genes Dev. 35, 914–935 (2021).

    Article  CAS  Google Scholar 

  55. Goriaux, C., Theron, E., Brasset, E. & Vaury, C. History of the discovery of a master locus producing piRNAs: the flamenco/COM locus in Drosophila melanogaster. Front. Genet. 5, 257 (2014).

    Google Scholar 

  56. Sarot, E., Payen-Groschene, G., Bucheton, A. & Pelisson, A. Evidence for a piwi-dependent RNA silencing of the gypsy endogenous retrovirus by the Drosophila melanogaster flamenco gene. Genetics 166, 1313–1321 (2004).

    Article  CAS  Google Scholar 

  57. Sienski, G., Donertas, D. & Brennecke, J. Transcriptional silencing of transposons by Piwi and maelstrom and its impact on chromatin state and gene expression. Cell 151, 964–980 (2012).

    Article  CAS  Google Scholar 

  58. Goriaux, C., Desset, S., Renaud, Y., Vaury, C. & Brasset, E. Transcriptional properties and splicing of the flamenco piRNA cluster. EMBO Rep. 15, 411–418 (2014).

    Article  CAS  Google Scholar 

  59. Saito, K. et al. Roles for the Yb body components Armitage and Yb in primary piRNA biogenesis in Drosophila. Genes Dev. 24, 2493–2498 (2010).

    Article  CAS  Google Scholar 

  60. Olivieri, D., Sykora, M. M., Sachidanandam, R., Mechtler, K. & Brennecke, J. An in vivo RNAi assay identifies major genetic and cellular requirements for primary piRNA biogenesis in Drosophila. EMBO J. 29, 3301–3317 (2010).

    Article  CAS  Google Scholar 

  61. Qi, H. et al. The Yb body, a major site for Piwi-associated RNA biogenesis and a gateway for Piwi expression and transport to the nucleus in somatic cells. J. Biol. Chem. 286, 3789–3797 (2011).

    Article  CAS  Google Scholar 

  62. Dennis, C., Brasset, E., Sarkar, A. & Vaury, C. Export of piRNA precursors by EJC triggers assembly of cytoplasmic Yb-body in Drosophila. Nat. Commun. 7, 13739 (2016).

    Article  CAS  Google Scholar 

  63. Munafo, M. et al. Channel nuclear pore complex subunits are required for transposon silencing in Drosophila. Elife 10, e66321 (2021).

    Article  CAS  Google Scholar 

  64. Yu, T. et al. Long first exons and epigenetic marks distinguish conserved pachytene piRNA clusters from other mammalian genes. Nat. Commun. 12, 73 (2021).

    Article  CAS  Google Scholar 

  65. Li, X. Z. et al. An ancient transcription factor initiates the burst of piRNA production during early meiosis in mouse testes. Mol. Cell 50, 67–81 (2013). This study shows that A-MYB is responsible for the transcription of both pachytene piRNA clusters and multiple piRNA biogenesis factors in mammals and birds.

    Article  CAS  Google Scholar 

  66. Kuramochi-Miyagawa, S. et al. DNA methylation of retrotransposon genes is regulated by Piwi family members MILI and MIWI2 in murine fetal testes. Genes Dev. 22, 908–917 (2008).

    Article  CAS  Google Scholar 

  67. Aravin, A. A. et al. A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice. Mol. Cell 31, 785–799 (2008).

    Article  CAS  Google Scholar 

  68. Robine, N. et al. A broadly conserved pathway generates 3′UTR-directed primary piRNAs. Curr. Biol. 19, 2066–2076 (2009).

    Article  CAS  Google Scholar 

  69. Zhou, L. et al. BTBD18 regulates a subset of piRNA-generating loci through transcription elongation in mice. Dev. Cell 40, 453–466 e455 (2017).

    Article  Google Scholar 

  70. Strasser, K. & Hurt, E. Yra1p, a conserved nuclear RNA-binding protein, interacts directly with Mex67p and is required for mRNA export. EMBO J. 19, 410–420 (2000).

    Article  CAS  Google Scholar 

  71. Stutz, F. et al. REF, an evolutionary conserved family of hnRNP-like proteins, interacts with TAP/Mex67p and participates in mRNA nuclear export. RNA 6, 638–650 (2000).

    Article  CAS  Google Scholar 

  72. Voynov, V. et al. Genes with internal repeats require the THO complex for transcription. Proc. Natl Acad. Sci. USA 103, 14423–14428 (2006).

    Article  CAS  Google Scholar 

  73. Murota, Y. et al. Yb integrates piRNA intermediates and processing factors into perinuclear bodies to enhance piRISC assembly. Cell Rep. 8, 103–113 (2014).

    Article  CAS  Google Scholar 

  74. Gainetdinov, I., Colpan, C., Arif, A., Cecchini, K. & Zamore, P. D. A single mechanism of biogenesis, initiated and directed by PIWI proteins, explains piRNA production in most animals. Mol. Cell 71, 775–790 e775 (2018).

    Article  CAS  Google Scholar 

  75. Brennecke, J. et al. An epigenetic role for maternally inherited piRNAs in transposon silencing. Science 322, 1387–1392 (2008).

    Article  CAS  Google Scholar 

  76. Nishida, K. M. et al. Gene silencing mechanisms mediated by Aubergine piRNA complexes in Drosophila male gonad. RNA 13, 1911–1922 (2007).

    Article  CAS  Google Scholar 

  77. Wang, W. et al. Slicing and binding by Ago3 or Aub trigger Piwi-bound piRNA production by distinct mechanisms. Mol. Cell 59, 819–830 (2015).

    Article  CAS  Google Scholar 

  78. Hayashi, R. et al. Genetic and mechanistic diversity of piRNA 3′-end formation. Nature 539, 588–592 (2016).

    Article  CAS  Google Scholar 

  79. Mohn, F., Handler, D. & Brennecke, J. Noncoding RNA. piRNA-guided slicing specifies transcripts for Zucchini-dependent, phased piRNA biogenesis. Science 348, 812–817 (2015).

    Article  CAS  Google Scholar 

  80. Han, B. W., Wang, W., Li, C., Weng, Z. & Zamore, P. D. Noncoding RNA. piRNA-guided transposon cleavage initiates Zucchini-dependent, phased piRNA production. Science 348, 817–821 (2015). Mohn et al. (2015) and Han et al. (2015) show that piRNA-guided slicing triggers piRNA precursor transcripts for Zucchini-dependent, phased piRNA production.

    Article  CAS  Google Scholar 

  81. Saito, K. et al. Pimet, the Drosophila homolog of HEN1, mediates 2′-O-methylation of Piwi- interacting RNAs at their 3′ ends. Genes. Dev. 21, 1603–1608 (2007).

    Article  CAS  Google Scholar 

  82. Lim, S. L. et al. HENMT1 and piRNA stability are required for adult male germ cell transposon repression and to define the spermatogenic program in the mouse. PLoS Genet. 11, e1005620 (2015).

    Article  Google Scholar 

  83. Kirino, Y. & Mourelatos, Z. Mouse Piwi-interacting RNAs are 2′-O-methylated at their 3′ termini. Nat. Struct. Mol. Biol. 14, 347–348 (2007).

    Article  CAS  Google Scholar 

  84. Pastore, B., Hertz, H. L., Price, I. F. & Tang, W. Pre-piRNA trimming and 2′-O-methylation protect piRNAs from 3′ tailing and degradation in C. elegans. Cell Rep. 36, 109640 (2021).

    Article  CAS  Google Scholar 

  85. Gainetdinov, I. et al. Terminal modification, sequence, length, and PIWI-protein identity determine piRNA stability. Mol. Cell 81, 4826–4842 e4828 (2021).

    Article  CAS  Google Scholar 

  86. Zhao, M. Z. et al. piRNA 3′ uridylation facilitates the assembly of MIWI/piRNA complex for efficient target regulation in mouse male germ cells. Cell Res. https://doi.org/10.1038/s41422-022-00659-1 (2022).

    Article  Google Scholar 

  87. Nishimura, T. et al. PNLDC1, mouse pre-piRNA trimmer, is required for meiotic and post-meiotic male germ cell development. EMBO Rep. 19 https://doi.org/10.15252/embr.201744957 (2018).

    Article  Google Scholar 

  88. Zhang, Y. et al. An essential role for PNLDC1 in piRNA 3′ end trimming and male fertility in mice. Cell Res. 27, 1392–1396 (2017).

    Article  CAS  Google Scholar 

  89. Ding, D. et al. PNLDC1 is essential for piRNA 3′ end trimming and transposon silencing during spermatogenesis in mice. Nat. Commun. 8, 819 (2017).

    Article  Google Scholar 

  90. Kawaoka, S., Izumi, N., Katsuma, S. & Tomari, Y. 3′ end formation of PIWI-interacting RNAs in vitro. Mol. Cell 43, 1015–1022 (2011).

    Article  CAS  Google Scholar 

  91. Izumi, N. et al. Identification and functional analysis of the pre-piRNA 3′ trimmer in silkworms. Cell 164, 962–973 (2016).

    Article  CAS  Google Scholar 

  92. Tang, W., Tu, S., Lee, H. C., Weng, Z. & Mello, C. C. The RNase PARN-1 trims piRNA 3′ ends to promote transcriptome surveillance in C. elegans. Cell 164, 974–984 (2016). Hayashi et al. (2016), Izumi et al. (2016), Tang et al. (2016) indicate that Nibbler, Trimmer and PARN-1 are responsible for piRNA 3′-end trimming in D. melanogaster, silkworms and C. elegans, respectively.

    Article  CAS  Google Scholar 

  93. Webster, A. et al. Aub and Ago3 are recruited to nuage through two mechanisms to form a ping-pong complex assembled by Krimper. Mol. Cell 59, 564–575 (2015).

    Article  CAS  Google Scholar 

  94. Huang, X. et al. Binding of guide piRNA triggers methylation of the unstructured N-terminal region of Aub leading to assembly of the piRNA amplification complex. Nat. Commun. 12, 4061 (2021).

    Article  CAS  Google Scholar 

  95. Sato, K. et al. Krimper enforces an antisense bias on piRNA pools by binding AGO3 in the Drosophila germline. Mol. Cell 59, 553–563 (2015).

    Article  CAS  Google Scholar 

  96. Kuramochi-Miyagawa, S. et al. MVH in piRNA processing and gene silencing of retrotransposons. Genes Dev. 24, 887–892 (2010).

    Article  CAS  Google Scholar 

  97. Wenda, J. M. et al. Distinct roles of RNA helicases MVH and TDRD9 in PIWI slicing-triggered mammalian piRNA biogenesis and function. Dev. Cell 41, 623–637 e629 (2017).

    Article  CAS  Google Scholar 

  98. Xiol, J. et al. RNA clamping by Vasa assembles a piRNA amplifier complex on transposon transcripts. Cell 157, 1698–1711 (2014).

    Article  CAS  Google Scholar 

  99. Zhang, Z. et al. Antisense piRNA amplification, but not piRNA production or nuage assembly, requires the Tudor-domain protein Qin. EMBO J. 33, 536–539 (2014).

    Article  CAS  Google Scholar 

  100. Wasik, K. A. et al. RNF17 blocks promiscuous activity of PIWI proteins in mouse testes. Genes Dev. 29, 1403–1415 (2015).

    Article  CAS  Google Scholar 

  101. Ge, D. T. et al. The RNA-binding ATPase, Armitage, couples piRNA amplification in nuage to phased piRNA production on mitochondria. Mol. Cell 74, 982–995 e986 (2019).

    Article  CAS  Google Scholar 

  102. Huang, H. et al. AGO3 slicer activity regulates mitochondria-nuage localization of Armitage and piRNA amplification. J. Cell Biol. 206, 217–230 (2014).

    Article  CAS  Google Scholar 

  103. Watanabe, T. et al. MITOPLD is a mitochondrial protein essential for nuage formation and piRNA biogenesis in the mouse germline. Dev. Cell 20, 364–375 (2011).

    Article  CAS  Google Scholar 

  104. Homolka, D. et al. PIWI slicing and RNA elements in precursors instruct directional primary piRNA biogenesis. Cell Rep. 12, 418–428 (2015).

    Article  CAS  Google Scholar 

  105. Izumi, N., Shoji, K., Suzuki, Y., Katsuma, S. & Tomari, Y. Zucchini consensus motifs determine the mechanism of pre-piRNA production. Nature 578, 311–316 (2020).

    Article  CAS  Google Scholar 

  106. Stein, C. B. et al. Decoding the 5′ nucleotide bias of PIWI-interacting RNAs. Nat. Commun. 10, 828 (2019).

    Article  Google Scholar 

  107. Gebert, D. et al. Large Drosophila germline piRNA clusters are evolutionarily labile and dispensable for transposon regulation. Mol. Cell 81, 3965–3978 e3965 (2021).

    Article  CAS  Google Scholar 

  108. Parhad, S. S. et al. Adaptive evolution targets a piRNA precursor transcription network. Cell Rep. 30, 2672–2685 e2675 (2020).

    Article  CAS  Google Scholar 

  109. Guzzardo, P. M., Muerdter, F. & Hannon, G. J. The piRNA pathway in flies: highlights and future directions. Curr. Opin. Genet. Dev. 23, 44–52 (2013).

    Article  CAS  Google Scholar 

  110. Malone, C. D. et al. Specialized piRNA pathways act in germline and somatic tissues of the Drosophila ovary. Cell 137, 522–535 (2009).

    Article  CAS  Google Scholar 

  111. Saito, K. et al. A regulatory circuit for piwi by the large Maf gene traffic jam in Drosophila. Nature 461, 1296–1299 (2009).

    Article  CAS  Google Scholar 

  112. Hirakata, S., Ishizu, H., Fujita, A., Tomoe, Y. & Siomi, M. C. Requirements for multivalent Yb body assembly in transposon silencing in Drosophila. EMBO Rep. 20, e47708 (2019).

    Article  Google Scholar 

  113. Ishizu, H., Kinoshita, T., Hirakata, S., Komatsuzaki, C. & Siomi, M. C. Distinct and collaborative functions of Yb and Armitage in transposon-targeting piRNA biogenesis. Cell Rep. 27, 1822–1835 e1828 (2019).

    Article  CAS  Google Scholar 

  114. Yamashiro, H. et al. Armitage determines Piwi-piRISC processing from precursor formation and quality control to inter-organelle translocation. EMBO Rep. 21, e48769 (2020).

    Article  CAS  Google Scholar 

  115. Ishizu, H. et al. Somatic primary piRNA biogenesis driven by cis-acting RNA elements and trans-acting Yb. Cell Rep. 12, 429–440 (2015).

    Article  CAS  Google Scholar 

  116. Sun, Y. H. et al. Ribosomes guide pachytene piRNA formation on long intergenic piRNA precursors. Nat. Cell Biol. 22, 200–212 (2020).

    Article  CAS  Google Scholar 

  117. Sun, Y. H. et al. Coupled protein synthesis and ribosome-guided piRNA processing on mRNAs. Nat. Commun. 12, 5970 (2021).

    Article  CAS  Google Scholar 

  118. Ding, D. et al. TDRD5 binds piRNA precursors and selectively enhances pachytene piRNA processing in mice. Nat. Commun. 9, 127 (2018).

    Article  Google Scholar 

  119. Bornelov, S., Czech, B. & Hannon, G. J. An evolutionarily conserved stop codon enrichment at the 5′ ends of mammalian piRNAs. Nat. Commun. 13, 2118 (2022).

    Article  CAS  Google Scholar 

  120. Wu, P. H. et al. The evolutionarily conserved piRNA-producing locus pi6 is required for male mouse fertility. Nat. Genet. 52, 728–739 (2020).

    Article  CAS  Google Scholar 

  121. Zhang, P. et al. MIWI and piRNA-mediated cleavage of messenger RNAs in mouse testes. Cell Res. 25, 193–207 (2015).

    Article  CAS  Google Scholar 

  122. Goh, W. S. et al. piRNA-directed cleavage of meiotic transcripts regulates spermatogenesis. Genes Dev. 29, 1032–1044 (2015).

    Article  CAS  Google Scholar 

  123. Reuter, M. et al. Miwi catalysis is required for piRNA amplification-independent LINE1 transposon silencing. Nature 480, 264–267 (2011).

    Article  CAS  Google Scholar 

  124. Kim, I. V. et al. Planarians recruit piRNAs for mRNA turnover in adult stem cells. Genes Dev. 33, 1575–1590 (2019).

    Article  CAS  Google Scholar 

  125. Shen, E. Z. et al. Identification of piRNA binding sites reveals the Argonaute regulatory landscape of the C. elegans germline. Cell 172, 937–951 e918 (2018).

    Article  CAS  Google Scholar 

  126. Vourekas, A., Alexiou, P., Vrettos, N., Maragkakis, M. & Mourelatos, Z. Sequence-dependent but not sequence-specific piRNA adhesion traps mRNAs to the germ plasm. Nature 531, 390–394 (2016).

    Article  CAS  Google Scholar 

  127. Zhang, D. et al. The piRNA targeting rules and the resistance to piRNA silencing in endogenous genes. Science 359, 587–592 (2018).

    Article  CAS  Google Scholar 

  128. Barckmann, B. et al. Aubergine iCLIP reveals piRNA-dependent decay of mRNAs involved in germ cell development in the early embryo. Cell Rep. 12, 1205–1216 (2015).

    Article  CAS  Google Scholar 

  129. Rouget, C. et al. Maternal mRNA deadenylation and decay by the piRNA pathway in the early Drosophila embryo. Nature 467, 1128–1132 (2010).

    Article  CAS  Google Scholar 

  130. Gou, L. T. et al. Pachytene piRNAs instruct massive mRNA elimination during late spermiogenesis. Cell Res. 24, 680–700 (2014). Rouget et al. (2010) and Gou et al. (2014) show that both fly and mouse PIWI–piRNA complexes are able to promote deadenylation and decay of target mRNAs through a miRNA-like mechanism.

    Article  CAS  Google Scholar 

  131. Yamaguchi, S. et al. Crystal structure of Drosophila Piwi. Nat. Commun. 11, 858 (2020).

    Article  CAS  Google Scholar 

  132. Matsumoto, N. et al. Crystal structure of silkworm PIWI-clade Argonaute Siwi bound to piRNA. Cell 167, 484–497 e489 (2016). Anzelon et al. (2021), Yamaguchi et al. (2020) and Matsumoto et al. (2016) report cryogenic electron microscopy structures of Ephydatia fluviatilis PIWI and the crystal structures of D. melanogaster Piwi and the Bombyx mori PIWI protein SIWI, respectively.

    Article  CAS  Google Scholar 

  133. Sakakibara, K. & Siomi, M. C. The PIWI-interacting RNA molecular pathway: insights from cultured silkworm germline cells. Bioessays 40, 201700068 (2018).

    Article  Google Scholar 

  134. Klenov, M. S. et al. Separation of stem cell maintenance and transposon silencing functions of Piwi protein. Proc. Natl Acad. Sci. USA 108, 18760–18765 (2011).

    Article  CAS  Google Scholar 

  135. Yang, Z. et al. PIWI slicing and EXD1 drive biogenesis of nuclear piRNAs from cytosolic targets of the mouse piRNA pathway. Mol. Cell 61, 138–152 (2016).

    Article  Google Scholar 

  136. Yashiro, R. et al. Piwi nuclear localization and its regulatory mechanism in Drosophila ovarian somatic cells. Cell Rep. 23, 3647–3657 (2018).

    Article  CAS  Google Scholar 

  137. Darricarrere, N., Liu, N., Watanabe, T. & Lin, H. Function of Piwi, a nuclear Piwi/Argonaute protein, is independent of its slicer activity. Proc. Natl Acad. Sci. USA 110, 1297–1302 (2013).

    Article  CAS  Google Scholar 

  138. Czech, B., Preall, J. B., McGinn, J. & Hannon, G. J. A transcriptome-wide RNAi screen in the Drosophila ovary reveals factors of the germline piRNA pathway. Mol. Cell 50, 749–761 (2013).

    Article  CAS  Google Scholar 

  139. Handler, D. et al. The genetic makeup of the Drosophila piRNA pathway. Mol. Cell 50, 762–777 (2013).

    Article  CAS  Google Scholar 

  140. Muerdter, F. et al. A genome-wide RNAi screen draws a genetic framework for transposon control and primary piRNA biogenesis in Drosophila. Mol. Cell 50, 736–748 (2013).

    Article  CAS  Google Scholar 

  141. Donertas, D., Sienski, G. & Brennecke, J. Drosophila Gtsf1 is an essential component of the Piwi-mediated transcriptional silencing complex. Genes Dev. 27, 1693–1705 (2013).

    Article  Google Scholar 

  142. Ohtani, H. et al. DmGTSF1 is necessary for Piwi-piRISC-mediated transcriptional transposon silencing in the Drosophila ovary. Genes. Dev. 27, 1656–1661 (2013).

    Article  CAS  Google Scholar 

  143. Sienski, G. et al. Silencio/CG9754 connects the Piwi-piRNA complex to the cellular heterochromatin machinery. Genes Dev. 29, 2258–2271 (2015).

    Article  CAS  Google Scholar 

  144. Yu, Y. et al. Panoramix enforces piRNA-dependent cotranscriptional silencing. Science 350, 339–342 (2015). Sienski et al. (2015) and Yu et al. (2015) identify Panx as the key factor in piRNA-dependent TE transcriptional silencing in D. melanogaster.

    Article  CAS  Google Scholar 

  145. Chang, T. H. et al. Maelstrom represses canonical polymerase II transcription within bi-directional piRNA clusters in Drosophila melanogaster. Mol. Cell 73, 291–303 e296 (2019).

    Article  CAS  Google Scholar 

  146. Onishi, R. et al. Piwi suppresses transcription of Brahma-dependent transposons via Maelstrom in ovarian somatic cells. Sci. Adv. 6, eaaz7420 (2020).

    Article  CAS  Google Scholar 

  147. Batki, J. et al. The nascent RNA binding complex SFiNX licenses piRNA-guided heterochromatin formation. Nat. Struct. Mol. Biol. 26, 720–731 (2019).

    Article  CAS  Google Scholar 

  148. Fabry, M. H. et al. piRNA-guided co-transcriptional silencing coopts nuclear export factors. Elife 8, 47999 (2019).

    Article  Google Scholar 

  149. Murano, K. et al. Nuclear RNA export factor variant initiates piRNA-guided co-transcriptional silencing. EMBO J. 38, e102870 (2019).

    Article  Google Scholar 

  150. Zhao, K. et al. A Pandas complex adapted for piRNA-guided transcriptional silencing and heterochromatin formation. Nat. Cell Biol. 21, 1261–1272 (2019).

    Article  CAS  Google Scholar 

  151. Eastwood, E. L. et al. Dimerisation of the PICTS complex via LC8/Cut-up drives co-transcriptional transposon silencing in Drosophila. Elife 10, e65557 (2021).

    Article  CAS  Google Scholar 

  152. Schnabl, J. et al. Molecular principles of Piwi-mediated cotranscriptional silencing through the dimeric SFiNX complex. Genes Dev. 35, 392–409 (2021).

    Article  CAS  Google Scholar 

  153. Osumi, K., Sato, K., Murano, K., Siomi, H. & Siomi, M. C. Essential roles of Windei and nuclear monoubiquitination of Eggless/SETDB1 in transposon silencing. EMBO Rep. 20, e48296 (2019).

    Article  CAS  Google Scholar 

  154. Mugat, B. et al. The Mi-2 nucleosome remodeler and the Rpd3 histone deacetylase are involved in piRNA-guided heterochromatin formation. Nat. Commun. 11, 2818 (2020).

    Article  CAS  Google Scholar 

  155. Ninova, M. et al. The SUMO ligase Su(var)2-10 controls hetero- and euchromatic gene expression via establishing H3K9 trimethylation and negative feedback regulation. Mol. Cell 77, 571–585 e574 (2020).

    Article  CAS  Google Scholar 

  156. Ninova, M. et al. Su(var)2-10 and the SUMO pathway link piRNA-guided target recognition to chromatin silencing. Mol. Cell 77, 556–570 e556 (2020).

    Article  CAS  Google Scholar 

  157. Pezic, D., Manakov, S. A., Sachidanandam, R. & Aravin, A. A. piRNA pathway targets active LINE1 elements to establish the repressive H3K9me3 mark in germ cells. Genes Dev. 28, 1410–1428 (2014).

    Article  CAS  Google Scholar 

  158. Molaro, A. et al. Two waves of de novo methylation during mouse germ cell development. Genes Dev. 28, 1544–1549 (2014).

    Article  CAS  Google Scholar 

  159. Kojima-Kita, K. et al. MIWI2 as an effector of DNA methylation and gene silencing in embryonic male germ cells. Cell Rep. 16, 2819–2828 (2016).

    Article  CAS  Google Scholar 

  160. Barau, J. et al. The DNA methyltransferase DNMT3C protects male germ cells from transposon activity. Science 354, 909–912 (2016).

    Article  CAS  Google Scholar 

  161. Zoch, A. et al. SPOCD1 is an essential executor of piRNA-directed de novo DNA methylation. Nature 584, 635–639 (2020).

    Article  CAS  Google Scholar 

  162. Dura, M. et al. DNMT3A-dependent DNA methylation is required for spermatogonial stem cells to commit to spermatogenesis. Nat. Genet. 54, 469–480 (2022).

    Article  CAS  Google Scholar 

  163. Schopp, T. et al. TEX15 is an essential executor of MIWI2-directed transposon DNA methylation and silencing. Nat. Commun. 11, 3739 (2020).

    Article  CAS  Google Scholar 

  164. Yang, F. et al. TEX15 associates with MILI and silences transposable elements in male germ cells. Genes Dev. 34, 745–750 (2020).

    Article  CAS  Google Scholar 

  165. Di Giacomo, M. et al. Multiple epigenetic mechanisms and the piRNA pathway enforce LINE1 silencing during adult spermatogenesis. Mol. Cell 50, 601–608 (2013).

    Article  Google Scholar 

  166. Tiwari, B. et al. Retrotransposons mimic germ plasm determinants to promote transgenerational inheritance. Curr. Biol. 27, 3010–3016 e3013 (2017).

    Article  CAS  Google Scholar 

  167. Zhang, G. et al. Co-dependent assembly of Drosophila piRNA precursor complexes and piRNA cluster heterochromatin. Cell Rep. 24, 3413–3422 e3414 (2018).

    Article  CAS  Google Scholar 

  168. Zhang, G. et al. piRNA-independent transposon silencing by the Drosophila THO complex. Dev. Cell 56, 2623–2635 e2625 (2021).

    Article  CAS  Google Scholar 

  169. Watanabe, T., Cheng, E. C., Zhong, M. & Lin, H. Retrotransposons and pseudogenes regulate mRNAs and lncRNAs via the piRNA pathway in the germline. Genome Res. 25, 368–380 (2015).

    Article  Google Scholar 

  170. Hsieh, C. L., Xia, J. & Lin, H. MIWI prevents aneuploidy during meiosis by cleaving excess satellite RNA. EMBO J. 39, e103614 (2020).

    Article  CAS  Google Scholar 

  171. Wei, X., Eickbush, D. G., Speece, I. & Larracuente, A. M. Heterochromatin-dependent transcription of satellite DNAs in the Drosophila melanogaster female germline. Elife 10, e62375 (2021).

    Article  CAS  Google Scholar 

  172. Halbach, R. et al. A satellite repeat-derived piRNA controls embryonic development of Aedes. Nature 580, 274–277 (2020).

    Article  CAS  Google Scholar 

  173. Dufourt, J. et al. piRNAs and aubergine cooperate with Wispy poly(A) polymerase to stabilize mRNAs in the germ plasm. Nat. Commun. 8, 1305 (2017).

    Article  Google Scholar 

  174. Vourekas, A. et al. Mili and Miwi target RNA repertoire reveals piRNA biogenesis and function of Miwi in spermiogenesis. Nat. Struct. Mol. Biol. 19, 773–781 (2012).

    Article  CAS  Google Scholar 

  175. Unhavaithaya, Y. et al. MILI, a PIWI-interacting RNA-binding protein, is required for germ line stem cell self-renewal and appears to positively regulate translation. J. Biol. Chem. 284, 6507–6519 (2009).

    Article  CAS  Google Scholar 

  176. Ma, X. et al. Aubergine controls germline stem cell self-renewal and progeny differentiation via distinct mechanisms. Dev. Cell 41, 157–169 e155 (2017).

    Article  CAS  Google Scholar 

  177. Dai, P. et al. A translation-activating function of MIWI/piRNA during mouse spermiogenesis. Cell 179, 1566–1581 e1516 (2019).

    Article  CAS  Google Scholar 

  178. Ramat, A. et al. The PIWI protein Aubergine recruits eIF3 to activate translation in the germ plasm. Cell Res. 30, 421–435 (2020). Dai et al. (2019) and Ramat et al. (2020) show that both fruit fly and mouse PIWI–piRNA complexes are able to activate the translation initiation of target mRNAs via association with eIF3 subunits.

    Article  CAS  Google Scholar 

  179. Cornes, E. et al. piRNAs initiate transcriptional silencing of spermatogenic genes during C. elegans germline development. Dev. Cell 57, 180–196 e187 (2022).

    Article  CAS  Google Scholar 

  180. Arif, A. et al. GTSF1 accelerates target RNA cleavage by PIWI-clade Argonaute proteins. Nature https://doi.org/10.1038/s41586-022-05009-0 (2022).

    Article  Google Scholar 

  181. Choi, H., Wang, Z. & Dean, J. Sperm acrosome overgrowth and infertility in mice lacking chromosome 18 pachytene piRNA. PLoS Genet. 17, e1009485 (2021).

    Article  CAS  Google Scholar 

  182. Flemr, M. et al. A retrotransposon-driven dicer isoform directs endogenous small interfering RNA production in mouse oocytes. Cell 155, 807–816 (2013).

    Article  CAS  Google Scholar 

  183. Rangan, P. et al. piRNA production requires heterochromatin formation in Drosophila. Curr. Biol. 21, 1373–1379 (2011).

    Article  CAS  Google Scholar 

  184. Moon, S. et al. A robust transposon-endogenizing response from germline stem cells. Dev. Cell 47, 660–671 e663 (2018).

    Article  CAS  Google Scholar 

  185. Rojas-Rios, P., Chartier, A., Pierson, S. & Simonelig, M. Aubergine and piRNAs promote germline stem cell self-renewal by repressing the proto-oncogene Cbl. EMBO J. 36, 3194–3211 (2017).

    Article  CAS  Google Scholar 

  186. Klein, J. D. et al. c-Fos repression by Piwi regulates drosophila ovarian germline formation and tissue morphogenesis. PLoS Genet. 12, e1006281 (2016).

    Article  Google Scholar 

  187. Gonzalez, J., Qi, H., Liu, N. & Lin, H. Piwi is a key regulator of both somatic and germline stem cells in the Drosophila testis. Cell Rep. 12, 150–161 (2015).

    Article  CAS  Google Scholar 

  188. Gonzalez, L. E., Tang, X. & Lin, H. Maternal Piwi regulates primordial germ cell development to ensure the fertility of female progeny in Drosophila. Genetics 219, iyab091 (2021).

    Article  Google Scholar 

  189. Megosh, H. B., Cox, D. N., Campbell, C. & Lin, H. The role of PIWI and the miRNA machinery in Drosophila germline determination. Curr. Biol. 16, 1884–1894 (2006).

    Article  CAS  Google Scholar 

  190. Klattenhoff, C. et al. Drosophila rasiRNA pathway mutations disrupt embryonic axis specification through activation of an ATR/Chk2 DNA damage response. Dev. Cell 12, 45–55 (2007).

    Article  CAS  Google Scholar 

  191. Pane, A., Wehr, K. & Schupbach, T. zucchini and squash encode two putative nucleases required for rasiRNA production in the Drosophila germline. Dev. Cell 12, 851–862 (2007).

    Article  CAS  Google Scholar 

  192. Kabayama, Y. et al. Roles of MIWI, MILI and PLD6 in small RNA regulation in mouse growing oocytes. Nucleic Acids Res. 45, 5387–5398 (2017).

    CAS  Google Scholar 

  193. De Fazio, S. et al. The endonuclease activity of Mili fuels piRNA amplification that silences LINE1 elements. Nature 480, 259–263 (2011).

    Article  Google Scholar 

  194. Taborska, E. et al. Restricted and non-essential redundancy of RNAi and piRNA pathways in mouse oocytes. PLoS Genet. 15, e1008261 (2019).

    Article  Google Scholar 

  195. Xu, M. et al. Mice deficient for a small cluster of Piwi-interacting RNAs implicate Piwi-interacting RNAs in transposon control. Biol. Reprod. 79, 51–57 (2008).

    Article  CAS  Google Scholar 

  196. Roovers, E. F. et al. Piwi proteins and piRNAs in mammalian oocytes and early embryos. Cell Rep. 10, 2069–2082 (2015).

    Article  CAS  Google Scholar 

  197. Williams, Z. et al. Discovery and characterization of piRNAs in the human fetal ovary. Cell Rep. 13, 854–863 (2015).

    Article  CAS  Google Scholar 

  198. Ishino, K. et al. Hamster PIWI proteins bind to piRNAs with stage-specific size variations during oocyte maturation. Nucleic Acids Res. 49, 2700–2720 (2021).

    Article  CAS  Google Scholar 

  199. Yang, Q. et al. Single-cell CAS-seq reveals a class of short PIWI-interacting RNAs in human oocytes. Nat. Commun. 10, 3389 (2019).

    Article  Google Scholar 

  200. Nagirnaja, L. et al. Variant PNLDC1, defective piRNA processing, and Azoospermia. N. Engl. J. Med. 385, 707–719 (2021).

    Article  CAS  Google Scholar 

  201. Gou, L. T. et al. Ubiquitination-deficient mutations in human Piwi cause male infertility by impairing histone-to-protamine exchange during spermiogenesis. Cell 169, 1090–1104 e1013 (2017).

    Article  CAS  Google Scholar 

  202. Liu, X. et al. Targeted next-generation sequencing identifies novel sequence variations of genes associated with nonobstructive azoospermia in the Han population of northeast China. Med. Sci. Monit. 25, 5801–5812 (2019).

    Article  CAS  Google Scholar 

  203. Kamaliyan, Z., Pouriamanesh, S., Soosanabadi, M., Gholami, M. & Mirfakhraie, R. Investigation of piwi-interacting RNA pathway genes role in idiopathic non-obstructive azoospermia. Sci. Rep. 8, 142 (2018).

    Article  Google Scholar 

  204. Kamaliyan, Z., Pouriamanesh, S., Amin-Beidokhti, M., Rezagholizadeh, A. & Mirfakhraie, R. HIWI2 rs508485 polymorphism is associated with non-obstructive azoospermia in Iranian patients. Rep. Biochem. Mol. Biol. 5, 108–111 (2017).

    CAS  Google Scholar 

  205. Munoz, X., Navarro, M., Mata, A., Bassas, L. & Larriba, S. Association of PIWIL4 genetic variants with germ cell maturation arrest in infertile Spanish men. Asian J. Androl. 16, 931–933 (2014).

    Article  Google Scholar 

  206. Gu, A. et al. Genetic variants in Piwi-interacting RNA pathway genes confer susceptibility to spermatogenic failure in a Chinese population. Hum. Reprod. 25, 2955–2961 (2010).

    Article  CAS  Google Scholar 

  207. Roy, J. et al. Single nucleotide polymorphisms in piRNA-pathway genes: an insight into genetic determinants of human diseases. Mol. Genet. Genomics 295, 1–12 (2020).

    Article  CAS  Google Scholar 

  208. Wang, X., Tan, Y. Q. & Liu, M. F. Defective piRNA processing and azoospermia. N. Engl. J. Med. 386, 1674–1675 (2022). Nagirnaja et al. (2021), Gou et al. (2017) and Wang et al. (N. Engl. J. Med., 2022) establish piRNA pathway genes as human male infertility-linked genes.

    Article  Google Scholar 

  209. Tanaka, T. et al. Tudor domain containing 7 (Tdrd7) is essential for dynamic ribonucleoprotein (RNP) remodeling of chromatoid bodies during spermatogenesis. Proc. Natl Acad. Sci. USA 108, 10579–10584 (2011).

    Article  CAS  Google Scholar 

  210. Tan, Y. Q. et al. Loss-of-function mutations in TDRD7 lead to a rare novel syndrome combining congenital cataract and nonobstructive azoospermia in humans. Genet. Med. 21, 1209–1217 (2019).

    Article  CAS  Google Scholar 

  211. Zhu, X. B. et al. Association of a TDRD1 variant with spermatogenic failure susceptibility in the Han Chinese. J. Assist. Reprod. Genet. 33, 1099–1104 (2016).

    Article  Google Scholar 

  212. Sarkardeh, H. et al. Association of MOV10L1 gene polymorphisms and male infertility in azoospermic men with complete maturation arrest. J. Assist. Reprod. Genet. 31, 865–871 (2014).

    Article  Google Scholar 

  213. Araujo, T. F. et al. Sequence analysis of 37 candidate genes for male infertility: challenges in variant assessment and validating genes. Andrology 8, 434–441 (2020).

    Article  CAS  Google Scholar 

  214. Ruan, J. et al. Genetic variants in TEX15 gene conferred susceptibility to spermatogenic failure in the Chinese Han population. Reprod. Sci. 19, 1190–1196 (2012).

    Article  Google Scholar 

  215. Plaseski, T., Noveski, P., Popeska, Z., Efremov, G. D. & Plaseska-Karanfilska, D. Association study of single-nucleotide polymorphisms in FASLG, JMJDIA, LOC203413, TEX15, BRDT, OR2W3, INSR, and TAS2R38 genes with male infertility. J. Androl. 33, 675–683 (2012).

    Article  CAS  Google Scholar 

  216. Wang, X. et al. Case study of a patient with cryptozoospermia associated with a recessive TEX15 nonsense mutation. Asian J. Androl. 20, 101–102 (2018).

    Article  Google Scholar 

  217. Okutman, O. et al. Exome sequencing reveals a nonsense mutation in TEX15 causing spermatogenic failure in a Turkish family. Hum. Mol. Genet. 24, 5581–5588 (2015).

    Article  CAS  Google Scholar 

  218. Colombo, R., Pontoglio, A. & Bini, M. Two novel TEX15 mutations in a family with nonobstructive azoospermia. Gynecol. Obstet. Invest. 82, 283–286 (2017).

    Article  CAS  Google Scholar 

  219. Sha, Y. W. et al. TDRD6 is associated with oligoasthenoteratozoospermia by sequencing the patient from a consanguineous family. Gene 659, 84–88 (2018).

    Article  CAS  Google Scholar 

  220. Arafat, M. et al. Mutation in TDRD9 causes non-obstructive azoospermia in infertile men. J. Med. Genet. 54, 633–639 (2017).

    Article  CAS  Google Scholar 

  221. Sasaki, T., Shiohama, A., Minoshima, S. & Shimizu, N. Identification of eight members of the Argonaute family in the human genome. Genomics 82, 323–330 (2003).

    Article  CAS  Google Scholar 

  222. Lonsdale, J. et al. The Genotype-tissue Expression (GTEx) project. Nat. Genet. 45, 580–585 (2013).

    Article  CAS  Google Scholar 

  223. Litwin, M., Szczepanska-Buda, A., Piotrowska, A., Dziegiel, P. & Witkiewicz, W. The meaning of PIWI proteins in cancer development. Oncol. Lett. 13, 3354–3362 (2017).

    Article  CAS  Google Scholar 

  224. Suzuki, R., Honda, S. & Kirino, Y. PIWI expression and function in cancer. Front. Genet. 3, 204 (2012).

    Article  CAS  Google Scholar 

  225. Ross, R. J., Weiner, M. M. & Lin, H. PIWI proteins and PIWI-interacting RNAs in the soma. Nature 505, 353–359 (2014).

    Article  CAS  Google Scholar 

  226. Simpson, A. J., Caballero, O. L., Jungbluth, A., Chen, Y. T. & Old, L. J. Cancer/testis antigens, gametogenesis and cancer. Nat. Rev. Cancer 5, 615–625 (2005).

    Article  CAS  Google Scholar 

  227. Guo, B., Li, D., Du, L. & Zhu, X. piRNAs: biogenesis and their potential roles in cancer. Cancer Metastasis Rev. 39, 567–575 (2020).

    Article  Google Scholar 

  228. Genzor, P., Cordts, S. C., Bokil, N. V. & Haase, A. D. Aberrant expression of select piRNA-pathway genes does not reactivate piRNA silencing in cancer cells. Proc. Natl Acad. Sci. USA 116, 11111–11112 (2019).

    Article  CAS  Google Scholar 

  229. Li, F. et al. piRNA-independent function of PIWIL1 as a co-activator for anaphase promoting complex/cyclosome to drive pancreatic cancer metastasis. Nat. Cell Biol. 22, 425–438 (2020).

    Article  CAS  Google Scholar 

  230. Shi, S., Yang, Z. Z., Liu, S., Yang, F. & Lin, H. PIWIL1 promotes gastric cancer via a piRNA-independent mechanism. Proc. Natl Acad. Sci. USA 117, 22390–22401 (2020). Li et al. (2020) and Shi et al. (2020) support a piRNA-independent function of PIWIL1 in human cancer cells.

    Article  CAS  Google Scholar 

  231. Huang, H. et al. Piwil1 regulates glioma stem cell maintenance and glioblastoma progression. Cell Rep. 34, 108522 (2021).

    Article  CAS  Google Scholar 

  232. Rajasethupathy, P. et al. A role for neuronal piRNAs in the epigenetic control of memory-related synaptic plasticity. Cell 149, 693–707 (2012).

    Article  CAS  Google Scholar 

  233. Lee, E. J. et al. Identification of piRNAs in the central nervous system. RNA 17, 1090–1099 (2011).

    Article  CAS  Google Scholar 

  234. Dharap, A., Nakka, V. P. & Vemuganti, R. Altered expression of PIWI RNA in the rat brain after transient focal ischemia. Stroke 42, 1105–1109 (2011).

    Article  CAS  Google Scholar 

  235. Zhao, P. P. et al. Novel function of PIWIL1 in neuronal polarization and migration via regulation of microtubule-associated proteins. Mol. Brain 8, 39 (2015).

    Article  Google Scholar 

  236. Nandi, S. et al. Roles for small noncoding RNAs in silencing of retrotransposons in the mammalian brain. Proc. Natl Acad. Sci. USA 113, 12697–12702 (2016).

    Article  CAS  Google Scholar 

  237. Sun, W., Samimi, H., Gamez, M., Zare, H. & Frost, B. Pathogenic tau-induced piRNA depletion promotes neuronal death through transposable element dysregulation in neurodegenerative tauopathies. Nat. Neurosci. 21, 1038–1048 (2018).

    Article  CAS  Google Scholar 

  238. Iossifov, I. et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature 515, 216–221 (2014).

    Article  CAS  Google Scholar 

  239. Qiu, W. et al. Transcriptome-wide piRNA profiling in human brains of Alzheimer’s disease. Neurobiol. Aging 57, 170–177 (2017).

    Article  CAS  Google Scholar 

  240. Rizzo, F. et al. Timed regulation of P-element-induced wimpy testis-interacting RNA expression during rat liver regeneration. Hepatology 60, 798–806 (2014).

    Article  CAS  Google Scholar 

  241. Li, Y. et al. Dynamic regulation of small RNAome during the early stage of cardiac differentiation from pluripotent embryonic stem cells. Genom. Data 12, 136–145 (2017).

    Article  Google Scholar 

  242. Henaoui, I. S. et al. PIWI-interacting RNAs as novel regulators of pancreatic beta cell function. Diabetologia 60, 1977–1986 (2017).

    Article  CAS  Google Scholar 

  243. Sivagurunathan, S., Palanisamy, K., Arunachalam, J. P. & Chidambaram, S. Possible role of HIWI2 in modulating tight junction proteins in retinal pigment epithelial cells through Akt signaling pathway. Mol. Cell Biochem. 427, 145–156 (2017).

    Article  CAS  Google Scholar 

  244. Zhang, X. et al. Specific PIWI-interacting small noncoding RNA expression patterns in pulmonary tuberculosis patients. Epigenomics 11, 1779–1794 (2019).

    Article  Google Scholar 

  245. Gao, X. Q. et al. The piRNA CHAPIR regulates cardiac hypertrophy by controlling METTL3-dependent N6-methyladenosine methylation of Parp10 mRNA. Nat. Cell Biol. 22, 1319–1331 (2020).

    Article  CAS  Google Scholar 

  246. Rajan, K. S. et al. Abundant and altered expression of PIWI-interacting RNAs during cardiac hypertrophy. Heart Lung Circ. 25, 1013–1020 (2016).

    Article  Google Scholar 

  247. Sivagurunathan, S., Raman, R. & Chidambaram, S. PIWI-like protein, HIWI2: a novel player in proliferative diabetic retinopathy. Exp. Eye Res. 177, 191–196 (2018).

    Article  CAS  Google Scholar 

  248. Singh, M. et al. Translation and codon usage regulate Argonaute slicer activity to trigger small RNA biogenesis. Nat. Commun. 12, 3492 (2021).

    Article  CAS  Google Scholar 

  249. Barucci, G. et al. Small-RNA-mediated transgenerational silencing of histone genes impairs fertility in piRNA mutants. Nat. Cell Biol. 22, 235–245 (2020).

    Article  CAS  Google Scholar 

  250. Reed, K. J. et al. Widespread roles for piRNAs and WAGO-class siRNAs in shaping the germline transcriptome of Caenorhabditis elegans. Nucleic Acids Res. 48, 1811–1827 (2020).

    Article  CAS  Google Scholar 

  251. Wahba, L., Hansen, L. & Fire, A. Z. An essential role for the piRNA pathway in regulating the ribosomal RNA pool in C. elegans. Dev. Cell 56, 2295–2312 e2296 (2021).

    Article  CAS  Google Scholar 

  252. Montgomery, B. E. et al. Dual roles for piRNAs in promoting and preventing gene silencing in C. elegans. Cell Rep. 37, 110101 (2021).

    Article  CAS  Google Scholar 

  253. Kotov, A. A. et al. piRNA silencing contributes to interspecies hybrid sterility and reproductive isolation in Drosophila melanogaster. Nucleic Acids Res. 47, 4255–4271 (2019).

    Article  CAS  Google Scholar 

  254. Tang, W. et al. A sex chromosome piRNA promotes robust dosage compensation and sex determination in C. elegans. Dev. Cell 44, 762–770 e763 (2018).

    Article  CAS  Google Scholar 

  255. Kiuchi, T. et al. A single female-specific piRNA is the primary determiner of sex in the silkworm. Nature 509, 633–636 (2014).

    Article  CAS  Google Scholar 

  256. Peng, J. C., Valouev, A., Liu, N. & Lin, H. Piwi maintains germline stem cells and oogenesis in Drosophila through negative regulation of Polycomb group proteins. Nat. Genet. 48, 283–291 (2016).

    Article  CAS  Google Scholar 

  257. Lee, H. C. et al. C. elegans piRNAs mediate the genome-wide surveillance of germline transcripts. Cell 150, 78–87 (2012).

    Article  CAS  Google Scholar 

  258. Wang, G. & Reinke, V. A C. elegans Piwi, PRG-1, regulates 21U-RNAs during spermatogenesis. Curr. Biol. 18, 861–867 (2008).

    Article  CAS  Google Scholar 

  259. Batista, P. J. et al. PRG-1 and 21U-RNAs interact to form the piRNA complex required for fertility in C. elegans. Mol. Cell 31, 67–78 (2008).

    Article  CAS  Google Scholar 

  260. Bagijn, M. P. et al. Function, targets, and evolution of Caenorhabditis elegans piRNAs. Science 337, 574–578 (2012).

    Article  CAS  Google Scholar 

  261. Shirayama, M. et al. piRNAs initiate an epigenetic memory of nonself RNA in the C. elegans germline. Cell 150, 65–77 (2012).

    Article  CAS  Google Scholar 

  262. Ashe, A. et al. piRNAs can trigger a multigenerational epigenetic memory in the germline of C. elegans. Cell 150, 88–99 (2012).

    Article  CAS  Google Scholar 

  263. Kim, I. V., Riedelbauch, S. & Kuhn, C. D. The piRNA pathway in planarian flatworms: new model, new insights. Biol. Chem. 401, 1123–1141 (2020).

    Article  CAS  Google Scholar 

  264. Reddien, P. W., Oviedo, N. J., Jennings, J. R., Jenkin, J. C. & Sanchez Alvarado, A. SMEDWI-2 is a PIWI-like protein that regulates planarian stem cells. Science 310, 1327–1330 (2005).

    Article  CAS  Google Scholar 

  265. Palakodeti, D., Smielewska, M., Lu, Y. C., Yeo, G. W. & Graveley, B. R. The PIWI proteins SMEDWI-2 and SMEDWI-3 are required for stem cell function and piRNA expression in planarians. RNA 14, 1174–1186 (2008).

    Article  CAS  Google Scholar 

  266. Miesen, P., Girardi, E. & van Rij, R. P. Distinct sets of PIWI proteins produce arbovirus and transposon-derived piRNAs in Aedes aegypti mosquito cells. Nucleic Acids Res. 43, 6545–6556 (2015).

    Article  CAS  Google Scholar 

  267. Girardi, E. et al. Histone-derived piRNA biogenesis depends on the ping-pong partners Piwi5 and Ago3 in Aedes aegypti. Nucleic Acids Res. 45, 4881–4892 (2017).

    CAS  Google Scholar 

  268. Williams, A. E. et al. Aedes aegypti Piwi4 structural features are necessary for RNA binding and nuclear localization. Int. J. Mol. Sci. 22, 12733 (2021).

    Article  CAS  Google Scholar 

  269. Kawaoka, S. et al. The Bombyx ovary-derived cell line endogenously expresses PIWI/PIWI-interacting RNA complexes. RNA 15, 1258–1264 (2009).

    Article  CAS  Google Scholar 

  270. Nishida, K. M. et al. Hierarchical roles of mitochondrial Papi and Zucchini in Bombyx germline piRNA biogenesis. Nature 555, 260–264 (2018).

    Article  CAS  Google Scholar 

  271. Nishida, K. M. et al. Respective functions of two distinct Siwi complexes assembled during PIWI-interacting RNA biogenesis in Bombyx germ cells. Cell Rep. 10, 193–203 (2015).

    Article  CAS  Google Scholar 

  272. Boeynaems, S. et al. Protein phase separation: a new phase in cell biology. Trends Cell Biol. 28, 420–435 (2018).

    Article  CAS  Google Scholar 

  273. Lim, A. K. & Kai, T. Unique germ-line organelle, nuage, functions to repress selfish genetic elements in Drosophila melanogaster. Proc. Natl Acad. Sci. USA 104, 6714–6719 (2007).

    Article  CAS  Google Scholar 

  274. Meikar, O., Da Ros, M., Korhonen, H. & Kotaja, N. Chromatoid body and small RNAs in male germ cells. Reproduction 142, 195–209 (2011).

    Article  CAS  Google Scholar 

  275. Zhang, F. et al. UAP56 couples piRNA clusters to the perinuclear transposon silencing machinery. Cell 151, 871–884 (2012).

    Article  CAS  Google Scholar 

  276. Dennis, C. et al. “Dot COM”, a nuclear transit center for the primary piRNA pathway in Drosophila. PLoS ONE 8, e72752 (2013).

    Article  CAS  Google Scholar 

  277. Chung, P. Y., Shoji, K., Izumi, N. & Tomari, Y. Dynamic subcellular compartmentalization ensures fidelity of piRNA biogenesis in silkworms. EMBO Rep. 22, e51342 (2021).

    Article  CAS  Google Scholar 

  278. Nishida, K. M. et al. Siwi levels reversibly regulate secondary piRISC biogenesis by affecting Ago3 body morphology in Bombyx mori. EMBO J. 39, e105130 (2020).

    Article  CAS  Google Scholar 

  279. Nott, T. J. et al. Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles. Mol. Cell 57, 936–947 (2015).

    Article  CAS  Google Scholar 

  280. Brangwynne, C. P. et al. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324, 1729–1732 (2009).

    Article  CAS  Google Scholar 

  281. Wan, G. et al. Spatiotemporal regulation of liquid-like condensates in epigenetic inheritance. Nature 557, 679–683 (2018).

    Article  CAS  Google Scholar 

  282. Wan, G. et al. ZSP-1 is a Z granule surface protein required for Z granule fluidity and germline immortality in Caenorhabditis elegans. EMBO J. 40, e105612 (2021).

    Article  CAS  Google Scholar 

  283. Placentino, M. et al. Intrinsically disordered protein PID-2 modulates Z granules and is required for heritable piRNA-induced silencing in the Caenorhabditis elegans embryo. EMBO J. 40, e105280 (2021).

    Article  CAS  Google Scholar 

  284. Phillips, C. M., Montgomery, T. A., Breen, P. C. & Ruvkun, G. MUT-16 promotes formation of perinuclear mutator foci required for RNA silencing in the C. elegans germline. Genes Dev. 26, 1433–1444 (2012).

    Article  CAS  Google Scholar 

  285. Manage, K. I. et al. A tudor domain protein, SIMR-1, promotes siRNA production at piRNA-targeted mRNAs in C. elegans. Elife 9, e56731 (2020).

    Article  CAS  Google Scholar 

  286. Voronina, E., Seydoux, G., Sassone-Corsi, P. & Nagamori, I. RNA granules in germ cells. Cold Spring Harb. Perspect. Biol. 3, a002774 (2011).

    Article  Google Scholar 

  287. Song, J. J., Smith, S. K., Hannon, G. J. & Joshua-Tor, L. Crystal structure of Argonaute and its implications for RISC slicer activity. Science 305, 1434–1437 (2004).

    Article  CAS  Google Scholar 

  288. Jinek, M. & Doudna, J. A. A three-dimensional view of the molecular machinery of RNA interference. Nature 457, 405–412 (2009).

    Article  CAS  Google Scholar 

  289. Schirle, N. T. & MacRae, I. J. The crystal structure of human Argonaute2. Science 336, 1037–1040 (2012).

    Article  CAS  Google Scholar 

  290. Wang, Y. et al. Structure of an argonaute silencing complex with a seed-containing guide DNA and target RNA duplex. Nature 456, 921–926 (2008).

    Article  CAS  Google Scholar 

  291. Sheu-Gruttadauria, J., Xiao, Y., Gebert, L. F. & MacRae, I. J. Beyond the seed: structural basis for supplementary microRNA targeting by human Argonaute2. EMBO J. 38, e101153 (2019).

    Article  Google Scholar 

  292. Ruby, J. G. et al. Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans. Cell 127, 1193–1207 (2006).

    Article  CAS  Google Scholar 

  293. Wedeles, C. J., Wu, M. Z. & Claycomb, J. M. Protection of germline gene expression by the C. elegans Argonaute CSR-1. Dev. Cell 27, 664–671 (2013).

    Article  CAS  Google Scholar 

  294. Seth, M. et al. The C. elegans CSR-1 Argonaute pathway counteracts epigenetic silencing to promote germline gene expression. Dev. Cell 27, 656–663 (2013).

    Article  CAS  Google Scholar 

  295. Phillips, C. M., Brown, K. C., Montgomery, B. E., Ruvkun, G. & Montgomery, T. A. piRNAs and piRNA-dependent siRNAs protect conserved and essential C. elegans genes from misrouting into the RNAi pathway. Dev. Cell 34, 457–465 (2015).

    Article  CAS  Google Scholar 

  296. Cecere, G., Hoersch, S., O’Keeffe, S., Sachidanandam, R. & Grishok, A. Global effects of the CSR-1 RNA interference pathway on the transcriptional landscape. Nat. Struct. Mol. Biol. 21, 358–365 (2014).

    Article  CAS  Google Scholar 

  297. Shukla, A., Perales, R. & Kennedy, S. piRNAs coordinate poly(UG) tailing to prevent aberrant and perpetual gene silencing. Curr. Biol. 31, 4473–4485 e4473 (2021).

    Article  CAS  Google Scholar 

  298. Spichal, M. et al. Germ granule dysfunction is a hallmark and mirror of Piwi mutant sterility. Nat. Commun. 12, 1420 (2021).

    Article  CAS  Google Scholar 

  299. Moore, R. S., Kaletsky, R. & Murphy, C. T. Piwi/PRG-1 Argonaute and TGF-β mediate transgenerational learned pathogenic avoidance. Cell 177, 1827–1841 e1812 (2019).

    Article  CAS  Google Scholar 

  300. Kaletsky, R. et al. C. elegans interprets bacterial non-coding RNAs to learn pathogenic avoidance. Nature 586, 445–451 (2020).

    Article  CAS  Google Scholar 

  301. Posner, R. et al. Neuronal small RNAs control behavior transgenerationally. Cell 177, 1814–1826 e1815 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors apologize to those whose work has not been included due to space limitations. They are grateful to D. Ding from Tongji University for critically reading the manuscript and members of the M.-F.L. laboratory and the M.S. laboratory for assisting with manuscript preparation. This work was supported by grants from the National Key R&D Program of China (2021YFC2700200 and 2017YFA0504400), the National Natural Science Foundation of China (91940305, 31830109, 31821004, 31961133022, 91640201 and 32101037), the Chinese Academy of Sciences (Strategic Priority Research Program grant XDB19010203), the Science and Technology Commission of Shanghai Municipality (2017SHZDZX01, 19JC1410200, 21YF1452700, 21ZR1470500 and 17JC1420100), the Innovative Research Team of High-Level Local Universities in Shanghai (SHSMU- ZDCX20210902), the Foundation of Key Laboratory of Gene Engineering of the Ministry of Education of China, and the Young Elite Scientist Sponsorship Program of the China Association for Science and Technology (2021QNRC001), and by UMR9002 CNRS–University of Montpellier and grants from the French Agence Nationale de la Recherche (ANR-17-CE12-0011-01, ANR-19-CE12-0031 and ANR-21-CE12-0035-01), Fondation pour la Recherche Médicale, Fondation ARC and Labex EpiGenMed to M.S. and A.R.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Martine Simonelig or Mo-Fang Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks Taiowa Montgomery, Phillip Zamore and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

PIWI

A subfamily of Argonaute family proteins that are primarily expressed in animal germ lines and have essential roles in animal germ line development. The name comes from the first identified member of the piwi gene family, the Drosophila melanogaster piwi (P-element-induced wimpy testis) gene.

Argonaute

A large protein family involved in small RNA-guided gene silencing. The eukaryotic Argonaute family can be divided into AGO-clade and PIWI-clade proteins. A third distant clade, known as WAGO, has evolved in Caenorhabditis elegans.

Transposable elements

(TEs). DNA sequences that can change their position within the genome and insert themselves into different sites in chromosomes, potentially resulting in genome rearrangement and gene dysregulation.

piRNA cluster

A specific genomic locus from which PIWI-interacting RNA (piRNA) precursor transcripts are transcribed. The vast majority of piRNAs are produced from piRNA clusters.

Ping-pong amplification

PIWI-interacting RNA (piRNA) processing pathway in which the cleavage of piRNA precursors is done by the endonuclease activity of a piRNA-guided PIWI protein. Ping-pong produces piRNAs in opposite orientation with a ten-nucleotide overlap.

Phasing

Also known as phased PIWI-interacting RNA (piRNA) processing, an endonucleolytic processing mechanism through which the endonuclease Zucchini cleaves piRNA precursor transcripts repeatedly without or with a short intervening sequence, leading to a trail of head-to-tail piRNAs.

Slicing

RNA cleavage by the RNase H-like catalytic activity of Argonaute family proteins. Slicing by a small RNA-guided Argonaute protein occurs on the target RNA between nucleotide 10 and nucleotide 11 from the 5′ end of the small RNA.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Ramat, A., Simonelig, M. et al. Emerging roles and functional mechanisms of PIWI-interacting RNAs. Nat Rev Mol Cell Biol 24, 123–141 (2023). https://doi.org/10.1038/s41580-022-00528-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-022-00528-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing