Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Generation of nanoscopic membrane curvature for membrane trafficking

Abstract

Curved membranes are key features of intracellular organelles, and their generation involves dynamic protein complexes. Here we describe the fundamental mechanisms such as the hydrophobic insertion, scaffolding and crowding mechanisms these proteins use to produce membrane curvatures and complex shapes required to form intracellular organelles and vesicular structures involved in endocytosis and secretion. For each mechanism, we discuss its cellular functions as well as the underlying physical principles and the specific membrane properties required for the mechanism to be feasible. We propose that the integration of individual mechanisms into a highly controlled, robust process of curvature generation often relies on the assembly of proteins into coats. How cells unify and organize the curvature-generating factors at the nanoscale is presented for three ubiquitous coats central for membrane trafficking in eukaryotes: clathrin-coated pits, caveolae, and COPI and COPII coats. The emerging theme is that these coats arrange and coordinate curvature-generating factors in time and space to dynamically shape membranes to accomplish membrane trafficking within cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Complexity of intracellular membrane shapes.
Fig. 2: Hydrophobic insertion (wedging) mechanism of inducing membrane curvature.
Fig. 3: Crowding mechanisms of inducing membrane curvature.
Fig. 4: Curvature generation by protein coats.

Similar content being viewed by others

References

  1. Doherty, G. J. & McMahon, H. T. Mechanisms of endocytosis. Annu. Rev. Biochem. 78, 857–902 (2009).

    Article  CAS  Google Scholar 

  2. Ishikawa, H. Formation of elaborate networks of T-system tubules in cultured skeletal muscle with special reference to the T-system formation. J. Cell Biol. 38, 51–66 (1968).

    Article  CAS  Google Scholar 

  3. Yeow, I. et al. EHD proteins cooperate to generate caveolar clusters and to maintain caveolae during repeated mechanical stress. Curr. Biol. 27, 2951–2962.e2955 (2017).

    Article  CAS  Google Scholar 

  4. Lo, H. P. et al. The caveolin–cavin system plays a conserved and critical role in mechanoprotection of skeletal muscle. J. Cell Biol. 210, 833–849 (2015).

    Article  CAS  Google Scholar 

  5. Franzini-Armstrong, C. The relationship between form and function throughout the history of excitation–contraction coupling. J. Gen. Physiol. 150, 189–210 (2018).

    Article  CAS  Google Scholar 

  6. Lo, H. P. et al. Cavin4 interacts with Bin1 to promote T-tubule formation and stability in developing skeletal muscle. J. Cell Biol. https://doi.org/10.1083/JCB.201905065/VIDEO-1 (2021).

    Article  Google Scholar 

  7. Westrate, L. M., Lee, J. E., Prinz, W. A. & Voeltz, G. K. Form follows function: the importance of endoplasmic reticulum shape. Annu. Rev. Biochem. 84, 791–811 (2015).

    Article  CAS  Google Scholar 

  8. Guo, Y. et al. Visualizing intracellular organelle and cytoskeletal interactions at nanoscale resolution on millisecond timescales. Cell 175, 1430–1442.e1417 (2018).

    Article  CAS  Google Scholar 

  9. Nixon-Abell, J. et al. Increased spatiotemporal resolution reveals highly dynamic dense tubular matrices in the peripheral ER. Science 354, aaf3928 (2016).

    Article  Google Scholar 

  10. Weigel, A. V. et al. ER-to-Golgi protein delivery through an interwoven, tubular network extending from ER. Cell https://doi.org/10.1016/j.cell.2021.03.035 (2021).

    Article  Google Scholar 

  11. Ladinsky, M. S., Mastronarde, D. N., McIntosh, J. R., Howell, K. E. & Staehelin, L. A. Golgi structure in three dimensions: functional insights from the normal rat kidney cell. J. Cell Biol. 144, 1135–1149 (1999).

    Article  CAS  Google Scholar 

  12. Kalt, M. R. Mitochondrial pleiomorphism in sustentacular cells of Xenopus laevis. Anat. Rec. 182, 53–60 (1975).

    Article  CAS  Google Scholar 

  13. Bornstein, S. R., Ehrhart-Bornstein, M., Guse-Behling, H. & Scherbaum, W. A. Structure and dynamics of adrenal mitochondria following stimulation with corticotropin releasing hormone. Anat. Rec. 234, 255–262 (1992).

    Article  CAS  Google Scholar 

  14. Bussi, Y. et al. Fundamental helical geometry consolidates the plant photosynthetic membrane. Proc. Natl Acad. Sci. USA 116, 22366–22375 (2019).

    Article  CAS  Google Scholar 

  15. De Matteis, M. A. & Luini, A. Exiting the Golgi complex. Nat. Rev. Mol. Cell Biol. 9, 273–284 (2008).

    Article  Google Scholar 

  16. Zimmerberg, J. & Kozlov, M. M. How proteins produce cellular membrane curvature. Nat. Rev. Mol. Cell Biol. 7, 9–19 (2005).

    Article  Google Scholar 

  17. Omar, Y. A. D., Sahu, A., Sauer, R. A. & Mandadapu, K. K. Nonaxisymmetric shapes of biological membranes from locally induced curvature. Biophys. J. 119, 1065–1077 (2020).

    Article  CAS  Google Scholar 

  18. Vasan, R., Rudraraju, S., Akamatsu, M., Garikipati, K. & Rangamani, P. A mechanical model reveals that non-axisymmetric buckling lowers the energy barrier associated with membrane neck constriction. Soft Matter 16, 784–797 (2020).

    Article  CAS  Google Scholar 

  19. Auddya, D. et al. Biomembranes undergo complex, non-axisymmetric deformations governed by Kirchhoff-Love kinematics and revealed by a three-dimensional computational framework. Proc. Math. Phys. Eng. Sci. 477, 20210246 (2021).

    Google Scholar 

  20. Faini, M., Beck, R., Wieland, F. T. & Briggs, J. A. G. Vesicle coats: structure, function, and general principles of assembly. Trends Cell Biol. 23, 279–288 (2013).

    Article  CAS  Google Scholar 

  21. Parton, R. G., Tillu, V., McMahon, K. A. & Collins, B. M. Key phases in the formation of caveolae. Curr. Opin. Cell Biol. 71, 7–14 (2021).

    Article  CAS  Google Scholar 

  22. Margolis, L. & Sadovsky, Y. The biology of extracellular vesicles: the known unknowns. PLoS Biol. 17, e3000363 (2019).

    Article  CAS  Google Scholar 

  23. Hu, J., Prinz, W. A. & Rapoport, T. A. Weaving the web of ER tubules. Cell 147, 1226–1231 (2011).

    Article  CAS  Google Scholar 

  24. Mattila, P. K. & Lappalainen, P. Filopodia: molecular architecture and cellular functions. Nat. Rev. Mol. Cell Biol. 9, 446–454 (2008).

    Article  CAS  Google Scholar 

  25. Cramer, L. P. & Mitchison, T. J. Investigation of the mechanism of retraction of the cell margin and rearward flow of nodules during mitotic cell rounding. Mol. Biol. Cell 8, 109–119 (1997).

    Article  CAS  Google Scholar 

  26. Terasaki, M. et al. Stacked endoplasmic reticulum sheets are connected by helicoidal membrane motifs. Cell 154, 285–296 (2013).

    Article  CAS  Google Scholar 

  27. Mizushima, N., Yoshimori, T. & Ohsumi, Y. The role of Atg proteins in autophagosome formation. Annu. Rev. Cell Dev. Biol. 27, 107–132 (2011).

    Article  CAS  Google Scholar 

  28. Shin, W. et al. Preformed Ω-profile closure and kiss-and-run mediate endocytosis and diverse endocytic modes in neuroendocrine chromaffin cells. Neuron 109, 3119–3134.e3115 (2021).

    Article  CAS  Google Scholar 

  29. Parton, R. G. Caveolae: structure, function, and relationship to disease. Annu. Rev. Cell Dev. Biol. 34, 111–136 (2018).

    Article  CAS  Google Scholar 

  30. Golani, G., Ariotti, N., Parton, R. G. & Kozlov, M. M. Membrane curvature and tension control the formation and collapse of caveolar superstructures. Dev. Cell 48, 523–538.e524 (2019).

    Article  CAS  Google Scholar 

  31. Shemesh, T. et al. A model for the generation and interconversion of ER morphologies. Proc. Natl Acad. Sci. USA 111, E5243–E5251 (2014).

    Article  CAS  Google Scholar 

  32. Schroeder, L. K. et al. Dynamic nanoscale morphology of the ER surveyed by STED microscopy. J. Cell Biol. 218, 83–96 (2019).

    Article  CAS  Google Scholar 

  33. Mcmahon, H. T. & Boucrot, E. Membrane curvature at a glance. J. Cell Sci. 128, 1065–1070 (2015).

    Article  CAS  Google Scholar 

  34. Bhatia, T., Christ, S., Steinkühler, J., Dimova, R. & Lipowsky, R. Simple sugars shape giant vesicles into multispheres with many membrane necks. Soft Matter 16, 1246–1258 (2020).

    Article  CAS  Google Scholar 

  35. Bo, L. & Waugh, R. E. Determination of bilayer membrane bending stiffness by tether formation from giant, thin-walled vesicles. Biophys. J. 55, 509–517 (1989).

    Article  CAS  Google Scholar 

  36. Zhao, Z. et al. Super-resolution imaging of highly curved membrane structures in giant vesicles encapsulating molecular condensates. Adv. Mater. https://doi.org/10.1002/adma.202106633 (2021).

    Article  Google Scholar 

  37. Karimi, M. et al. Asymmetric ionic conditions generate large membrane curvatures. Nano Lett. 18, 7816–7821 (2018).

    Article  CAS  Google Scholar 

  38. Has, C. & Das, S. L. Recent developments in membrane curvature sensing and induction by proteins. Biochim. Biophys. Acta Gen. Subj. 1865, 129971 (2021).

    Article  CAS  Google Scholar 

  39. Ford, M. G. et al. Curvature of clathrin-coated pits driven by epsin. Nature 419, 361–366 (2002).

    Article  CAS  Google Scholar 

  40. Campelo, F., McMahon, H. T. & Kozlov, M. M. The hydrophobic insertion mechanism of membrane curvature generation by proteins. Biophys. J. 95, 2325–2339 (2008).

    Article  CAS  Google Scholar 

  41. Stachowiak, J. C. et al. Membrane bending by protein-protein crowding. Nat. Cell Biol. 14, 944–949 (2012).

    Article  CAS  Google Scholar 

  42. Farsad, K. & De Camilli, P. Mechanisms of membrane deformation. Curr. Opin. Cell Biol. 15, 372–381 (2003).

    Article  CAS  Google Scholar 

  43. Gallop, J. L. & McMahon, H. T. BAR domains and membrane curvature: bringing your curves to the BAR. Biochem. Soc. Symp. https://doi.org/10.1042/bss0720223 (2005).

    Article  Google Scholar 

  44. Cooke, I. R. & Deserno, M. Coupling between lipid shape and membrane curvature. Biophys. J. 91, 487–495 (2006).

    Article  CAS  Google Scholar 

  45. Carlsson, A. E. Membrane bending by actin polymerization. Curr. Opin. Cell Biol. 50, 1–7 (2018).

    Article  CAS  Google Scholar 

  46. Blood, P. D., Swenson, R. D. & Voth, G. A. Factors influencing local membrane curvature induction by N-BAR domains as revealed by molecular dynamics simulations. Biophys. J. 95, 1866–1876 (2008).

    Article  CAS  Google Scholar 

  47. Li, Z.-L. Molecular dynamics simulations of membrane deformation induced by amphiphilic helices of epsin, Sar1p, and Arf1. Chin. Phys. B 27, 038703 (2018).

    Article  Google Scholar 

  48. Sodt, A. J. & Pastor, R. W. Molecular modeling of lipid membrane curvature induction by a peptide: more than simply shape. Biophys. J. 106, 1958–1969 (2014).

    Article  CAS  Google Scholar 

  49. Zemel, A., Ben-Shaul, A. & May, S. Membrane perturbation induced by interfacially adsorbed peptides. Biophys. J. 86, 3607–3619 (2004).

    Article  CAS  Google Scholar 

  50. Zemel, A., Ben-Shaul, A. & May, S. Modulation of the spontaneous curvature and bending rigidity of lipid membranes by interfacially adsorbed amphipathic peptides. J. Phys. Chem. B 112, 6988–6996 (2008).

    Article  CAS  Google Scholar 

  51. Spivak, M. A Comprehensive Introduction to Differential Geometry (Brandeis University, 1970).

  52. Drin, G. & Antonny, B. Amphipathic helices and membrane curvature. Febs Lett. 584, 1840–1847 (2010).

    Article  CAS  Google Scholar 

  53. Cornell, R. & Taneva, S. Amphipathic helices as mediators of the membrane interaction of amphitropic proteins, and as modulators of bilayer physical properties. Curr. Protein Pept. Sci. 7, 539–552 (2006).

    Article  CAS  Google Scholar 

  54. Segrest, J. P., Garber, D. W., Brouillette, C. G., Harvey, S. C. & Anantharamaiah, G. M. The amphipathic alpha helix: a multifunctional structural motif in plasma apolipoproteins. Adv. Protein Chem. 45, 303–369 (1994).

    Article  CAS  Google Scholar 

  55. Giménez-Andrés, M., Čopič, A. & Antonny, B. The many faces of amphipathic helices. Biomolecules 8, 45 (2018).

    Article  Google Scholar 

  56. Ambroso, M. R., Hegde, B. G. & Langen, R. Endophilin A1 induces different membrane shapes using a conformational switch that is regulated by phosphorylation. Proc. Natl Acad. Sci. USA 111, 6982–6987 (2014).

    Article  CAS  Google Scholar 

  57. Gallop, J. L. et al. Mechanism of endophilin N-BAR domain-mediated membrane curvature. EMBO J. 25, 2898–2910 (2006).

    Article  CAS  Google Scholar 

  58. Kweon DH, S. Y. et al. Membrane topology of helix 0 of the epsin N-terminal homology domaintle. Mol. Cell 21, 428–435 (2006).

    Google Scholar 

  59. Isas, J. M., Ambroso, M. R., Hegde, P. B., Langen, J. & Langen, R. Tubulation by amphiphysin requires concentration-dependent switching from wedging to scaffolding. Structure 23, 873–881 (2015).

    Article  CAS  Google Scholar 

  60. Varkey, J. et al. Membrane curvature induction and tubulation are common features of synucleins and apolipoproteins. J. Biol. Chem. 285, 32486–32493 (2010).

    Article  CAS  Google Scholar 

  61. Herrick, D. Z., Sterbling, S., Rasch, K. A., Hinderliter, A. & Cafiso, D. S. Position of synaptotagmin I at the membrane interface: cooperative interactions of tandem C2 domains. Biochemistry 45, 9668–9674 (2006).

    Article  CAS  Google Scholar 

  62. Rufener, E., Frazier, A. A., Wieser, C. M., Hinderliter, A. & Cafiso, D. S. Membrane-bound orientation and position of the synaptotagmin C2B domain determined by site-directed spin labeling. Biochemistry 44, 18–28 (2005).

    Article  CAS  Google Scholar 

  63. Wang, N. et al. Mechanism of membrane-curvature generation by ER-tubule shaping proteins. Nat. Commun. 12, 1–15 (2021).

    Google Scholar 

  64. Ergüder, M. F. & Deserno, M. Identifying systematic errors in a power spectral analysis of simulated lipid membranes. J. Chem. Phys. https://doi.org/10.1063/5.0049448 (2021).

    Article  Google Scholar 

  65. Hamm, M. & Kozlov, M. M. Tilt model of inverted amphiphilic mesophases. Eur. Phys. J. B Condens. Matter Complex. Syst. 6, 519–528 (1998).

    Article  CAS  Google Scholar 

  66. Hamm, M. & Kozlov, M. M. Elastic energy of tilt and bending of fluid membranes. Eur. Phys. J. E 3, 323–335 (2000).

    Article  CAS  Google Scholar 

  67. Terzi, M. M., Ergüder, M. F. & Deserno, M. A consistent quadratic curvature-tilt theory for fluid lipid membranes. J. Chem. Phys. 151, 164108 (2019).

    Article  Google Scholar 

  68. Campelo, F., Fabrikant, G., McMahon, H. T. & Kozlov, M. M. Modeling membrane shaping by proteins: focus on EHD2 and N-BAR domains. FEBS Lett. 584, 1830–1839 (2010).

    Article  CAS  Google Scholar 

  69. Kozlov, M. M. et al. Mechanisms shaping cell membranes. Curr. Opin. Cell Biol. 29, 53–60 (2014).

    Article  CAS  Google Scholar 

  70. Kahraman, O., Langen, R. & Haselwandter, C. A. Directed supramolecular organization of N-BAR proteins through regulation of H0 membrane immersion depth. Sci. Rep. 8, 16383 (2018).

    Article  Google Scholar 

  71. Martens, S., Kozlov, M. M. & McMahon, H. T. How synaptotagmin promotes membrane fusion. Science 316, 1205–1208 (2007).

    Article  CAS  Google Scholar 

  72. Chernomordik, L. Non-bilayer lipids and biological fusion intermediates. Chem. Phys. Lipids 81, 203–213 (1996).

    Article  CAS  Google Scholar 

  73. Fuller, N. & Rand, R. P. The influence of lysolipids on the spontaneous curvature and bending elasticity of phospholipid membranes. Biophys. J. 81, 243–254 (2001).

    Article  CAS  Google Scholar 

  74. Fernandes, F. et al. Role of helix 0 of the N-BAR domain in membrane curvature generation. Biophys. J. 94, 3065–3073 (2008).

    Article  CAS  Google Scholar 

  75. Chen, Z., Zhu, C., Kuo, C. J., Robustelli, J. & Baumgart, T. The N-terminal amphipathic helix of endophilin does not contribute to its molecular curvature generation capacity. J. Am. Chem. Soc. 138, 14616–14622 (2016).

    Article  CAS  Google Scholar 

  76. Sheetz, M. P. & Singer, S. J. Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interactions. Proc. Natl Acad. Sci. USA 71, 4457–4461 (1974).

    Article  CAS  Google Scholar 

  77. Hossein, A. & Deserno, M. Spontaneous curvature, differential stress, and bending modulus of asymmetric lipid membranes. Biophys. J. 118, 624–642 (2020).

    Article  CAS  Google Scholar 

  78. Miettinen, M. S. & Lipowsky, R. Bilayer membranes with frequent flip-flops have tensionless leaflets. Nano Lett. 19, 5011–5016 (2019).

    Article  CAS  Google Scholar 

  79. Kozlov, M. M. & Helfrich, W. Effects of a cosurfactant on the stretching and bending elasticities of a surfactant monolayer. Langmuir 8, 2792–2797 (2002).

    Article  Google Scholar 

  80. Markin, V. S. Lateral organization of membranes and cell shapes. Biophys. J. 36, 1–19 (1981).

    Article  CAS  Google Scholar 

  81. Fournier, J.-B. Microscopic membrane elasticity and interactions among membrane inclusions: interplay between the shape, dilation, tilt and tilt-difference modes. Eur. Phys. J. B Condens. Matter Complex. Syst. 11, 261–272 (2012).

    Article  Google Scholar 

  82. Messa, M. et al. Epsin deficiency impairs endocytosis by stalling the actin-dependent invagination of endocytic clathrin-coated pits. Elife 3, e03311 (2014).

    Article  Google Scholar 

  83. Miller, S. E. et al. CALM regulates clathrin-coated vesicle size and maturation by directly sensing and driving membrane curvature. Dev. Cell 33, 163–175 (2015).

    Article  CAS  Google Scholar 

  84. Busch, D. J. et al. Intrinsically disordered proteins drive membrane curvature. Nat. Commun. 6, 1–11 (2015).

    Article  Google Scholar 

  85. Bickel, T., Jeppesen, C. & Marques, C. M. Local entropic effects of polymers grafted to soft interfaces. Eur. Phys. J. E 4, 33–43 (2001).

    Article  CAS  Google Scholar 

  86. Hiergeist, C. & Lipowsky, R. Elastic properties of polymer-decorated membranes. J. Phys. II 6, 1465–1481 (1996).

    CAS  Google Scholar 

  87. Hristova, K. & Needham, D. The influence of polymer-grafted lipids on the physical properties of lipid bilayers: a theoretical study. J. Colloid . Interface Sci. 168, 302–314 (1994).

    Article  CAS  Google Scholar 

  88. Kuo, J. C. H. & Paszek, M. J. Glycocalyx curving the membrane: forces emerging from the cell exterior. Annu. Rev. Cell Dev. Biol. 37, 257–283 (2021).

    Article  CAS  Google Scholar 

  89. Lipowsky, R. Bending of membranes by anchored polymers. Europhys. Lett. 30, 197 (1995).

    Article  CAS  Google Scholar 

  90. Marsh, D. Elastic constants of polymer-grafted lipid membranes. Biophys. J. 81, 2154–2162 (2001).

    Article  CAS  Google Scholar 

  91. Milner, S. T. & Witten, T. A. Bending moduli of polymeric surfactant interfaces. J. Phys. 49, 1951–1962 (1988).

    Article  CAS  Google Scholar 

  92. Sens, P. & Turner, M. S. Theoretical model for the formation of caveolae and similar membrane invaginations. Biophys. J. 86, 2049–2057 (2004).

    Article  CAS  Google Scholar 

  93. Shurer, C. R. et al. Physical principles of membrane shape regulation by the glycocalyx. Cell 177, 1757–1770.e1721 (2019).

    Article  CAS  Google Scholar 

  94. Tsafrir, I., Caspi, Y., Guedeau-Boudeville, M. A., Arzi, T. & Stavans, J. Budding and tubulation in highly oblate vesicles by anchored amphiphilic molecules. Phys. Rev. Lett. 91, 138102 (2003).

    Article  Google Scholar 

  95. Lerche, D., Kozlov, M. M. & Markin, V. S. Electrostatic free-energy and spontaneous curvature of spherical charged layered membrane. Biorheology 24, 23–34 (1987).

    Article  CAS  Google Scholar 

  96. Button, B. et al. A periciliary brush promotes the lung health by separating the mucus layer from airway epithelia. Science 337, 937–941 (2012).

    Article  CAS  Google Scholar 

  97. Bennett, R. J. et al. Mucin MUC1 is seen in cell surface protrusions together with ezrin in immunoelectron tomography and is concentrated at tips of filopodial protrusions in MCF-7 breast carcinoma cells. J. Histochem. Cytochem. 49, 67–77 (2001).

    Article  CAS  Google Scholar 

  98. Kesimer, M. et al. Molecular organization of the mucins and glycocalyx underlying mucus transport over mucosal surfaces of the airways. Mucosal Immunol. 6, 379–392 (2012).

    Article  Google Scholar 

  99. Fowke, T. M. et al. Hyaluronan synthesis by developing cortical neurons in vitro. Sci. Rep. 7, 1–13 (2017).

    Article  Google Scholar 

  100. Zeno, W. F. et al. Molecular mechanisms of membrane curvature sensing by a disordered protein. J. Am. Chem. Soc. 141, 10361–10371 (2019).

    Article  CAS  Google Scholar 

  101. Zeno, W. F., Snead, W. T., Thatte, A. S. & Stachowiak, J. C. Structured and intrinsically disordered domains within Amphiphysin1 work together to sense and drive membrane curvature. Soft Matter 15, 8706–8717 (2019).

    Article  CAS  Google Scholar 

  102. Alexander, S. Adsorption of chain molecules with a polar head a-scaling description. J. Phys. 38, 983–987 (1977).

    Article  CAS  Google Scholar 

  103. Alexander, S. Polymer adsorption on small spheres - scaling approach. J. Phys. 38, 977–981 (1977).

    Article  CAS  Google Scholar 

  104. de Gennes, P. G. Conformations of polymers attached to an interface. Macromolecules 13, 1069–1075 (1980).

    Article  Google Scholar 

  105. Marsh, D., Bartucci, R. & Sportelli, L. Lipid membranes with grafted polymers: physicochemical aspects. Biochim. Biophys. Acta Biomembr. 1615, 33–59 (2003).

    Article  CAS  Google Scholar 

  106. Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).

    Article  CAS  Google Scholar 

  107. Li, P. et al. Phase transitions in the assembly of multivalent signalling proteins. Nature 483, 336–340 (2012).

    Article  CAS  Google Scholar 

  108. Yuan, F. et al. Membrane bending by protein phase separation. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/PNAS.2017435118 (2021).

    Article  Google Scholar 

  109. Simunovic, M., Evergren, E., Callan-Jones, A. & Bassereau, P. Curving cells inside and out: roles of BAR domain proteins in membrane shaping and its cellular implications. Annu. Rev. Cell Dev. Biol. 35, 111–129 (2019).

    Article  CAS  Google Scholar 

  110. Zhang, Y. et al. Structural insights into membrane remodeling by SNX1. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2022614118 (2021).

    Article  Google Scholar 

  111. Leneva, N., Kovtun, O., Morado, D. R., Briggs, J. A. G. & Owen, D. J. Architecture and mechanism of metazoan retromer:SNX3 tubular coat assembly. Sci. Adv. 7, 1–10 (2021).

    Article  Google Scholar 

  112. Johannes, L. The cellular and chemical biology of endocytic trafficking and intracellular delivery — the GL-Lect hypothesis. Molecules https://doi.org/10.3390/MOLECULES26113299 (2021).

    Article  Google Scholar 

  113. Dodonova, S. O. et al. A structure of the COPI coat and the role of coat proteins in membrane vesicle assembly. Science 349, 195–198 (2015).

    Article  CAS  Google Scholar 

  114. Bi, X., Corpina, R. A. & Goldberg, J. Structure of the SEC23/24-SAR1 pre-budding complex of the COPII vesicle coat. Nature 419, 271–277 (2002).

    Article  CAS  Google Scholar 

  115. Kirchhausen, T., Owen, D. & Harrison, S. C. Molecular structure, function, and dynamics of clathrin-mediated membrane traffic. Cold Spring Harb. Perspect. Biol. https://doi.org/10.1101/CSHPERSPECT.A016725 (2014).

    Article  Google Scholar 

  116. Antonny, B. et al. Membrane fission by dynamin: what we know and what we need to know. EMBO J. 35, 2270–2284 (2016).

    Article  CAS  Google Scholar 

  117. Caillat, C., Maity, S., Miguet, N., Roos, W. H. & Weissenhorn, W. The role of VPS4 in ESCRT-III polymer remodeling. Biochem. Soc. Trans. 47, 441–448 (2019).

    Article  CAS  Google Scholar 

  118. Remec Pavlin, M. & Hurley, J. H. The ESCRTs - converging on mechanism. J. Cell Sci. https://doi.org/10.1242/jcs.240333 (2020).

    Article  Google Scholar 

  119. Sundquist, W. I. & Kräusslich, H. G. HIV-1 assembly, budding, and maturation. Cold Spring Harb. Perspect. Med. https://doi.org/10.1101/CSHPERSPECT.A006924 (2012).

    Article  Google Scholar 

  120. Frost, A. et al. Structural basis of membrane invagination by F-BAR domains. Cell 132, 807–817 (2008).

    Article  CAS  Google Scholar 

  121. Yu, H. & Schulten, K. Membrane sculpting by F-BAR domains studied by molecular dynamics simulations. PLoS Comput. Biol. 9, e1002892 (2013).

    Article  CAS  Google Scholar 

  122. Ling, H. et al. Structure of the Shiga-like toxin I B-pentamer complexed with an analogue of its receptor Gb3. Biochemistry 37, 1777–1788 (1998).

    Article  CAS  Google Scholar 

  123. Zheng, J. et al. Identification of the binding site for acidic phospholipids on the PH domain of dynamin: implications for stimulation of GTPase activity. J. Mol. Biol. 255, 14–21 (1996).

    Article  CAS  Google Scholar 

  124. Cremona, O. & De Camilli, P. Phosphoinositides in membrane traffic at the synapse. J. Cell Sci. 114, 1041–1052 (2001).

    Article  CAS  Google Scholar 

  125. Johannes, L., Wunder, C. & Bassereau, P. Bending “on the rocks” — a cocktail of biophysical modules to build endocytic pathways. Cold Spring Harb. Perspect. Biol. 6 https://doi.org/10.1101/CSHPERSPECT.A016741 (2014).

  126. Pezeshkian, W. et al. Membrane invagination induced by Shiga toxin B-subunit: from molecular structure to tube formation. Soft Matter 12, 5164–5171 (2016).

    Article  CAS  Google Scholar 

  127. Mim, C. & Unger, V. M. Membrane curvature and its generation by BAR proteins. Trends Biochem. Sci. 37, 526–533 (2012).

    Article  CAS  Google Scholar 

  128. Bonifacino, J. S. & Lippincott-Schwartz, J. Coat proteins: shaping membrane transport. Nat. Rev. Mol. Cell Biol. 4, 409–414 (2003).

    Article  CAS  Google Scholar 

  129. Mettlen, M., Chen., P.-H., Srinivasan, S., Danuser, G. & Schmid, S. L. Regulation of clathrin-mediated endocytosis. Annu. Rev. Biochem. 87, 871–896 (2018).

    Article  CAS  Google Scholar 

  130. Fotin, A. et al. Molecular model for a complete clathrin lattice from electron cryomicroscopy. Nature 432, 573–579 (2004).

    Article  CAS  Google Scholar 

  131. Sochacki, K. A. & Taraska, J. W. From flat to curved clathrin: controlling a plastic ratchet. Trends Cell Biol. 29, 241–256 (2019).

    Article  CAS  Google Scholar 

  132. Kaneseki, T. & Kadota, K. The “vesicle in a basket”. J. Cell Biol. 42, 202–220 (1969).

    Article  Google Scholar 

  133. Roth, T. F. & Porter, K. R. Yolk protein uptake in the oocyte of the mosquito Aedes aegypti L. J. Cell Biol. 20, 313–332 (1964).

    Article  CAS  Google Scholar 

  134. Taylor, M. J., Perrais, D. & Merrifield, C. J. A high precision survey of the molecular dynamics of mammalian clathrin-mediated endocytosis. PLoS Biol. 9, e1000604 (2011).

    Article  CAS  Google Scholar 

  135. Merrifield, C. J., Feldman, M. E., Wan, L. & Almers, W. Imaging actin and dynamin recruitment during invagination of single clathrin-coated pits. Nat. Cell Biol. 4, 691–698 (2002).

    Article  CAS  Google Scholar 

  136. Gaidarov, I., Santini, F., Warren, R. A. & Keen, J. H. Spatial control of coated-pit dynamics in living cells. Nat. Cell Biol. 1, 1–7 (1999).

    Article  CAS  Google Scholar 

  137. Kirchhausen, T. Imaging endocytic clathrin structures in living cells. Trends Cell Biol. 19, 596–605 (2009).

    Article  CAS  Google Scholar 

  138. Kaksonen, M., Toret, C. P. & Drubin, D. G. A modular design for the clathrin- and actin-mediated endocytosis machinery. Cell 123, 305–320 (2005).

    Article  CAS  Google Scholar 

  139. Taylor, M. J., Lampe, M. & Merrifield, C. J. A feedback loop between dynamin and actin recruitment during clathrin-mediated endocytosis. PLoS Biol. 10, e1001302 (2012).

    Article  CAS  Google Scholar 

  140. Li, D. et al. Advanced imaging. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics. Science 349, aab3500 (2015).

    Article  Google Scholar 

  141. Chen, Z. & Schmid, S. L. Evolving models for assembling and shaping clathrin-coated pits. J. Cell Biol. https://doi.org/10.1083/JCB.202005126 (2020).

    Article  Google Scholar 

  142. Heuser, J. & Keen, J. Deep-etch visualization of proteins involved in clathrin assembly. J. Cell Biol. 107, 877–886 (1988).

    Article  CAS  Google Scholar 

  143. Sochacki, K. A. et al. The structure and spontaneous curvature of clathrin lattices at the plasma membrane. Dev. Cell 56, 1131–1146.e1133 (2021).

    Article  CAS  Google Scholar 

  144. Kovtun, O., Dickson, V. K., Kelly, B. T., Owen, D. J. & Briggs, J. A. G. Architecture of the AP2/clathrin coat on the membranes of clathrin-coated vesicles. Sci. Adv. 6, 1–10 (2020).

    Article  Google Scholar 

  145. Posor, Y. et al. Spatiotemporal control of endocytosis by phosphatidylinositol-3,4-bisphosphate. Nature 499, 233–237 (2013).

    Article  CAS  Google Scholar 

  146. Park, R. J. et al. Dynamin triple knockout cells reveal off target effects of commonly used dynamin inhibitors. J. Cell Sci. 126, 5305–5312 (2013).

    CAS  Google Scholar 

  147. Cocucci, E., Aguet, F., Boulant, S. & Kirchhausen, T. The first five seconds in the life of a clathrin-coated pit. Cell 150, 495–507 (2012).

    Article  CAS  Google Scholar 

  148. Ma, L. et al. Transient Fcho1/2Eps15/RAP-2 nanoclusters prime the AP-2 clathrin adaptor for cargo binding. Dev. Cell 37, 428–443 (2016).

    Article  CAS  Google Scholar 

  149. Traub, L. M. A nanobody-based molecular toolkit provides new mechanistic insight into clathrin-coat initiation. Elife https://doi.org/10.7554/eLife.41768 (2019).

    Article  Google Scholar 

  150. Henne, W. M. et al. FCHo proteins are nucleators of clathrin-mediated endocytosis. Science 328, 1281–1284 (2010).

    Article  CAS  Google Scholar 

  151. Kozak, M. & Kaksonen, M. Condensation of Ede1 promotes the initiation of endocytosis. Elife https://doi.org/10.7554/eLife.72865 (2022).

    Article  Google Scholar 

  152. Day, K. J. et al. Liquid-like protein interactions catalyse assembly of endocytic vesicles. Nat. Cell Biol. 23, 366–376 (2021).

    Article  CAS  Google Scholar 

  153. Sochacki, K. A., Dickey, A. M., Strub, M. P. & Taraska, J. W. Endocytic proteins are partitioned at the edge of the clathrin lattice in mammalian cells. Nat. Cell Biol. 19, 352–361 (2017).

    Article  CAS  Google Scholar 

  154. Haucke, V. & Kozlov, M. M. Membrane remodeling in clathrin-mediated endocytosis. J. Cell Sci. 131, jcs216812 (2018).

    Article  Google Scholar 

  155. Teyra, J. et al. Comprehensive analysis of the human SH3 domain family reveals a wide variety of non-canonical specificities. Structure 25, 1598–1610.e1593 (2017).

    Article  CAS  Google Scholar 

  156. Matthaeus, C. & Taraska, J. W. Energy and dynamics of caveolae trafficking. Front. Cell Dev. Biol. 8, 614472 (2020).

    Article  Google Scholar 

  157. Bucher, D. et al. Clathrin-adaptor ratio and membrane tension regulate the flat-to-curved transition of the clathrin coat during endocytosis. Nat. Commun. 9, 1–13 (2018).

    Article  CAS  Google Scholar 

  158. Dambournet, D. et al. Genome-edited human stem cells expressing fluorescently labeled endocytic markers allow quantitative analysis of clathrin-mediated endocytosis during differentiation. J. Cell Biol. 217, 3301–3311 (2018).

    Article  CAS  Google Scholar 

  159. Heuser, J. Effects of cytoplasmic acidification on clathrin lattice morphology. J. Cell Biol. 108, 401–411 (1989).

    Article  CAS  Google Scholar 

  160. Tagiltsev, G., Haselwandter, C. A. & Scheuring, S. Nanodissected elastically loaded clathrin lattices relax to increased curvature. Sci. Adv. https://doi.org/10.1126/sciadv.abg9934 (2021).

    Article  Google Scholar 

  161. Zeno, W. F. et al. Clathrin senses membrane curvature. Biophys. J. 120, 818–828 (2021).

    Article  CAS  Google Scholar 

  162. Dannhauser, P. N. & Ungewickell, E. J. Reconstitution of clathrin-coated bud and vesicle formation with minimal components. Nat. Cell Biol. 14, 634 (2012).

    Article  CAS  Google Scholar 

  163. Avinoam, O., Schorb, M., Beese, C. J., Briggs, J. A. & Kaksonen, M. Endocytic sites mature by continuous bending and remodeling of the clathrin coat. Science 348, 1369–1372 (2015).

    Article  CAS  Google Scholar 

  164. Scott, B. L. et al. Membrane bending occurs at all stages of clathrin-coat assembly and defines endocytic dynamics. Nat. Commun. 9, 1–9 (2018).

    Article  Google Scholar 

  165. Nawara, T. J. et al. Imaging vesicle formation dynamics supports the flexible model of clathrin-mediated endocytosis. Nat. Commun. 13, 1732 (2022).

    Article  CAS  Google Scholar 

  166. Grove, J. et al. Flat clathrin lattices: stable features of the plasma membrane. Mol. Biol. Cell 25, 3581–3594 (2014).

    Article  Google Scholar 

  167. Nossal, R. Energetics of clathrin basket assembly. Traffic 2, 138–147 (2001).

    Article  CAS  Google Scholar 

  168. Alfonzo-Mendez, M. A., Sochacki, K. A., Strub, M. P. & Taraska, J. W. Dual clathrin and integrin signaling systems regulate growth factor receptor activation. Nat. Commun. 13, 905 (2022).

    Article  CAS  Google Scholar 

  169. Mund, M. et al. Systematic nanoscale analysis of endocytosis links efficient vesicle formation to patterned actin nucleation. Cell 174, 884–896 e817 (2018).

    Article  CAS  Google Scholar 

  170. Palade, G. E. Fine structure of blood capillaries. J. Appl. Phys. 24, 1424–1424 (1953).

    Google Scholar 

  171. Yamada, E. The fine structure of the gall bladder epithelium of the mouse. J. Biophys. Biochem. Cytol. 1, 445–458 (1955).

    Article  CAS  Google Scholar 

  172. Sinha, B. et al. Cells respond to mechanical stress by rapid disassembly of caveolae. Cell 144, 402–413 (2011).

    Article  CAS  Google Scholar 

  173. Parton, R. G. & del Pozo, M. A. Caveolae as plasma membrane sensors, protectors and organizers. Nat. Rev. Mol. Cell Biol. 14, 98–112 (2013).

    Article  CAS  Google Scholar 

  174. Gervasio, O. L., Phillips, W. D., Cole, L. & Allen, D. G. Caveolae respond to cell stretch and contribute to stretch-induced signaling. J. Cell Sci. 124, 3581–3590 (2011).

    Article  CAS  Google Scholar 

  175. Zhou, Y. et al. Caveolin-1 and cavin1 act synergistically to generate a unique lipid environment in caveolae. J. Cell Biol. https://doi.org/10.1083/jcb.202005138 (2021).

    Article  Google Scholar 

  176. Han, B., Copeland, C. A., Tiwari, A. & Kenworthy, A. K. Assembly and turnover of caveolae: what do we really know? Front. Cell Dev. Biol. 4, 68 (2016).

    Article  Google Scholar 

  177. Feron, O., Michel, J. B., Sase, K. & Michel, T. Dynamic regulation of endothelial nitric oxide synthase: complementary roles of dual acylation and caveolin interactions. Biochemistry 37, 193–200 (1998).

    Article  CAS  Google Scholar 

  178. Stan, R. V., Kubitza, M. & Palade, G. E. PV-1 is a component of the fenestral and stomatal diaphragms in fenestrated endothelia. Proc. Natl Acad. Sci. USA 96, 13203–13207 (1999).

    Article  CAS  Google Scholar 

  179. Rothberg, K. G. et al. Caveolin, a protein component of caveolae membrane coats. Cell 68, 673–682 (1992).

    Article  CAS  Google Scholar 

  180. Cohen, A. W., Hnasko, R., Schubert, W. & Lisanti, M. P. Role of caveolae and caveolins in health and disease. Physiol. Rev. 84, 1341–1379 (2004).

    Article  CAS  Google Scholar 

  181. Hayer, A., Stoeber, M., Bissig, C. & Helenius, A. Biogenesis of caveolae: stepwise assembly of large caveolin and cavin complexes. Traffic 11, 361–382 (2010).

    Article  CAS  Google Scholar 

  182. Walser, P. J. et al. Constitutive formation of caveolae in a bacterium. Cell 150, 752–763 (2012).

    Article  CAS  Google Scholar 

  183. Porta, J. C. et al. The building blocks of caveolae, revealed. Biophys. J. 121, 2–2 (2022).

    Article  Google Scholar 

  184. Han, B. et al. Structure and assembly of CAV1 8S complexes revealed by single particle electron microscopy. Sci. Adv. https://doi.org/10.1126/sciadv.abc6185 (2020).

    Article  Google Scholar 

  185. Tillu, V. A. et al. Cavin1 intrinsically disordered domains are essential for fuzzy electrostatic interactions and caveola formation. Nat. Commun. 12, 931 (2021).

    Article  CAS  Google Scholar 

  186. Zimnicka, A. M. et al. Src-dependent phosphorylation of caveolin-1 Tyr-14 promotes swelling and release of caveolae. Mol. Biol. Cell 27, 2090–2106 (2016).

    Article  Google Scholar 

  187. Hansen, C. G., Howard, G. & Nichols, B. J. Pacsin 2 is recruited to caveolae and functions in caveolar biogenesis. J. Cell Sci. 124, 2777–2785 (2011).

    Article  CAS  Google Scholar 

  188. Koch, D., Westermann, M., Kessels, M. M. & Qualmann, B. Ultrastructural freeze-fracture immunolabeling identifies plasma membrane-localized syndapin II as a crucial factor in shaping caveolae. Histochem. Cell Biol. 138, 215–230 (2012).

    Article  CAS  Google Scholar 

  189. Gomez-Navarro, N. & Miller, E. A. COP-coated vesicles. Curr. Biol. 26, R54–R57 (2016).

    Article  CAS  Google Scholar 

  190. Bethune, J. & Wieland, F. T. Assembly of COPI and COPII vesicular coat proteins on membranes. Annu. Rev. Biophys. 47, 63–83 (2018).

    Article  CAS  Google Scholar 

  191. Hughes, H. & Stephens, D. J. Assembly, organization, and function of the COPII coat. Histochem. Cell Biol. 129, 129–151 (2008).

    Article  CAS  Google Scholar 

  192. Hammond, A. T. & Glick, B. S. Dynamics of transitional endoplasmic reticulum sites in vertebrate cells. Mol. Biol. Cell 11, 3013–3030 (2000).

    Article  CAS  Google Scholar 

  193. Yu, X., Breitman, M. & Goldberg, J. A structure-based mechanism for ARF1-dependent recruitment of coatomer to membranes. Cell 148, 530–542 (2012).

    Article  CAS  Google Scholar 

  194. Faini, M. et al. The structures of COPI-coated vesicles reveal alternate coatomer conformations and interactions. Science 336, 1451–1454 (2012).

    Article  CAS  Google Scholar 

  195. Dodonova, S. O. et al. 9A structure of the COPI coat reveals that the ARF1 GTPase occupies two contrasting molecular environments. Elife https://doi.org/10.7554/eLife.26691 (2017).

    Article  Google Scholar 

  196. Hariri, H., Bhattacharya, N., Johnson, K., Noble, A. J. & Stagg, S. M. Insights into the mechanisms of membrane curvature and vesicle scission by the small GTPase SAR1 in the early secretory pathway. J. Mol. Biol. 426, 3811–3826 (2014).

    Article  CAS  Google Scholar 

  197. Beck, R. et al. Membrane curvature induced by ARF1-GTP is essential for vesicle formation. Proc. Natl Acad. Sci. USA 105, 11731–11736 (2008).

    Article  CAS  Google Scholar 

  198. Beck, R. et al. Coatomer and dimeric ADP ribosylation factor 1 promote distinct steps in membrane scission. J. Cell Biol. 194, 765–777 (2011).

    Article  CAS  Google Scholar 

  199. Boucrot, E. et al. Membrane fission is promoted by insertion of amphipathic helices and is restricted by crescent BAR domains. Cell 149, 124–136 (2012).

    Article  CAS  Google Scholar 

  200. Kroppen, B. et al. Cooperativity of membrane-protein and protein–protein interactions control membrane remodeling by epsin 1 and affects clathrin-mediated endocytosis. Cell. Mol. Life Sci. 78, 2355–2370 (2021).

    Article  CAS  Google Scholar 

  201. Tarasenko, D. et al. The MICOS component Mic60 displays a conserved membrane-bending activity that is necessary for normal cristae morphology. J. Cell Biol. 216, 889–899 (2017).

    Article  CAS  Google Scholar 

  202. Yoon, Y. et al. Molecular basis of the potent membrane-remodeling activity of the epsin 1 N-terminal homology domain. J. Biol. Chem. 285, 531–540 (2010).

    Article  CAS  Google Scholar 

  203. Braun, A. R., Lacy, M. M., Ducas, V. C., Rhoades, E. & Sachs, J. N. α-Synuclein’s uniquely long amphipathic helix enhances its membrane binding and remodeling capacity. J. Membr. Biol. 250, 183–193 (2017).

    Article  CAS  Google Scholar 

  204. Hoover, B. M. et al. Membrane remodeling and stimulation of aggregation following α-synuclein adsorption to phosphotidylserine vesicles. J. Phys. Chem. B 125, 1582–1594 (2021).

    Article  CAS  Google Scholar 

  205. Mizuno, N. et al. Remodeling of lipid vesicles into cylindrical micelles by α-synuclein in an extended α-helical conformation. J. Biol. Chem. 287, 29301–29311 (2012).

    Article  CAS  Google Scholar 

  206. Varkey, J. et al. α-synuclein oligomers with broken helical conformation form lipoprotein nanoparticles. J. Biol. Chem. 288, 17620–17630 (2013).

    Article  CAS  Google Scholar 

  207. Westphal, C. H. & Chandra, S. S. Monomeric synucleins generate membrane curvature. J. Biol. Chem. 288, 1829–1840 (2013).

    Article  CAS  Google Scholar 

  208. Powers, R. E., Wang, S., Liu, T. Y. & Rapoport, T. A. Reconstitution of the tubular endoplasmic reticulum network with purified components. Nature 543, 257–260 (2017).

    Article  CAS  Google Scholar 

  209. Opaliński, Ł., Kiel, J. A. K. W., Williams, C., Veenhuis, M. & Klei, I. J. V. D. Membrane curvature during peroxisome fission requires Pex11. EMBO J. 30, 5–16 (2011).

    Article  Google Scholar 

  210. Su, J. et al. The N-terminal amphipathic helix of Pex11p self-interacts to induce membrane remodelling during peroxisome fission. Biochim. Biophys. Acta Biomembr. 1860, 1292–1300 (2018).

    Article  CAS  Google Scholar 

  211. Bielli, A. et al. Regulation of Sar1 NH 2 terminus by GTP binding and hydrolysis promotes membrane deformation to control COPII vesicle fission. J. Cell Biol. 171, 919–924 (2005).

    Article  CAS  Google Scholar 

  212. Lee, M. C. S. et al. Sar1p N-terminal helix initiates membrane curvature and completes the fission of a COPII vesicle. Cell 122, 605–617 (2005).

    Article  CAS  Google Scholar 

  213. Krauss, M. et al. Arf1-GTP-induced tubule formation suggests a function of arf family proteins in curvature acquisition at sites of vesicle budding. J. Biol. Chem. 283, 27717–27723 (2008).

    Article  CAS  Google Scholar 

  214. Lundmark, R. et al. Arf family GTP loading is activated by, and generates, positive membrane curvature. Biochem. J. 414, 189–194 (2008).

    Article  CAS  Google Scholar 

  215. Martyna, A. et al. Membrane remodeling by the M2 amphipathic helix drives influenza virus membrane scission. Sci. Rep. https://doi.org/10.1038/SREP44695 (2017).

    Article  Google Scholar 

  216. Farsad, K. et al. Generation of high curvature membranes mediated by direct endophilin bilayer interactions. J. Cell Biol. 155, 193–200 (2001).

    Article  CAS  Google Scholar 

  217. Masuda, M. et al. Endophilin BAR domain drives membrane curvature by two newly identified structure-based mechanisms. EMBO J. 25, 2889–2897 (2006).

    Article  CAS  Google Scholar 

  218. Peter, B. J. et al. BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science 303, 495–499 (2004).

    Article  CAS  Google Scholar 

  219. Takei, K., Slepnev, V. I., Haucke, V. & De Camilli, P. Functional partnership between amphiphysin and dynamin in clathrin-mediated endocytosis. Nat. Cell Biol. 1, 33 (1999).

    Article  CAS  Google Scholar 

  220. Hui, E., Bai, J. & Chapman, E. R. Ca2+-triggered simultaneous membrane penetration of the tandem C2-domains of synaptotagmin I. Biophys. J. 91, 1767–1777 (2006).

    Article  CAS  Google Scholar 

  221. Groffen, A. J. et al. Doc2b is a high-affinity Ca2+ sensor for spontaneous neurotransmitter release. Science 327, 1614–1618 (2010).

    Article  CAS  Google Scholar 

  222. Sorkin, R. et al. Synaptotagmin-1 and Doc2b exhibit distinct membrane-remodeling mechanisms. Biophys. J. 118, 643–656 (2020).

    Article  CAS  Google Scholar 

  223. Helfrich, W. Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturforsch. Sect. C. 28, 693–703 (1973).

    Article  CAS  Google Scholar 

  224. Doktorova, M., Harries, D. & Khelashvili, G. Determination of bending rigidity and tilt modulus of lipid membranes from real-space fluctuation analysis of molecular dynamics simulations. Phys. Chem. Chem. Phys. 19, 16806–16818 (2017).

    Article  CAS  Google Scholar 

  225. May, S., Kozlovsky, Y., Ben-Shaul, A. & Kozlov, M. M. Tilt modulus of a lipid monolayer. Eur. Phys. J. E 14, 299–308 (2004).

    Article  CAS  Google Scholar 

  226. Nagle, J. F., Jablin, M. S., Tristram-Nagle, S. & Akabori, K. What are the true values of the bending modulus of simple lipid bilayers? Chem. Phys. Lipids 185, 3–10 (2015).

    Article  CAS  Google Scholar 

  227. Siegel, D. P. & Kozlov, M. M. The gaussian curvature elastic modulus of N-monomethylated dioleoylphosphatidylethanolamine: relevance to membrane fusion and lipid phase behavior. Biophys. J. 87, 366–374 (2004).

    Article  CAS  Google Scholar 

  228. Kozlovsky, Y. & Kozlov, M. M. Membrane fission: model for intermediate structures. Biophys. J. 85, 85–96 (2003).

    Article  CAS  Google Scholar 

  229. Kozlovsky, Y. & Kozlov, M. M. Stalk model of membrane fusion: solution of energy crisis. Biophys. J. 82, 882–895 (2002).

    Article  CAS  Google Scholar 

  230. Dimova, R. Recent developments in the field of bending rigidity measurements on membranes. Adv. Colloid Interface Sci. 208, 225–234 (2014).

    Article  CAS  Google Scholar 

  231. Bickel, T., Marques, C. & Jeppesen, C. Pressure patches for membranes: the induced pinch of a grafted polymer. Phys. Rev. E 62, 1124 (2000).

    Article  CAS  Google Scholar 

  232. Breidenich, M., Netz, R. R. & Lipowsky, R. The shape of polymer-decorated membranes. Europhys. Lett. 49, 431 (2000).

    Article  CAS  Google Scholar 

  233. Blondeau, F. et al. Tandem MS analysis of brain clathrin-coated vesicles reveals their critical involvement in synaptic vesicle recycling. Proc. Natl Acad. Sci. USA 101, 3833–3838 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

M.M.K. is supported by SFB 958 “Scaffolding of Membranes” (Germany) and Singapore–Israel (NRF-ISF) research grant 3292/19. J.W.T is supported by the Intramural Research Program of the US National Heart, Lung, and Blood Institute, National Institutes of Health. The authors apologize to the many authors whose work could not to be specifically cited in this Review due to space constraints and the long, deep and rich history of this growing and innovative field.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Michael M. Kozlov or Justin W. Taraska.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks Patricia Bassereau, Tobias Baumgart, who co-reviewed with Samsuzzoha Mondal and Rumiana Dimova, who co-reviewed with Jan Steinkühler for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Caveolae

Flask-shaped nano-structures of plasma membrane rich in proteins, as well as lipids such as cholesterol and sphingolipids, and having several functions in intracellular signal transduction.

Phagophore

A flat cisterna-like membrane compartment serving as a precursor of autophagosome formation.

Mitochondrial cristae

Folds in the inner membrane of a mitochondrion.

Receptor expression-enhancing proteins

(REEPs). Proteins belonging to the Yip (Ypt-interacting protein) family and identified by their ability to enhance cell surface expression of a subset of G protein-coupled receptors.

ENTH domain

The epsin amino-terminal homology domain serving as a structural domain that is found in proteins involved in endocytosis and cytoskeletal machinery.

BAR domains

Highly conserved protein dimerization domains that occur in many proteins involved in membrane dynamics in a cell. BAR domains are named after three proteins that they are found in: BIN, amphiphysin and Rvs.

SAR1

A protein involved in membrane trafficking. It is a monomeric small GTPase found in COPII vesicles.

ARF1

ADP-ribosylation factor involved in protein trafficking among different compartments. It modulates vesicle budding and uncoating within the Golgi complex.

Synaptotagmin

A family of proteins with an amino-terminal transmembrane domain and two cytoplasmic C2 domains. Many C2 domains mediate calcium-dependent binding to negatively charged membranes.

Lysolipids

Any derivative of a lipid in which one hydrocarbon chain has been removed by hydrolysis.

Helfrich model

A theoretical model describing the bending elasticity of lipid membranes. It enables computations of the energy of membrane curvature generation and is based on the concepts of membrane spontaneous curvature and bending moduli.

Epsins

A family of highly conserved membrane proteins that are important in creating membrane curvature. Epsins contribute to membrane deformations like endocytosis, and block vesicle formation during mitosis.

CALM

Clathrin assembly lymphoid myeloid, a member of ANTH-domain containing proteins that promotes clathrin assembly.

AP180

A protein that plays an important role in clathrin-mediated endocytosis of synaptic vesicles. It is capable of simultaneously binding both membrane lipids (via an ANTH domain) and clathrin, and is therefore thought to recruit clathrin to the membrane of newly invaginating vesicles.

Glycocalyx

A dense, gel-like meshwork of glycoproteins and glycolipids that surrounds the cell, constituting a physical barrier for any object to enter the cell.

Protein condensates

A class of membraneless organelles and organelle subdomains which carry out specialized functions within the cell and which can form through interaction of protein disordered domains.

Sorting nexins

(SNXs). A large group of proteins that are localized in the cytoplasm and have the potential for membrane association either through their lipid-binding PX domain (a phospholipid-binding motif) or through protein–protein interactions with membrane-associated protein complexes.

Retromers

Heteropentameric complexes, which in humans are composed of a less defined membrane-associated sorting nexin (SNX) dimer (SNX1, SNX2, SNX5 and SNX6) and a vacuolar protein sorting (VPS) trimer containing VPS26, VPS29 and VPS35.

Shiga toxins

A family of related toxins with two major groups, Stx1 and Stx2, expressed by genes considered to be part of the genome of lambdoid prophages.

Dynamin

A GTPase responsible for endocytosis in the eukaryotic cell.

ESCRT

The endosomal sorting complexes required for transport (ESCRT) machinery consisting of cytosolic protein complexes, known as ESCRT-0, ESCRT-I, ESCRT-II and ESCRT-III. Together with a number of accessory proteins, these ESCRT complexes enable membrane remodelling that results in membranes bending/budding away from the cytoplasm.

AP2

A multimeric protein that works on the cell membrane to internalize cargo in clathrin-mediated endocytosis.

FCHO2

F-BAR domain-only protein 2, a protein that functions in an early step of clathrin-mediated endocytosis.

ESP15

Epidermal growth factor (EGF) receptor substrate 15, a protein present at clathrin-coated pits in receptor-mediated endocytosis of EGF.

Intersectin

A cytoplasmic membrane-associated protein that indirectly coordinates endocytic membrane trafficking with the actin assembly machinery.

β-Arrestins

Multifunctional intracellular proteins with an ability to directly interact with a large number of cellular partners.

DAB2

Disabled 2, a clathrin- and cargo-binding endocytic adaptor protein recognized for its multifaceted roles in signalling pathways.

HIP1R

A component of clathrin-coated pits and vesicles that may link the endocytic machinery to the actin cytoskeleton.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozlov, M.M., Taraska, J.W. Generation of nanoscopic membrane curvature for membrane trafficking. Nat Rev Mol Cell Biol 24, 63–78 (2023). https://doi.org/10.1038/s41580-022-00511-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-022-00511-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing