Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The roles of Polycomb repressive complexes in mammalian development and cancer

An Author Correction to this article was published on 09 May 2022

This article has been updated

Abstract

More than 80 years ago, the first Polycomb-related phenotype was identified in Drosophila melanogaster. Later, a group of diverse genes collectively called Polycomb group (PcG) genes were identified based on common mutant phenotypes. PcG proteins, which are well-conserved in animals, were originally characterized as negative regulators of gene transcription during development and subsequently shown to function in various biological processes; their deregulation is associated with diverse phenotypes in development and in disease, especially cancer. PcG proteins function on chromatin and can form two distinct complexes with different enzymatic activities: Polycomb repressive complex 1 (PRC1) is a histone ubiquitin ligase and PRC2 is a histone methyltransferase. Recent studies have revealed the existence of various mutually exclusive PRC1 and PRC2 variants. In this Review, we discuss new concepts concerning the biochemical and molecular functions of these new PcG complex variants, and how their epigenetic activities are involved in mammalian development and cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Variants of Polycomb repressive complex 1 and their activities.
Fig. 2: Variants of Polycomb repressive complex 2 and their activities.
Fig. 3: PcG and TrxG control of gene expression during development.
Fig. 4: PcG activities in cancer.

Similar content being viewed by others

Change history

References

  1. Piunti, A. & Shilatifard, A. Epigenetic balance of gene expression by Polycomb and COMPASS families. Science 352, aad9780 (2016).

    Article  PubMed  CAS  Google Scholar 

  2. Pasini, D., Bracken, A. P., Jensen, M. R., Lazzerini Denchi, E. & Helin, K. Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity. EMBO J. 23, 4061–4071 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cao, R. & Zhang, Y. SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED–EZH2 complex. Mol. Cell 15, 57–67 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. van Mierlo, G., Veenstra, G. J. C., Vermeulen, M. & Marks, H. The complexity of PRC2 subcomplexes. Trends Cell Biol. 29, 660–671 (2019).

    Article  PubMed  CAS  Google Scholar 

  5. Wang, H. et al. Role of histone H2A ubiquitination in Polycomb silencing. Nature 431, 873–878 (2004). This study discovers the catalytic activity of PRC1.

    Article  CAS  PubMed  Google Scholar 

  6. Bentley, M. L. et al. Recognition of UbcH5c and the nucleosome by the Bmi1/Ring1b ubiquitin ligase complex. EMBO J. 30, 3285–3297 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gao, Z. et al. PCGF homologs, CBX proteins, and RYBP define functionally distinct PRC1 family complexes. Mol. Cell 45, 344–356 (2012). This study systematically identifies biochemically distinct PRC1 variants.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pengelly, A. R., Copur, O., Jackle, H., Herzig, A. & Muller, J. A histone mutant reproduces the phenotype caused by loss of histone-modifying factor Polycomb. Science 339, 698–699 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Tamburri, S. et al. Histone H2AK119 mono-ubiquitination is essential for Polycomb-mediated transcriptional repression. Mol. Cell 77, 840–856.e5 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Blackledge, N. P. et al. PRC1 catalytic activity is central to Polycomb system function. Mol. Cell 77, 857–874.e9 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hansen, K. H. et al. A model for transmission of the H3K27me3 epigenetic mark. Nat. Cell Biol. 10, 1291–1300 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Pengelly, A. R., Kalb, R., Finkl, K. & Muller, J. Transcriptional repression by PRC1 in the absence of H2A monoubiquitylation. Genes Dev. 29, 1487–1492 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Francis, N. J., Kingston, R. E. & Woodcock, C. L. Chromatin compaction by a Polycomb group protein complex. Science 306, 1574–1577 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Eskeland, R. et al. Ring1B compacts chromatin structure and represses gene expression independent of histone ubiquitination. Mol. Cell 38, 452–464 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shao, Z. et al. Stabilization of chromatin structure by PRC1, a Polycomb complex. Cell 98, 37–46 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Lagarou, A. et al. dKDM2 couples histone H2A ubiquitylation to histone H3 demethylation during Polycomb group silencing. Genes Dev. 22, 2799–2810 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tavares, L. et al. RYBP–PRC1 complexes mediate H2A ubiquitylation at Polycomb target sites independently of PRC2 and H3K27me3. Cell 148, 664–678 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Laugesen, A., Hojfeldt, J. W. & Helin, K. Molecular mechanisms directing PRC2 recruitment and H3K27 methylation. Mol. Cell 74, 8–18 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang, R. et al. Polycomb group targeting through different binding partners of RING1B C-terminal domain. Structure 18, 966–975 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Messmer, S., Franke, A. & Paro, R. Analysis of the functional role of the Polycomb chromo domain in Drosophila melanogaster. Genes Dev. 6, 1241–1254 (1992).

    Article  CAS  PubMed  Google Scholar 

  21. Cao, R. et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298, 1039–1043 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Czermin, B. et al. Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites. Cell 111, 185–196 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Kuzmichev, A., Nishioka, K., Erdjument-Bromage, H., Tempst, P. & Reinberg, D. Histone methyltransferase activity associated with a human multiprotein complex containing the enhancer of zeste protein. Genes Dev. 16, 2893–2905 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kaustov, L. et al. Recognition and specificity determinants of the human Cbx chromodomains. J. Biol. Chem. 286, 521–529 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Zhen, C. Y. et al. Live-cell single-molecule tracking reveals co-recognition of H3K27me3 and DNA targets Polycomb Cbx7–PRC1 to chromatin. eLife 5, e17667 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bernstein, E. et al. Mouse Polycomb proteins bind differentially to methylated histone H3 and RNA and are enriched in facultative heterochromatin. Mol. Cell Biol. 26, 2560–2569 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Plys, A. J. et al. Phase separation of Polycomb-repressive complex 1 is governed by a charged disordered region of CBX2. Genes Dev. 33, 799–813 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. O’Loghlen, A. et al. MicroRNA regulation of Cbx7 mediates a switch of Polycomb orthologs during ESC differentiation. Cell Stem Cell 10, 33–46 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Morey, L. et al. Nonoverlapping functions of the Polycomb group Cbx family of proteins in embryonic stem cells. Cell Stem Cell 10, 47–62 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Pemberton, H. et al. Genome-wide co-localization of Polycomb orthologs and their effects on gene expression in human fibroblasts. Genome Biol. 15, R23 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Vandamme, J., Volkel, P., Rosnoblet, C., Le Faou, P. & Angrand, P. O. Interaction proteomics analysis of Polycomb proteins defines distinct PRC1 complexes in mammalian cells. Mol. Cell Proteom. 10, M110 002642 (2011).

    Article  CAS  Google Scholar 

  32. Levine, S. S. et al. The core of the Polycomb repressive complex is compositionally and functionally conserved in flies and humans. Mol. Cell Biol. 22, 6070–6078 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Peterson, A. J. et al. A domain shared by the Polycomb group proteins Scm and ph mediates heterotypic and homotypic interactions. Mol. Cell Biol. 17, 6683–6692 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kim, C. A., Gingery, M., Pilpa, R. M. & Bowie, J. U. The SAM domain of polyhomeotic forms a helical polymer. Nat. Struct. Biol. 9, 453–457 (2002).

    CAS  PubMed  Google Scholar 

  35. Pachano, T., Crispatzu, G. & Rada-Iglesias, A. Polycomb proteins as organizers of 3D genome architecture in embryonic stem cells. Brief Funct. Genomics 18, 358–366 (2019).

    CAS  PubMed  Google Scholar 

  36. Scelfo, A. et al. Functional landscape of PCGF proteins reveals both RING1A/B-dependent-and RING1A/B-independent-specific activities. Mol. Cell 74, 1037–1052.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fursova, N. A. et al. Synergy between variant PRC1 complexes defines Polycomb-mediated gene repression. Mol. Cell 74, 1020–1036.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cao, R., Tsukada, Y. & Zhang, Y. Role of Bmi-1 and Ring1A in H2A ubiquitylation and Hox gene silencing. Mol. Cell 20, 845–854 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Blackledge, N. P. et al. Variant PRC1 complex-dependent H2A ubiquitylation drives PRC2 recruitment and Polycomb domain formation. Cell 157, 1445–1459 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Endoh, M. et al. Polycomb group proteins Ring1A/B are functionally linked to the core transcriptional regulatory circuitry to maintain ES cell identity. Development 135, 1513–1524 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Connelly, K. E. & Dykhuizen, E. C. Compositional and functional diversity of canonical PRC1 complexes in mammals. Biochim. Biophys. Acta Gene Regul. Mech. 1860, 233–245 (2017).

    Article  CAS  PubMed  Google Scholar 

  42. Garcia, E., Marcos-Gutierrez, C., del Mar Lorente, M., Moreno, J. C. & Vidal, M. RYBP, a new repressor protein that interacts with components of the mammalian Polycomb complex, and with the transcription factor YY1. EMBO J. 18, 3404–3418 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Arrigoni, R. et al. The Polycomb-associated protein Rybp is a ubiquitin binding protein. FEBS Lett. 580, 6233–6241 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Boyer, L. A. et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441, 349–353 (2006). This study is one of the earliest to identify PcG target genes in mammals.

    Article  CAS  PubMed  Google Scholar 

  45. Morey, L., Aloia, L., Cozzuto, L., Benitah, S. A. & Di Croce, L. RYBP and Cbx7 define specific biological functions of Polycomb complexes in mouse embryonic stem cells. Cell Rep. 3, 60–69 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Rose, N. R. et al. RYBP stimulates PRC1 to shape chromatin-based communication between Polycomb repressive complexes. eLife 5, e18591 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Farcas, A. M. et al. KDM2B links the Polycomb repressive complex 1 (PRC1) to recognition of CpG islands. eLife 1, e00205 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. He, J. et al. Kdm2b maintains murine embryonic stem cell status by recruiting PRC1 complex to CpG islands of developmental genes. Nat. Cell Biol. 15, 373–384 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wu, X., Johansen, J. V. & Helin, K. Fbxl10/Kdm2b recruits Polycomb repressive complex 1 to CpG islands and regulates H2A ubiquitylation. Mol. Cell 49, 1134–1146 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Boulard, M., Edwards, J. R. & Bestor, T. H. FBXL10 protects Polycomb-bound genes from hypermethylation. Nat. Genet. 47, 479–485 (2015).

    Article  CAS  PubMed  Google Scholar 

  51. Hauri, S. et al. A high-density map for navigating the human Polycomb complexome. Cell Rep. 17, 583–595 (2016).

    Article  CAS  PubMed  Google Scholar 

  52. Gao, Z. et al. An AUTS2–Polycomb complex activates gene expression in the CNS. Nature 516, 349–354 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Almeida, M. et al. PCGF3/5-PRC1 initiates Polycomb recruitment in X chromosome inactivation. Science 356, 1081–1084 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hurlin, P. J., Steingrimsson, E., Copeland, N. G., Jenkins, N. A. & Eisenman, R. N. Mga, a dual-specificity transcription factor that interacts with Max and contains a T-domain DNA-binding motif. EMBO J. 18, 7019–7028 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Endoh, M. et al. PCGF6–PRC1 suppresses premature differentiation of mouse embryonic stem cells by regulating germ cell-related genes. eLife 6, e21064 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Trojer, P. et al. L3MBTL2 protein acts in concert with PcG protein-mediated monoubiquitination of H2A to establish a repressive chromatin structure. Mol. Cell 42, 438–450 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhao, W. et al. Essential role for Polycomb group protein Pcgf6 in embryonic stem cell maintenance and a noncanonical Polycomb repressive complex 1 (PRC1) integrity. J. Biol. Chem. 292, 2773–2784 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Qin, J. et al. The Polycomb group protein L3mbtl2 assembles an atypical PRC1-family complex that is essential in pluripotent stem cells and early development. Cell Stem Cell 11, 319–332 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zdzieblo, D. et al. Pcgf6, a Polycomb group protein, regulates mesodermal lineage differentiation in murine ESCs and functions in iPS reprogramming. Stem Cell 32, 3112–3125 (2014).

    Article  CAS  Google Scholar 

  60. Muller, J. et al. Histone methyltransferase activity of a Drosophila Polycomb group repressor complex. Cell 111, 197–208 (2002). Together with Cao et al. (2002), Czermin et al. (2002) and Kuzmichev et al. (2002), this paper discovers the catalytic activity of PRC2.

    Article  CAS  PubMed  Google Scholar 

  61. Alekseyenko, A. A., Gorchakov, A. A., Kharchenko, P. V. & Kuroda, M. I. Reciprocal interactions of human C10orf12 and C17orf96 with PRC2 revealed by BioTAP-XL cross-linking and affinity purification. Proc. Natl Acad. Sci. USA 111, 2488–2493 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Grijzenhout, A. et al. Functional analysis of AEBP2, a PRC2 Polycomb protein, reveals a Trithorax phenotype in embryonic development and in ESCs. Development 143, 2716–2723 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Pajtler, K. W. et al. Molecular heterogeneity and CXorf67 alterations in posterior fossa group A (PFA) ependymomas. Acta Neuropathol. 136, 211–226 (2018). This study identifies a catalytically inhibitory PRC2 subunit.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Piunti, A. et al. CATACOMB: an endogenous inducible gene that antagonizes H3K27 methylation activity of Polycomb repressive complex 2 via an H3K27M-like mechanism. Sci. Adv. 5, eaax2887 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ragazzini, R. et al. EZHIP constrains Polycomb repressive complex 2 activity in germ cells. Nat. Commun. 10, 3858 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Jain, S. U. et al. PFA ependymoma-associated protein EZHIP inhibits PRC2 activity through a H3 K27M-like mechanism. Nat. Commun. 10, 2146 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Han, J. et al. Elevated CXorf67 expression in PFA ependymomas suppresses DNA repair and sensitizes to PARP inhibitors. Cancer Cell 38, 844–856.e7 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Brien, G. L. et al. Polycomb PHF19 binds H3K36me3 and recruits PRC2 and demethylase NO66 to embryonic stem cell genes during differentiation. Nat. Struct. Mol. Biol. 19, 1273–1281 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Ballare, C. et al. Phf19 links methylated Lys36 of histone H3 to regulation of Polycomb activity. Nat. Struct. Mol. Biol. 19, 1257–1265 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Musselman, C. A. et al. Molecular basis for H3K36me3 recognition by the Tudor domain of PHF1. Nat. Struct. Mol. Biol. 19, 1266–1272 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cai, L. et al. An H3K36 methylation-engaging Tudor motif of Polycomb-like proteins mediates PRC2 complex targeting. Mol. Cell 49, 571–582 (2013).

    Article  CAS  PubMed  Google Scholar 

  72. Gatchalian, J., Kingsley, M. C., Moslet, S. D., Rosas Ospina, R. D. & Kutateladze, T. G. An aromatic cage is required but not sufficient for binding of Tudor domains of the Polycomblike protein family to H3K36me3. Epigenetics 10, 467–473 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Ferrari, K. J. et al. Polycomb-dependent H3K27me1 and H3K27me2 regulate active transcription and enhancer fidelity. Mol. Cell 53, 49–62 (2014).

    Article  CAS  PubMed  Google Scholar 

  74. Healy, E. et al. PRC2.1 and PRC2.2 synergize to coordinate H3K27 trimethylation. Mol. Cell 76, 437–452.e6 (2019).

    Article  CAS  PubMed  Google Scholar 

  75. Li, H. et al. Polycomb-like proteins link the PRC2 complex to CpG islands. Nature 549, 287–291 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Conway, E. et al. A family of vertebrate-specific Polycombs encoded by the LCOR/LCORL genes balance PRC2 subtype activities. Mol. Cell 70, 408–421.e8 (2018).

    Article  CAS  PubMed  Google Scholar 

  77. Beringer, M. et al. EPOP functionally links Elongin and Polycomb in pluripotent stem cells. Mol. Cell 64, 645–658 (2016).

    Article  CAS  PubMed  Google Scholar 

  78. Zhang, Z. et al. PRC2 complexes with JARID2, MTF2, and esPRC2p48 in ES cells to modulate ES cell pluripotency and somatic cell reprogramming. Stem Cell 29, 229–240 (2011).

    Article  CAS  Google Scholar 

  79. Chen, S., Jiao, L., Liu, X., Yang, X. & Liu, X. A dimeric structural scaffold for PRC2–PCL targeting to CpG island chromatin. Mol. Cell 77, 1265–1278.e7 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Li, G. et al. Jarid2 and PRC2, partners in regulating gene expression. Genes Dev. 24, 368–380 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Landeira, D. et al. Jarid2 is a PRC2 component in embryonic stem cells required for multi-lineage differentiation and recruitment of PRC1 and RNA polymerase II to developmental regulators. Nat. Cell Biol. 12, 618–624 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Liefke, R., Karwacki-Neisius, V. & Shi, Y. EPOP interacts with elongin BC and USP7 to modulate the chromatin landscape. Mol. Cell 64, 659–672 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Conaway, J. W., Kamura, T. & Conaway, R. C. The elongin B.C. complex and the von Hippel–Lindau tumor suppressor protein. Biochim. Biophys. Acta 1377, M49–M54 (1998).

    CAS  PubMed  Google Scholar 

  84. Duan, D. R. et al. Inhibition of transcription elongation by the VHL tumor suppressor protein. Science 269, 1402–1406 (1995).

    Article  CAS  PubMed  Google Scholar 

  85. Ardehali, M. B. et al. Polycomb repressive complex 2 methylates elongin A to regulate transcription. Mol. Cell 68, 872–884.e6 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bartke, T. et al. Nucleosome-interacting proteins regulated by DNA and histone methylation. Cell 143, 470–484 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Gehani, S. S. et al. Polycomb group protein displacement and gene activation through MSK-dependent H3K27me3S28 phosphorylation. Mol. Cell 39, 886–900 (2010).

    Article  CAS  PubMed  Google Scholar 

  88. Zhang, Q. et al. RNA exploits an exposed regulatory site to inhibit the enzymatic activity of PRC2. Nat. Struct. Mol. Biol. 26, 237–247 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hojfeldt, J. W. et al. Non-core subunits of the PRC2 complex are collectively required for its target-site specificity. Mol. Cell 76, 423–436.e3 (2019).

    Article  PubMed  CAS  Google Scholar 

  90. Kasinath, V. et al. Structures of human PRC2 with its cofactors AEBP2 and JARID2. Science 359, 940–944 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Sanulli, S. et al. Jarid2 methylation via the PRC2 complex regulates H3K27me3 deposition during cell differentiation. Mol. Cell 57, 769–783 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Son, J., Shen, S. S., Margueron, R. & Reinberg, D. Nucleosome-binding activities within JARID2 and EZH1 regulate the function of PRC2 on chromatin. Genes Dev. 27, 2663–2677 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Schmitges, F. W. et al. Histone methylation by PRC2 is inhibited by active chromatin marks. Mol. Cell 42, 330–341 (2011).

    Article  CAS  PubMed  Google Scholar 

  94. Lee, C. H. et al. Distinct stimulatory mechanisms regulate the catalytic activity of Polycomb repressive complex 2. Mol. Cell 70, 435–448.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. He, G. P., Kim, S. & Ro, H. S. Cloning and characterization of a novel zinc finger transcriptional repressor. A direct role of the zinc finger motif in repression. J. Biol. Chem. 274, 14678–14684 (1999).

    Article  CAS  PubMed  Google Scholar 

  96. Kim, H., Ekram, M. B., Bakshi, A. & Kim, J. AEBP2 as a transcriptional activator and its role in cell migration. Genomics 105, 108–115 (2015).

    Article  CAS  PubMed  Google Scholar 

  97. Pasini, D. et al. JARID2 regulates binding of the Polycomb repressive complex 2 to target genes in ES cells. Nature 464, 306–310 (2010).

    Article  CAS  PubMed  Google Scholar 

  98. Shen, X. et al. Jumonji modulates Polycomb activity and self-renewal versus differentiation of stem cells. Cell 139, 1303–1314 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Peng, J. C. et al. Jarid2/Jumonji coordinates control of PRC2 enzymatic activity and target gene occupancy in pluripotent cells. Cell 139, 1290–1302 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Cooper, S. et al. Jarid2 binds mono-ubiquitylated H2A lysine 119 to mediate crosstalk between Polycomb complexes PRC1 and PRC2. Nat. Commun. 7, 13661 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kalb, R. et al. Histone H2A monoubiquitination promotes histone H3 methylation in Polycomb repression. Nat. Struct. Mol. Biol. 21, 569–571 (2014).

    Article  CAS  PubMed  Google Scholar 

  102. Hubner, J. M. et al. EZHIP/CXorf67 mimics K27M mutated oncohistones and functions as an intrinsic inhibitor of PRC2 function in aggressive posterior fossa ependymoma. Neuro Oncol. 21, 878–889 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Thul, P. J. et al. A subcellular map of the human proteome. Science 356, eaal3321 (2017).

    Article  PubMed  CAS  Google Scholar 

  104. Jain, S. U. et al. H3 K27M and EZHIP impede H3K27-methylation spreading by inhibiting allosterically stimulated PRC2. Mol. Cell 80, 726–735.e7 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Voncken, J. W. et al. Rnf2 (Ring1b) deficiency causes gastrulation arrest and cell cycle inhibition. Proc. Natl Acad. Sci. USA 100, 2468–2473 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Posfai, E. et al. Polycomb function during oogenesis is required for mouse embryonic development. Genes Dev. 26, 920–932 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. del Mar Lorente, M. et al. Loss- and gain-of-function mutations show a Polycomb group function for Ring1A in mice. Development 127, 5093–5100 (2000).

    Article  PubMed  Google Scholar 

  108. Buchwald, G. et al. Structure and E3-ligase activity of the ring-ring complex of Polycomb proteins Bmi1 and Ring1b. EMBO J. 25, 2465–2474 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Illingworth, R. S. et al. The E3 ubiquitin ligase activity of RING1B is not essential for early mouse development. Genes Dev. 29, 1897–1902 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Katoh-Fukui, Y. et al. Male-to-female sex reversal in M33 mutant mice. Nature 393, 688–692 (1998).

    Article  CAS  PubMed  Google Scholar 

  111. Dickinson, M. E. et al. High-throughput discovery of novel developmental phenotypes. Nature 537, 508–514 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Forzati, F. et al. CBX7 is a tumor suppressor in mice and humans. J. Clin. Invest. 122, 612–623 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Isono, K. et al. Mammalian polyhomeotic homologues Phc2 and Phc1 act in synergy to mediate Polycomb repression of Hox genes. Mol. Cell Biol. 25, 6694–6706 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. van der Lugt, N. M. et al. Posterior transformation, neurological abnormalities, and severe hematopoietic defects in mice with a targeted deletion of the bmi-1 proto-oncogene. Genes Dev. 8, 757–769 (1994).

    Article  PubMed  Google Scholar 

  115. Alkema, M. J., van der Lugt, N. M., Bobeldijk, R. C., Berns, A. & van Lohuizen, M. Transformation of axial skeleton due to overexpression of bmi-1 in transgenic mice. Nature 374, 724–727 (1995).

    Article  CAS  PubMed  Google Scholar 

  116. Akasaka, T. et al. A role for mel-18, a Polycomb group-related vertebrate gene, during the anteroposterior specification of the axial skeleton. Development 122, 1513–1522 (1996).

    Article  CAS  PubMed  Google Scholar 

  117. Akasaka, T. et al. Mice doubly deficient for the Polycomb group genes Mel18 and Bmi1 reveal synergy and requirement for maintenance but not initiation of Hox gene expression. Development 128, 1587–1597 (2001).

    Article  CAS  PubMed  Google Scholar 

  118. Pirity, M. K., Locker, J. & Schreiber-Agus, N. Rybp/DEDAF is required for early postimplantation and for central nervous system development. Mol. Cell Biol. 25, 7193–7202 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Brown, J. P. et al. HP1γ function is required for male germ cell survival and spermatogenesis. Epigenetics Chromatin 3, 9 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Abe, K. et al. Loss of heterochromatin protein 1γ reduces the number of primordial germ cells via impaired cell cycle progression in mice. Biol. Reprod. 85, 1013–1024 (2011).

    Article  CAS  PubMed  Google Scholar 

  121. Boulet, A. M. & Capecchi, M. R. Signaling by FGF4 and FGF8 is required for axial elongation of the mouse embryo. Dev. Biol. 371, 235–245 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Faust, C., Schumacher, A., Holdener, B. & Magnuson, T. The eed mutation disrupts anterior mesoderm production in mice. Development 121, 273–285 (1995).

    Article  CAS  PubMed  Google Scholar 

  123. Shumacher, A., Faust, C. & Magnuson, T. Positional cloning of a global regulator of anterior–posterior patterning in mice. Nature 383, 250–253 (1996).

    Article  CAS  PubMed  Google Scholar 

  124. O’Carroll, D. et al. The Polycomb-group gene Ezh2 is required for early mouse development. Mol. Cell Biol. 21, 4330–4336 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Piunti, A. et al. Polycomb proteins control proliferation and transformation independently of cell cycle checkpoints by regulating DNA replication. Nat. Commun. 5, 3649 (2014).

    Article  CAS  PubMed  Google Scholar 

  126. Grosswendt, S. et al. Epigenetic regulator function through mouse gastrulation. Nature 584, 102–108 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Kim, H., Kang, K., Ekram, M. B., Roh, T. Y. & Kim, J. Aebp2 as an epigenetic regulator for neural crest cells. PLoS ONE 6, e25174 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Takeuchi, T. et al. Gene trap capture of a novel mouse gene, jumonji, required for neural tube formation. Genes Dev. 9, 1211–1222 (1995).

    Article  CAS  PubMed  Google Scholar 

  129. Koscielny, G. et al. The international mouse phenotyping consortium web portal, a unified point of access for knockout mice and related phenotyping data. Nucleic Acids Res. 42, D802–809 (2014).

    Article  CAS  PubMed  Google Scholar 

  130. Li, X. et al. Mammalian Polycomb-like Pcl2/Mtf2 is a novel regulatory component of PRC2 that can differentially modulate Polycomb activity both at the Hox gene cluster and at Cdkn2a genes. Mol. Cell Biol. 31, 351–364 (2011).

    Article  CAS  PubMed  Google Scholar 

  131. van Lohuizen, M. et al. Identification of cooperating oncogenes in Eμ-myc transgenic mice by provirus tagging. Cell 65, 737–752 (1991). This study is one of the first to show pro-oncogenic activity of a PcG protein.

    Article  PubMed  Google Scholar 

  132. Varambally, S. et al. The Polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419, 624–629 (2002). This study is one of the first to show pro-oncogenic activity of EZH2 and to identify it as a suitable therapeutic target.

    Article  CAS  PubMed  Google Scholar 

  133. Bracken, A. P. et al. EZH2 is downstream of the pRB–E2F pathway, essential for proliferation and amplified in cancer. EMBO J. 22, 5323–5335 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Kim, K. H. & Roberts, C. W. Targeting EZH2 in cancer. Nat. Med. 22, 128–134 (2016). This study is one of the first to describe a potential mechanism of PcG control of cellular proliferation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Jacobs, J. J., Kieboom, K., Marino, S., DePinho, R. A. & van Lohuizen, M. The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature 397, 164–168 (1999).

    Article  CAS  PubMed  Google Scholar 

  136. Bracken, A. P. et al. The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells. Genes Dev. 21, 525–530 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Piunti, A. & Pasini, D. Epigenetic factors in cancer development: Polycomb group proteins. Future Oncol. 7, 57–75 (2011).

    Article  CAS  PubMed  Google Scholar 

  138. Piunti, A. et al. Therapeutic targeting of Polycomb and BET bromodomain proteins in diffuse intrinsic pontine gliomas. Nat. Med. 23, 493–500 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Chiacchiera, F. et al. Polycomb complex PRC1 preserves intestinal stem cell identity by sustaining Wnt/β-catenin transcriptional activity. Cell Stem Cell 18, 91–103 (2016).

    Article  CAS  PubMed  Google Scholar 

  140. Mohammad, F. et al. EZH2 is a potential therapeutic target for H3K27M-mutant pediatric gliomas. Nat. Med. 23, 483–492 (2017).

    Article  CAS  PubMed  Google Scholar 

  141. Bruggeman, S. W. et al. Bmi1 controls tumor development in an Ink4a/Arf-independent manner in a mouse model for glioma. Cancer Cell 12, 328–341 (2007).

    Article  CAS  PubMed  Google Scholar 

  142. Morin, R. D. et al. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat. Genet. 42, 181–185 (2010). This study identifies one of the first oncogenic mutations of a PRC subunit.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Sneeringer, C. J. et al. Coordinated activities of wild-type plus mutant EZH2 drive tumor-associated hypertrimethylation of lysine 27 on histone H3 (H3K27) in human B-cell lymphomas. Proc. Natl Acad. Sci. USA 107, 20980–20985 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Pasqualucci, L. & Dalla-Favera, R. Genetics of diffuse large B-cell lymphoma. Blood 131, 2307–2319 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. McCabe, M. T. et al. EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature 492, 108–112 (2012).

    Article  CAS  PubMed  Google Scholar 

  146. Knutson, S. K. et al. A selective inhibitor of EZH2 blocks H3K27 methylation and kills mutant lymphoma cells. Nat. Chem. Biol. 8, 890–896 (2012). This study generates one of the first EZH2-specific catalytic inhibitors.

    Article  CAS  PubMed  Google Scholar 

  147. Wilson, B. G. et al. Epigenetic antagonism between Polycomb and SWI/SNF complexes during oncogenic transformation. Cancer Cell 18, 316–328 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Kim, K. H. et al. SWI/SNF-mutant cancers depend on catalytic and non-catalytic activity of EZH2. Nat. Med. 21, 1491–1496 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Wang, L. et al. Resetting the epigenetic balance of Polycomb and COMPASS function at enhancers for cancer therapy. Nat. Med. 24, 758–769 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. LaFave, L. M. et al. Loss of BAP1 function leads to EZH2-dependent transformation. Nat. Med. 21, 1344–1349 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Mohammad, F. & Helin, K. Oncohistones: drivers of pediatric cancers. Genes Dev. 31, 2313–2324 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Pratt, D. et al. Diffuse intrinsic pontine glioma-like tumor with EZHIP expression and molecular features of PFA ependymoma. Acta Neuropathol. Commun. 8, 37 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Dewaele, B. et al. Identification of a novel, recurrent MBTD1–CXorf67 fusion in low-grade endometrial stromal sarcoma. Int. J. Cancer 134, 1112–1122 (2014).

    Article  CAS  PubMed  Google Scholar 

  154. Bayliss, J. et al. Lowered H3K27me3 and DNA hypomethylation define poorly prognostic pediatric posterior fossa ependymomas. Sci. Transl Med. 8, 366ra161 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Bender, S. et al. Reduced H3K27me3 and DNA hypomethylation are major drivers of gene expression in K27M mutant pediatric high-grade gliomas. Cancer Cell 24, 660–672 (2013).

    Article  CAS  PubMed  Google Scholar 

  156. Michealraj, K. A. et al. Metabolic regulation of the epigenome drives lethal infantile ependymoma. Cell 181, 1329–1345.e24 (2020).

    Article  CAS  PubMed  Google Scholar 

  157. Nikoloski, G. et al. Somatic mutations of the histone methyltransferase gene EZH2 in myelodysplastic syndromes. Nat. Genet. 42, 665–667 (2010).

    Article  CAS  PubMed  Google Scholar 

  158. Ernst, T. et al. Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat. Genet. 42, 722–726 (2010). Together with Nikoloski et al. (2010), this paper provides early evidence for a tumour-suppressive role of EZH2.

    Article  CAS  PubMed  Google Scholar 

  159. Ntziachristos, P. et al. Genetic inactivation of the Polycomb repressive complex 2 in T cell acute lymphoblastic leukemia. Nat. Med. 18, 298–301 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Simon, C. et al. A key role for EZH2 and associated genes in mouse and human adult T-cell acute leukemia. Genes Dev. 26, 651–656 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Oguro, H. et al. Lethal myelofibrosis induced by Bmi1-deficient hematopoietic cells unveils a tumor suppressor function of the Polycomb group genes. J. Exp. Med. 209, 445–454 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Mochizuki-Kashio, M. et al. Ezh2 loss in hematopoietic stem cells predisposes mice to develop heterogeneous malignancies in an Ezh1-dependent manner. Blood 126, 1172–1183 (2015).

    Article  CAS  PubMed  Google Scholar 

  163. Suresh, K., Kliot, T., Piunti, A. & Kliot, M. Epigenetic mechanisms drive the progression of neurofibromas to malignant peripheral nerve sheath tumors. Surg. Neurol. Int. 7, S797–S800 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Marchione, D. M. et al. Histone H3K27 dimethyl loss is highly specific for malignant peripheral nerve sheath tumor and distinguishes true PRC2 loss from isolated H3K27 trimethyl loss. Mod. Pathol. 32, 1434–1446 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Lee, W. et al. PRC2 is recurrently inactivated through EED or SUZ12 loss in malignant peripheral nerve sheath tumors. Nat. Genet. 46, 1227–1232 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Wassef, M. et al. EZH1/2 function mostly within canonical PRC2 and exhibit proliferation-dependent redundancy that shapes mutational signatures in cancer. Proc. Natl Acad. Sci. USA 116, 6075–6080 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Tseng, C. K. et al. Synthesis of 3-deazaneplanocin A, a powerful inhibitor of S-adenosylhomocysteine hydrolase with potent and selective in vitro and in vivo antiviral activities. J. Med. Chem. 32, 1442–1446 (1989).

    Article  CAS  PubMed  Google Scholar 

  168. Tan, J. et al. Pharmacologic disruption of Polycomb-repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells. Genes Dev. 21, 1050–1063 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Miranda, T. B. et al. DZNep is a global histone methylation inhibitor that reactivates developmental genes not silenced by DNA methylation. Mol. Cancer Ther. 8, 1579–1588 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Beguelin, W. et al. EZH2 is required for germinal center formation and somatic EZH2 mutations promote lymphoid transformation. Cancer Cell 23, 677–692 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Souroullas, G. P. et al. An oncogenic Ezh2 mutation induces tumors through global redistribution of histone 3 lysine 27 trimethylation. Nat. Med. 22, 632–640 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Kim, W. et al. Targeted disruption of the EZH2–EED complex inhibits EZH2-dependent cancer. Nat. Chem. Biol. 9, 643–650 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. He, Y. et al. The EED protein–protein interaction inhibitor A-395 inactivates the PRC2 complex. Nat. Chem. Biol. 13, 389–395 (2017).

    Article  CAS  PubMed  Google Scholar 

  174. Kreso, A. et al. Self-renewal as a therapeutic target in human colorectal cancer. Nat. Med. 20, 29–36 (2014).

    Article  CAS  PubMed  Google Scholar 

  175. Dey, A. et al. Evaluating the mechanism and therapeutic potential of PTC-028, a novel inhibitor of BMI-1 function in ovarian cancer. Mol. Cancer Ther. 17, 39–49 (2018).

    Article  CAS  PubMed  Google Scholar 

  176. Deevy, O. & Bracken, A. P. PRC2 functions in development and congenital disorders. Development 146, dev.181354 (2019).

    Article  CAS  Google Scholar 

  177. Shen, X. et al. EZH1 mediates methylation on histone H3 lysine 27 and complements EZH2 in maintaining stem cell identity and executing pluripotency. Mol. Cell 32, 491–502 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Ezhkova, E. et al. EZH1 and EZH2 cogovern histone H3K27 trimethylation and are essential for hair follicle homeostasis and wound repair. Genes Dev. 25, 485–498 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Margueron, R. et al. Role of the Polycomb protein EED in the propagation of repressive histone marks. Nature 461, 762–767 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Jiao, L. & Liu, X. Structural basis of histone H3K27 trimethylation by an active Polycomb repressive complex 2. Science 350, aac4383 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Qi, W. et al. An allosteric PRC2 inhibitor targeting the H3K27me3 binding pocket of EED. Nat. Chem. Biol. 13, 381–388 (2017).

    Article  CAS  PubMed  Google Scholar 

  182. Koontz, J. I. et al. Frequent fusion of the JAZF1 and JJAZ1 genes in endometrial stromal tumors. Proc. Natl Acad. Sci. USA 98, 6348–6353 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Zhang, M. et al. Somatic mutations of SUZ12 in malignant peripheral nerve sheath tumors. Nat. Genet. 46, 1170–1172 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Zhang, J. et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature 481, 157–163 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Murzina, N. V. et al. Structural basis for the recognition of histone H4 by the histone-chaperone RbAp46. Structure 16, 1077–1085 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Yeh, H. H. et al. Ras induces experimental lung metastasis through up-regulation of RbAp46 to suppress RECK promoter activity. BMC Cancer 15, 172 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. Wang, J. et al. HNF1B-mediated repression of SLUG is suppressed by EZH2 in aggressive prostate cancer. Oncogene 39, 1335–1346 (2020).

    Article  CAS  PubMed  Google Scholar 

  188. Zhang, Q. et al. Convergent evolution between PALI1 and JARID2 for the allosteric activation of PRC2. Preprint at bioRxiv https://doi.org/10.1101/2020.05.28.122556 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Celik, H. et al. JARID2 functions as a tumor suppressor in myeloid neoplasms by repressing self-renewal in hematopoietic progenitor cells. Cancer Cell 34, 741–756.e8 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Gebre-Medhin, S. et al. Recurrent rearrangement of the PHF1 gene in ossifying fibromyxoid tumors. Am. J. Pathol. 181, 1069–1077 (2012).

    Article  CAS  PubMed  Google Scholar 

  191. Chiang, S. et al. Frequency of known gene rearrangements in endometrial stromal tumors. Am. J. Surg. Pathol. 35, 1364–1372 (2011).

    Article  PubMed  Google Scholar 

  192. Rothberg, J. L. M. et al. Mtf2–PRC2 control of canonical Wnt signaling is required for definitive erythropoiesis. Cell Discov. 4, 21 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Maganti, H. B. et al. Targeting the MTF2–MDM2 axis sensitizes refractory acute myeloid leukemia to chemotherapy. Cancer Discov. 8, 1376–1389 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Jain, P., Ballare, C., Blanco, E., Vizan, P. & Di Croce, L. PHF19 mediated regulation of proliferation and invasiveness in prostate cancer cells. eLife 9, e.51373 (2020).

    Article  Google Scholar 

  195. Ren, Z. et al. PHF19 promotes multiple myeloma tumorigenicity through PRC2 activation and broad H3K27me3 domain formation. Blood 134, 1176–1189 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Wheeler, L. J. et al. CBX2 identified as driver of anoikis escape and dissemination in high grade serous ovarian cancer. Oncogenesis 7, 92 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Wang, X. et al. Targeting the CK1α/CBX4 axis for metastasis in osteosarcoma. Nat. Commun. 11, 1141 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Deng, H. et al. CBX6 is negatively regulated by EZH2 and plays a potential tumor suppressor role in breast cancer. Sci. Rep. 9, 197 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  199. Scott, C. L. et al. Role of the chromobox protein CBX7 in lymphomagenesis. Proc. Natl Acad. Sci. USA 104, 5389–5394 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Klauke, K. et al. Polycomb Cbx family members mediate the balance between haematopoietic stem cell self-renewal and differentiation. Nat. Cell Biol. 15, 353–362 (2013).

    Article  CAS  PubMed  Google Scholar 

  201. Tan, J. et al. CBX8, a Polycomb group protein, is essential for MLL-AF9-induced leukemogenesis. Cancer Cell 20, 563–575 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Guo, W. J. et al. Mel-18 acts as a tumor suppressor by repressing Bmi-1 expression and down-regulating Akt activity in breast cancer cells. Cancer Res. 67, 5083–5089 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Lee, J. Y. et al. Mel-18 negatively regulates INK4a/ARF-independent cell cycle progression via Akt inactivation in breast cancer. Cancer Res. 68, 4201–4209 (2008).

    Article  CAS  PubMed  Google Scholar 

  204. Haupt, Y., Bath, M. L., Harris, A. W. & Adams, J. M. Bmi-1 transgene induces lymphomas and collaborates with myc in tumorigenesis. Oncogene 8, 3161–3164 (1993).

    CAS  PubMed  Google Scholar 

  205. Jacobs, J. J. et al. Bmi-1 collaborates with c-Myc in tumorigenesis by inhibiting c-Myc-induced apoptosis via INK4a/ARF. Genes Dev. 13, 2678–2690 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Lessard, J. & Sauvageau, G. Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature 423, 255–260 (2003).

    Article  CAS  PubMed  Google Scholar 

  207. Rai, K. et al. Dual roles of RNF2 in melanoma progression. Cancer Discov. 5, 1314–1327 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. van den Boom, V. et al. Non-canonical PRC1.1 targets active genes independent of H3K27me3 and is essential for leukemogenesis. Cell Rep. 14, 332–346 (2016).

    Article  PubMed  CAS  Google Scholar 

  209. Danen-van Oorschot, A. A. et al. Human death effector domain-associated factor interacts with the viral apoptosis agonist Apoptin and exerts tumor-preferential cell killing. Cell Death Differ. 11, 564–573 (2004).

    Article  CAS  PubMed  Google Scholar 

  210. Andricovich, J., Kai, Y., Peng, W., Foudi, A. & Tzatsos, A. Histone demethylase KDM2B regulates lineage commitment in normal and malignant hematopoiesis. J. Clin. Invest. 126, 905–920 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Tzatsos, A. et al. KDM2B promotes pancreatic cancer via Polycomb-dependent and -independent transcriptional programs. J. Clin. Invest. 123, 727–739 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Coyaud, E. et al. PAX5–AUTS2 fusion resulting from t(7;9)(q11.2;p13.2) can now be classified as recurrent in B cell acute lymphoblastic leukemia. Leuk. Res. 34, e323–e325 (2010).

    Article  CAS  PubMed  Google Scholar 

  213. Denk, D. et al. PAX5–AUTS2: a recurrent fusion gene in childhood B-cell precursor acute lymphoblastic leukemia. Leuk. Res. 36, e178–e181 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Zhao, S. P. et al. CBX3 promotes glioma U87 cell proliferation and predicts an unfavorable prognosis. J. Neurooncol. 145, 35–48 (2019).

    Article  CAS  PubMed  Google Scholar 

  215. Zhong, X. et al. CBX3/HP1γ promotes tumor proliferation and predicts poor survival in hepatocellular carcinoma. Aging 11, 5483–5497 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Ma, C. et al. CBX3 predicts an unfavorable prognosis and promotes tumorigenesis in osteosarcoma. Mol. Med. Rep. 19, 4205–4212 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Slifer, E. H. A mutant stock of Drosophila with extra sex-combs. J. Exp. Zool. 90, 31–40 (1942). This study discovers the first Polycomb phenotype.

    Article  Google Scholar 

  218. Hannah, A. M. & Stromnaes, O. Extra sex comb mutants in Drosophila melanogaster. Drosoph. Inf. Serv. 29, 121–123 (1955).

    Google Scholar 

  219. Lewis, P. H. [New mutants report]. Drosoph. Inf. Serv. 21, 69 (1947).

    Google Scholar 

  220. Lewis, E. B. A gene complex controlling segmentation in Drosophila. Nature 276, 565–570 (1978). This study identifies the first Polycomb gene.

    Article  CAS  PubMed  Google Scholar 

  221. Maeda, R. K. & Karch, F. The ABC of the BX-C: the bithorax complex explained. Development 133, 1413–1422 (2006).

    Article  CAS  PubMed  Google Scholar 

  222. Orlando, V., Jane, E. P., Chinwalla, V., Harte, P. J. & Paro, R. Binding of trithorax and Polycomb proteins to the bithorax complex: dynamic changes during early Drosophila embryogenesis. EMBO J. 17, 5141–5150 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Cenik, B. K. & Shilatifard, A. COMPASS and SWI/SNF complexes in development and disease. Nat. Rev. Genet. 22, 38–58 (2021).

    Article  CAS  PubMed  Google Scholar 

  224. Ingham, P. W. & Whittle, R. Trithorax: a new homeotic mutation of Drosophila melanogaster causing transformations of abdominal and thoracic imaginal segments. Mol. Gen. Genet. 179, 607–614 (1980).

    Article  Google Scholar 

  225. Ingham, P. W. Differential expression of bithorax complex genes in the absence of the extra sex combs and trithorax genes. Nature 306, 591–593 (1983).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the members of the Shilatifard laboratory for insightful discussions and comments. In particular, they thank N. Ethen for the original illustrations, E. Smith for critical review of the manuscript and M. Morgan for editing and scientific suggestions. The work of A.P. is supported by the transition to independence grant K99CA234434. Complex of proteins associated with Set1 (COMPASS)-related and Polycomb group (PcG)-related studies in the Shilatifard laboratory are supported by generous funding from the National Cancer Institute through Outstanding Investigator Award R35CA197569 to A.S.

Author information

Authors and Affiliations

Authors

Contributions

A.P. researched data for the article, substantially contributed to discussion of content, wrote the manuscript and edited it before submission. A.S. substantially contributed to discussion of content and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Ali Shilatifard.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Molecular Cell Biology thanks Judith Kassis and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Facultative heterochromatin

Locus-specific and cell type-specific dense and transcriptionally silenced chromatin.

Complex variants

Multi-protein complexes that share core subunits, but include defining subunits that distinguish one variant from the other.

Subcomplexes

Protein complexes that lack one or more subunits that define the full complex.

Mutually exclusive

Refers to proteins that, even if they interact with a common set of proteins, cannot be found interacting in immunoprecipitation assays followed by western blotting and/or mass spectrometry protein identification.

Constitutive heterochromatin

Very dense and transcriptionally silenced chromatin that is consistently formed (for example, in centromeres) in many cell types.

CpG islands

DNA regions, often corresponding with gene promoters, of several hundred base pairs that contain more than 50% G or C nucleotides and an observed over expected ratio of CpG dinucleotides higher than 0.6.

Reduced-representation bisulfite sequencing

A technique for detecting methylated (or an oxidized form of methylated) cytidine residues. The ‘reduced representation’ allows obtaining information for a limited subset of genomic regions.

Primitive streak

A structure formed in the blastula in the caudal part of the embryo, which is the precursor of the mesoderm.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piunti, A., Shilatifard, A. The roles of Polycomb repressive complexes in mammalian development and cancer. Nat Rev Mol Cell Biol 22, 326–345 (2021). https://doi.org/10.1038/s41580-021-00341-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-021-00341-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing