Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Microtubule dynamics: an interplay of biochemistry and mechanics

Abstract

Microtubules are dynamic polymers of αβ-tubulin that are essential for intracellular organization, organelle trafficking and chromosome segregation. Microtubule growth and shrinkage occur via addition and loss of αβ-tubulin subunits, which are biochemical processes. Dynamic microtubules can also engage in mechanical processes, such as exerting forces by pushing or pulling against a load. Recent advances at the intersection of biochemistry and mechanics have revealed the existence of multiple conformations of αβ-tubulin subunits and their central role in dictating the mechanisms of microtubule dynamics and force generation. It has become apparent that microtubule-associated proteins (MAPs) selectively target specific tubulin conformations to regulate microtubule dynamics, and mechanical forces can also influence microtubule dynamics by altering the balance of tubulin conformations. Importantly, the conformational states of tubulin dimers are likely to be coupled throughout the lattice: the conformation of one dimer can influence the conformation of its nearest neighbours, and this effect can propagate over longer distances. This coupling provides a long-range mechanism by which MAPs and forces can modulate microtubule growth and shrinkage. These findings provide evidence that the interplay between biochemistry and mechanics is essential for the cellular functions of microtubules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Tubulin biochemistry, conformation and mechanics.
Fig. 2: Regulatory proteins and the tubulin conformation cycle.
Fig. 3: Barriers to spontaneous and templated nucleation.
Fig. 4: Mechanical coupling in the microtubule lattice.

Similar content being viewed by others

References

  1. Desai, A. & Mitchison, T. J. Microtubule polymerization dynamics. Annu. Rev. Cell Dev. Biol. 13, 83–117 (1997).

    Article  PubMed  CAS  Google Scholar 

  2. Carlier, M. F. & Pantaloni, D. Kinetic analysis of guanosine 5′-triphosphate hydrolysis associated with tubulin polymerization. Biochemistry 20, 1918–1924 (1981).

    Article  PubMed  CAS  Google Scholar 

  3. Akhmanova, A. & Steinmetz, M. O. Tracking the ends: a dynamic protein network controls the fate of microtubule tips. Nat. Rev. Mol. Cell Biol. 9, 309–322 (2008).

    Article  PubMed  CAS  Google Scholar 

  4. Akhmanova, A. & Steinmetz, M. O. Control of microtubule organization and dynamics: two ends in the limelight. Nat. Rev. Mol. Cell Biol. 16, 711–726 (2015).

    Article  PubMed  CAS  Google Scholar 

  5. Howard, J. & Hyman, A. A. Microtubule polymerases and depolymerases. Curr. Opin. Cell Biol. 19, 31–35 (2007).

    Article  PubMed  CAS  Google Scholar 

  6. Mitchison, T. & Kirschner, M. Dynamic instability of microtubule growth. Nature 312, 237–242 (1984).

    Article  PubMed  CAS  Google Scholar 

  7. Inoue, S. & Salmon, E. D. Force generation by microtubule assembly/disassembly in mitosis and related movements. Mol. Biol. Cell 6, 1619–1640 (1995).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Howard, J. & Hyman, A. A. Dynamics and mechanics of the microtubule plus end. Nature 422, 753–758 (2003).

    Article  PubMed  CAS  Google Scholar 

  9. Kueh, H. Y. & Mitchison, T. J. Structural plasticity in actin and tubulin polymer dynamics. Science 325, 960–963 (2009).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Gell, C. et al. Microtubule dynamics reconstituted in vitro and imaged by single-molecule fluorescence microscopy. Methods Cell Biol. 95, 221–245 (2010).

    Article  PubMed  CAS  Google Scholar 

  11. Maurer, S. P. et al. EB1 accelerates two conformational transitions important for microtubule maturation and dynamics. Curr. Biol. 24, 372–384 (2014).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Duellberg, C., Cade, N. I., Holmes, D. & Surrey, T. The size of the EB cap determines instantaneous microtubule stability. eLife 5, e13470 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Gardner, M. K. et al. Rapid microtubule self-assembly kinetics. Cell 146, 582–592 (2011).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Howard, J. & Hyman, A. A. Growth, fluctuation and switching at microtubule plus ends. Nat. Rev. Mol. Cell Biol. 10, 569–574 (2009).

    Article  PubMed  CAS  Google Scholar 

  15. Gittes, F., Mickey, B., Nettleton, J. & Howard, J. Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape. J. Cell Biol. 120, 923–934 (1993).

    Article  PubMed  CAS  Google Scholar 

  16. Gates, S. N. et al. Ratchet-like polypeptide translocation mechanism of the AAA+ disaggregase Hsp104. Science 357, 273–279 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Zhao, M. et al. Mechanistic insights into the recycling machine of the SNARE complex. Nature 518, 61–67 (2015).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Brouhard, G. J. & Rice, L. M. The contribution of alphabeta-tubulin curvature to microtubule dynamics. J. Cell Biol. 207, 323–334 (2014).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Bieling, P. et al. Reconstitution of a microtubule plus-end tracking system in vitro. Nature 450, 1100–1105 (2007).

    Article  PubMed  CAS  Google Scholar 

  20. Mandelkow, E. M., Mandelkow, E. & Milligan, R. A. Microtubule dynamics and microtubule caps: a time-resolved cryo-electron microscopy study. J. Cell Biol. 114, 977–991 (1991).

    Article  PubMed  CAS  Google Scholar 

  21. Chretien, D., Fuller, S. D. & Karsenti, E. Structure of growing microtubule ends: two-dimensional sheets close into tubes at variable rates. J. Cell Biol. 129, 1311–1328 (1995).

    Article  PubMed  CAS  Google Scholar 

  22. Lodish, H. F. Molecular Cell Biology. 8th edn (W. H. Freeman–Macmillan Learning, New York, 2016).

  23. Sept, D. & McCammon, J. A. Thermodynamics and kinetics of actin filament nucleation. Biophys. J. 81, 667–674 (2001).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Zhang, R., Alushin, G. M., Brown, A. & Nogales, E. Mechanistic origin of microtubule dynamic instability and its modulation by EB proteins. Cell 162, 849–859 (2015).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Guesdon, A. et al. EB1 interacts with outwardly curved and straight regions of the microtubule lattice. Nature Cell Biol. 18, 1102–1108 (2016).

    Article  PubMed  CAS  Google Scholar 

  26. Wang, H. W. & Nogales, E. Nucleotide-dependent bending flexibility of tubulin regulates microtubule assembly. Nature 435, 911–915 (2005).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Zakharov, P. et al. Molecular and mechanical causes of microtubule catastrophe and ageing. Biophys. J. 109, 2574–2591 (2015).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. VanBuren, V., Cassimeris, L. & Odde, D. J. Mechanochemical model of microtubule structure and self-assembly kinetics. Biophys. J. 89, 2911–2926 (2005).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Alushin, G. M. et al. High-resolution microtubule structures reveal the structural transitions in alphabeta-tubulin upon GTP hydrolysis. Cell 157, 1117–1129 (2014).This paper, along with reference 24, defines the expanded, compacted and twisted conformations of αβ-tubulin in the lattice.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Ravelli, R. B. et al. Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature 428, 198–202 (2004).

    Article  PubMed  CAS  Google Scholar 

  31. Coue, M., Lombillo, V. A. & McIntosh, J. R. Microtubule depolymerization promotes particle and chromosome movement in vitro. J. Cell Biol. 112, 1165–1175 (1991).

    Article  PubMed  CAS  Google Scholar 

  32. Koshland, D. E., Mitchison, T. J. & Kirschner, M. W. Polewards chromosome movement driven by microtubule depolymerization in vitro. Nature 331, 499–504 (1988).

    Article  PubMed  CAS  Google Scholar 

  33. Buey, R. M., Diaz, J. F. & Andreu, J. M. The nucleotide switch of tubulin and microtubule assembly: a polymerization-driven structural change. Biochemistry 45, 5933–5938 (2006).

    Article  PubMed  CAS  Google Scholar 

  34. Rice, L. M., Montabana, E. A. & Agard, D. A. The lattice as allosteric effector: structural studies of alphabeta- and gamma-tubulin clarify the role of GTP in microtubule assembly. Proc. Natl Acad. Sci. USA 105, 5378–5383 (2008).

    Article  PubMed  Google Scholar 

  35. Nawrotek, A., Knossow, M. & Gigant, B. The determinants that govern microtubule assembly from the atomic structure of GTP-tubulin. J. Mol. Biol. 412, 35–42 (2011).

    Article  PubMed  CAS  Google Scholar 

  36. Howes, S. C. et al. Structural differences between yeast and mammalian microtubules revealed by cryo-EM. J. Cell Biol. 216, 2669–2677 (2017).

    PubMed  CAS  PubMed Central  Google Scholar 

  37. von Loeffelholz, O. et al. Nucleotide- and Mal3-dependent changes in fission yeast microtubules suggest a structural plasticity view of dynamics. Nat. Commun. 8, 2110 (2017).

    Article  CAS  Google Scholar 

  38. Dogterom, M. & Yurke, B. Measurement of the force-velocity relation for growing microtubules. Science 278, 856–860 (1997).

    Article  PubMed  CAS  Google Scholar 

  39. Holy, T. E., Dogterom, M., Yurke, B. & Leibler, S. Assembly and positioning of microtubule asters in microfabricated chambers. Proc. Natl Acad. Sci. USA 94, 6228–6231 (1997).

    Article  PubMed  CAS  Google Scholar 

  40. Tolic-Norrelykke, I. M., Sacconi, L., Thon, G. & Pavone, F. S. Positioning and elongation of the fission yeast spindle by microtubule-based pushing. Curr. Biol. 14, 1181–1186 (2004).

    Article  PubMed  CAS  Google Scholar 

  41. Tran, P. T., Marsh, L., Doye, V., Inoue, S. & Chang, F. A mechanism for nuclear positioning in fission yeast based on microtubule pushing. J. Cell Biol. 153, 397–411 (2001).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Grishchuk, E. L., Molodtsov, M. I., Ataullakhanov, F. I. & McIntosh, J. R. Force production by disassembling microtubules. Nature 438, 384–388 (2005).

    Article  PubMed  CAS  Google Scholar 

  43. Powers, A. F. et al. The Ndc80 kinetochore complex forms load-bearing attachments to dynamic microtubule tips via biased diffusion. Cell 136, 865–875 (2009).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Akiyoshi, B. et al. Tension directly stabilizes reconstituted kinetochore-microtubule attachments. Nature 468, 576–579 (2010). This study demonstrates that kinetochore particles purified from yeast form load-bearing attachments to dynamic microtubules and that tension applied through the kinetochores alters microtubule dynamics.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Asbury, C. L., Gestaut, D. R., Powers, A. F., Franck, A. D. & Davis, T. N. The Dam1 kinetochore complex harnesses microtubule dynamics to produce force and movement. Proc. Natl Acad. Sci. USA 103, 9873–9878 (2006).

    Article  PubMed  CAS  Google Scholar 

  46. Franck, A. D. et al. Tension applied through the Dam1 complex promotes microtubule elongation providing a direct mechanism for length control in mitosis. Nature Cell Biol. 9, 832–837 (2007).

    Article  PubMed  CAS  Google Scholar 

  47. Volkov, V. A. et al. Long tethers provide high-force coupling of the Dam1 ring to shortening microtubules. Proc. Natl Acad. Sci. USA 110, 7708–7713 (2013).

    Article  PubMed  Google Scholar 

  48. Trushko, A., Schaffer, E. & Howard, J. The growth speed of microtubules with XMAP215-coated beads coupled to their ends is increased by tensile force. Proc. Natl Acad. Sci. USA 110, 14670–14675 (2013).

    Article  PubMed  Google Scholar 

  49. Wang, P. J. & Huffaker, T. C. Stu2p: a microtubule-binding protein that is an essential component of the yeast spindle pole body. J. Cell Biol. 139, 1271–1280 (1997).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  50. Miller, M. P., Asbury, C. L. & Biggins, S. A. TOG protein confers tension sensitivity to kinetochore-microtubule attachments. Cell 165, 1428–1439 (2016). In this work, the authors discover that the microtubule polymerase Stu2 contributes to kinetochore–microtubule coupling in a tension-dependent way that is independent of polymerase activity.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  51. Driver, J. W., Geyer, E. A., Bailey, M. E., Rice, L. M. & Asbury, C. L. Direct measurement of conformational strain energy in protofilaments curling outward from disassembling microtubule tips. eLife 6, e28433 (2017). In this study, the authors quantify the amount of mechanical work performed by a depolymerizing microtubule. They show that this work is not changed by a mutation that slows microtubule shrinking by altering the tubulin conformational cycle.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Gennerich, A., Carter, A. P., Reck-Peterson, S. L. & Vale, R. D. Force-induced bidirectional stepping of cytoplasmic dynein. Cell 131, 952–965 (2007).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  53. Howard, J. The movement of kinesin along microtubules. Annu. Rev. Physiol. 58, 703–729 (1996).

    Article  PubMed  CAS  Google Scholar 

  54. Geyer, E. A. et al. A mutation uncouples the tubulin conformational and GTPase cycles, revealing allosteric control of microtubule dynamics. eLife 4, e10113 (2015).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. Doodhi, H. et al. Termination of protofilament elongation by eribulin induces lattice defects that promote microtubule catastrophes. Curr. Biol. 26, 1713–1721 (2016).

    Article  PubMed  CAS  Google Scholar 

  56. Mohan, R. et al. End-binding proteins sensitize microtubules to the action of microtubule-targeting agents. Proc. Natl Acad. Sci. USA 110, 8900–8905 (2013).

    Article  PubMed  Google Scholar 

  57. Dixit, R. et al. Microtubule plus-end tracking by CLIP-170 requires EB1. Proc. Natl Acad. Sci. USA 106, 492–497 (2009).

    Article  PubMed  Google Scholar 

  58. Maurer, S. P., Bieling, P., Cope, J., Hoenger, A. & Surrey, T. GTPgammaS microtubules mimic the growing microtubule end structure recognized by end-binding proteins (EBs). Proc. Natl Acad. Sci. USA 108, 3988–3993 (2011).

    Article  PubMed  Google Scholar 

  59. Maurer, S. P., Fourniol, F. J., Bohner, G., Moores, C. A. & Surrey, T. EBs recognize a nucleotide-dependent structural cap at growing microtubule ends. Cell 149, 371–382 (2012).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  60. Zanic, M., Stear, J. H., Hyman, A. A. & Howard, J. EB1 recognizes the nucleotide state of tubulin in the microtubule lattice. PloS ONE 4, e7585 (2009).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  61. Hyman, A. A., Salser, S., Drechsel, D. N., Unwin, N. & Mitchison, T. J. Role of GTP hydrolysis in microtubule dynamics: information from a slowly hydrolyzable analogue, GMPCPP. Mol. Biol. Cell 3, 1155–1167 (1992).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  62. Belmont, L. D. & Mitchison, T. J. Identification of a protein that interacts with tubulin dimers and increases the catastrophe rate of microtubules. Cell 84, 623–631 (1996).

    Article  PubMed  CAS  Google Scholar 

  63. Steinmetz, M. O. et al. Op18/stathmin caps a kinked protofilament-like tubulin tetramer. EMBO J. 19, 572–580 (2000).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  64. Mulder, A. M. et al. A new model for binding of kinesin 13 to curved microtubule protofilaments. J. Cell Biol. 185, 51–57 (2009).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  65. Hunter, A. W. et al. The kinesin-related protein MCAK is a microtubule depolymerase that forms an ATP-hydrolyzing complex at microtubule ends. Mol. Cell 11, 445–457 (2003).

    Article  PubMed  CAS  Google Scholar 

  66. Helenius, J., Brouhard, G., Kalaidzidis, Y., Diez, S. & Howard, J. The depolymerizing kinesin MCAK uses lattice diffusion to rapidly target microtubule ends. Nature 441, 115–119 (2006).

    Article  PubMed  CAS  Google Scholar 

  67. Desai, A., Verma, S., Mitchison, T. J. & Walczak, C. E. Kin I kinesins are microtubule-destabilizing enzymes. Cell 96, 69–78 (1999).

    Article  PubMed  CAS  Google Scholar 

  68. Gardner, M. K., Zanic, M., Gell, C., Bormuth, V. & Howard, J. Depolymerizing kinesins Kip3 and MCAK shape cellular microtubule architecture by differential control of catastrophe. Cell 147, 1092–1103 (2011).

    Article  PubMed  CAS  Google Scholar 

  69. Walczak, C. E., Mitchison, T. J. & Desai, A. XKCM1: a Xenopus kinesin-related protein that regulates microtubule dynamics during mitotic spindle assembly. Cell 84, 37–47 (1996).

    Article  PubMed  CAS  Google Scholar 

  70. Varga, V. et al. Yeast kinesin-8 depolymerizes microtubules in a length-dependent manner. Nat. Cell Biol. 8, 957–962 (2006).

    Article  PubMed  CAS  Google Scholar 

  71. Gupta, M. L. Jr, Carvalho, P., Roof, D. M. & Pellman, D. Plus end-specific depolymerase activity of Kip3, a kinesin-8 protein, explains its role in positioning the yeast mitotic spindle. Nat. Cell Biol. 8, 913–923 (2006).

    Article  PubMed  CAS  Google Scholar 

  72. Varga, V., Leduc, C., Bormuth, V., Diez, S. & Howard, J. Kinesin-8 motors act cooperatively to mediate length-dependent microtubule depolymerization. Cell 138, 1174–1183 (2009).

    Article  PubMed  CAS  Google Scholar 

  73. Arellano-Santoyo, H. et al. A tubulin binding switch underlies Kip3/kinesin-8 depolymerase activity. Dev. Cell 42, 37–51 e8 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  74. Wang, W. et al. Insight into microtubule disassembly by kinesin-13s from the structure of Kif2C bound to tubulin. Nat. Commun. 8, 70 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  75. Asenjo, A. B. et al. Structural model for tubulin recognition and deformation by kinesin-13 microtubule depolymerases. Cell Rep. 3, 759–768 (2013).

    Article  PubMed  CAS  Google Scholar 

  76. Al-Bassam, J. et al. Fission yeast Alp14 is a dose-dependent plus end-tracking microtubule polymerase. Mol. Biol. Cell 23, 2878–2890 (2012).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  77. Brouhard, G. J. et al. XMAP215 is a processive microtubule polymerase. Cell 132, 79–88 (2008).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  78. Hussmann, F., Drummond, D. R., Peet, D. R., Martin, D. S. & Cross, R. A. Alp7/TACC-Alp14/TOG generates long-lived, fast-growing MTs by an unconventional mechanism. Sci. Rep. 6, 20653 (2016).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  79. Podolski, M., Mahamdeh, M. & Howard, J. Stu2, the budding yeast XMAP215/Dis1 homologue, promotes assembly of yeast microtubules by increasing growth rate and decreasing catastrophe frequency. J. Biol. Chem. 289, 28087–28093 (2014).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  80. Matsuo, Y. et al. An unconventional interaction between Dis1/TOG and Mal3/EB1 in fission yeast promotes the fidelity of chromosome segregation. J. Cell Sci. 129, 4592–4606 (2016).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  81. Ayaz, P. et al. A tethered delivery mechanism explains the catalytic action of a microtubule polymerase. eLife 3, e03069 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Ayaz, P., Ye, X., Huddleston, P., Brautigam, C. A. & Rice, L. M. A. TOG:alphabeta-tubulin complex structure reveals conformation-based mechanisms for a microtubule polymerase. Science 337, 857–860 (2012).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  83. Hibbel, A. et al. Kinesin Kip2 enhances microtubule growth in vitro through length-dependent feedback on polymerization and catastrophe. eLife 4, e10542 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Chen, Y. & Hancock, W. O. Kinesin-5 is a microtubule polymerase. Nat. Commun. 6, 8160 (2015).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  85. Guzik-Lendrum, S., Rayment, I. & Gilbert, S. P. Homodimeric kinesin-2 KIF3CC promotes microtubule dynamics. Biophys. J. 113, 1845–1857 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  86. Sardar, H. S., Luczak, V. G., Lopez, M. M., Lister, B. C. & Gilbert, S. P. Mitotic kinesin CENP-E promotes microtubule plus-end elongation. Curr. Biol. 20, 1648–1653 (2010).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  87. Akhmanova, A. et al. CLASPs are CLIP-115 and -170 associating proteins involved in the regional regulation of microtubule dynamics in motile fibroblasts. Cell 104, 923–935 (2001).

    Article  PubMed  CAS  Google Scholar 

  88. Al-Bassam, J. et al. CLASP promotes microtubule rescue by recruiting tubulin dimers to the microtubule. Dev. Cell 19, 245–258 (2010).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  89. van Riel, W. E. et al. Kinesin-4 KIF21B is a potent microtubule pausing factor. eLife 6, e24746 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Atherton, J. et al. A structural model for microtubule minus-end recognition and protection by CAMSAP proteins. Nat. Struct. Mol. Biol. 24, 931–943 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  91. Petry, S. & Vale, R. D. Microtubule nucleation at the centrosome and beyond. Nat. Cell Biol. 17, 1089–1093 (2015).

    Article  PubMed  CAS  Google Scholar 

  92. Roostalu, J. & Surrey, T. Microtubule nucleation: beyond the template. Nat. Rev. Mol. Cell Biol. 18, 702–710 (2017).

    Article  PubMed  CAS  Google Scholar 

  93. Gardner, M. K., Zanic, M. & Howard, J. Microtubule catastrophe and rescue. Curr. Opin. Cell Biol. 25, 14–22 (2013).

    Article  PubMed  CAS  Google Scholar 

  94. Oosawa, F. & Asakura, S. Thermodynamics of the Polymerization of Protein (Academic Press, London, 1975).

  95. Erickson, H. P. & Pantaloni, D. The role of subunit entropy in cooperative assembly. Nucleation of microtubules and other two-dimensional polymers. Biophys. J. 34, 293–309 (1981).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  96. Voter, W. A. & Erickson, H. P. The kinetics of microtubule assembly. Evidence for a two-stage nucleation mechanism. J. Biol. Chem. 259, 10430–10438 (1984).

    PubMed  CAS  Google Scholar 

  97. Kuchnir Fygenson, D., Flyvbjerg, H., Sneppen, K., Libchaber, A. & Leibler, S. Spontaneous nucleation of microtubules. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 51, 5058–5063 (1995).

    CAS  Google Scholar 

  98. Zheng, Y., Wong, M. L., Alberts, B. & Mitchison, T. Nucleation of microtubule assembly by a gamma-tubulin-containing ring complex. Nature 378, 578–583 (1995).

    Article  PubMed  CAS  Google Scholar 

  99. Moritz, M., Braunfeld, M. B., Sedat, J. W., Alberts, B. & Agard, D. A. Microtubule nucleation by gamma-tubulin-containing rings in the centrosome. Nature 378, 638–640 (1995).

    Article  PubMed  CAS  Google Scholar 

  100. Lindeboom, J. J. et al. A mechanism for reorientation of cortical microtubule arrays driven by microtubule severing. Science 342, 1245533 (2013).

    Article  PubMed  CAS  Google Scholar 

  101. Wieczorek, M., Bechstedt, S., Chaaban, S. & Brouhard, G. J. Microtubule-associated proteins control the kinetics of microtubule nucleation. Nat. Cell Biol. 17, 907–916 (2015). This study carefully quantifies the kinetics of microtubule nucleation on templates such as centrosomes and blunt microtubule seeds. It provides evidence for a common obstacle to microtubule nucleation that is related to the lack of a normal microtubule end structure and demonstrates that MAPs can regulate the efficiency of microtubule nucleation.

    Article  PubMed  CAS  Google Scholar 

  102. Kollman, J. M., Merdes, A., Mourey, L. & Agard, D. A. Microtubule nucleation by gamma-tubulin complexes. Nat. Rev. Mol. Cell Biol. 12, 709–721 (2011).

    Article  PubMed  CAS  Google Scholar 

  103. Heald, R. et al. Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts. Nature 382, 420–425 (1996).

    Article  PubMed  CAS  Google Scholar 

  104. Bre, M. H. & Karsenti, E. Effects of brain microtubule-associated proteins on microtubule dynamics and the nucleating activity of centrosomes. Cell. Motil. Cytoskeleton 15, 88–98 (1990).

    Article  PubMed  CAS  Google Scholar 

  105. Popov, A. V., Severin, F. & Karsenti, E. XMAP215 is required for the microtubule-nucleating activity of centrosomes. Curr. Biol. 12, 1326–1330 (2002).

    Article  PubMed  CAS  Google Scholar 

  106. Roostalu, J., Cade, N. I. & Surrey, T. Complementary activities of TPX2 and chTOG constitute an efficient importin-regulated microtubule nucleation module. Nat. Cell Biol. 17, 1422–1434 (2015).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  107. Wittmann, T., Wilm, M., Karsenti, E. & Vernos, I. TPX2, A novel xenopus MAP involved in spindle pole organization. J. Cell Biol. 149, 1405–1418 (2000).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  108. Gruss, O. J. et al. Ran induces spindle assembly by reversing the inhibitory effect of importin alpha on TPX2 activity. Cell 104, 83–93 (2001).

    Article  PubMed  CAS  Google Scholar 

  109. Gruss, O. J. et al. Chromosome-induced microtubule assembly mediated by TPX2 is required for spindle formation in HeLa cells. Nat. Cell Biol. 4, 871–879 (2002).

    Article  PubMed  CAS  Google Scholar 

  110. Reid, T. A. et al. Suppression of microtubule assembly kinetics by the mitotic protein TPX2. J. Cell Sci. 129, 1319–1328 (2016).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  111. Alfaro-Aco, R., Thawani, A. & Petry, S. Structural analysis of the role of TPX2 in branching microtubule nucleation. J. Cell Biol. 216, 983–997 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  112. Petry, S., Groen, A. C., Ishihara, K., Mitchison, T. J. & Vale, R. D. Branching microtubule nucleation in Xenopus egg extracts mediated by augmin and TPX2. Cell 152, 768–777 (2013).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  113. Zhang, R., Roostalu, J., Surrey, T. & Nogales, E. Structural insight into TPX2-stimulated microtubule assembly. eLife 6, e30959 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Moores, C. A. et al. Mechanism of microtubule stabilization by doublecortin. Mol. Cell 14, 833–839 (2004).

    Article  PubMed  CAS  Google Scholar 

  115. Bechstedt, S., Lu, K. & Brouhard, G. J. Doublecortin recognizes the longitudinal curvature of the microtubule end and lattice. Curr. Biol. 24, 2366–2375 (2014).

    Article  PubMed  CAS  Google Scholar 

  116. Fourniol, F. J. et al. Template-free 13-protofilament microtubule-MAP assembly visualized at 8 A resolution. J. Cell Biol. 191, 463–470 (2010).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  117. Bechstedt, S. & Brouhard, G. J. Doublecortin recognizes the 13-protofilament microtubule cooperatively and tracks microtubule ends. Dev. Cell 23, 181–192 (2012).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  118. Lazarus, J. E., Moughamian, A. J., Tokito, M. K. & Holzbaur, E. L. Dynactin subunit p150(Glued) is a neuron-specific anti-catastrophe factor. PLoS Biol. 11, e1001611 (2013).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  119. Moores, C. A. et al. Distinct roles of doublecortin modulating the microtubule cytoskeleton. EMBO J. 25, 4448–4457 (2006).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  120. Leano, J. B., Rogers, S. L. & Slep, K. C. A cryptic TOG domain with a distinct architecture underlies CLASP-dependent bipolar spindle formation. Structure 21, 939–950 (2013).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  121. Schaedel, L. et al. Microtubules self-repair in response to mechanical stress. Nat. Mater. 14, 1156–1163 (2015).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  122. Aumeier, C. et al. Self-repair promotes microtubule rescue. Nat. Cell Biol. 18, 1054–1064 (2016). References 121 and 122 demonstrate that microtubules ‘soften’ in response to repeated bending stress, that this damage can be repaired through incorporation of fresh tubulin into the damaged site and that this repair mechanism can promote microtubule rescue.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  123. Xu, Z. et al. Microtubules acquire resistance from mechanical breakage through intralumenal acetylation. Science 356, 328–332 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  124. Portran, D., Schaedel, L., Xu, Z., Thery, M. & Nachury, M. V. Tubulin acetylation protects long-lived microtubules against mechanical ageing. Nat. Cell Biol. 19, 391–398 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  125. Janosi, I. M., Chretien, D. & Flyvbjerg, H. Modelling elastic properties of microtubule tips and walls. Eur. Biophys. J. 27, 501–513 (1998).

    Article  PubMed  CAS  Google Scholar 

  126. Zanic, M., Widlund, P. O., Hyman, A. A. & Howard, J. Synergy between XMAP215 and EB1 increases microtubule growth rates to physiological levels. Nat. Cell Biol. 15, 688–693 (2013).

    Article  PubMed  CAS  Google Scholar 

  127. Nogales, E., Whittaker, M., Milligan, R. A. & Downing, K. H. High-resolution model of the microtubule. Cell 96, 79–88 (1999).

    Article  PubMed  CAS  Google Scholar 

  128. Janke, C. & Bulinski, J. C. Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions. Nat. Rev. Mol. Cell Biol. 12, 773–786 (2011).

    Article  PubMed  CAS  Google Scholar 

  129. Kuriyama, R. In vitro polymerization of flagellar and ciliary outer fibre tubulin into microtubules. J. Biochem. 80, 153–165 (1976).

    Article  PubMed  CAS  Google Scholar 

  130. Kilmartin, J. V. Purification of yeast tubulin by self-assembly in vitro. Biochemistry 20, 3629–3633 (1981).

    Article  PubMed  CAS  Google Scholar 

  131. Gupta, M. L. Jr et al. β-tubulin C354 mutations that severely decrease microtubule dynamics do not prevent nuclear migration in yeast. Mol. Biol. Cell 13, 2919–2932 (2002).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  132. Bode, C. J., Gupta, M. L., Suprenant, K. A. & Himes, R. H. The two alpha-tubulin isotypes in budding yeast have opposing effects on microtubule dynamics in vitro. EMBO Rep. 4, 94–99 (2003).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  133. Gupta, M. L. Jr, Bode, C. J., Georg, G. I. & Himes, R. H. Understanding tubulin-Taxol interactions: mutations that impart Taxol binding to yeast tubulin. Proc. Natl Acad. Sci. USA 100, 6394–6397 (2003).

    Article  PubMed  CAS  Google Scholar 

  134. Uchimura, S., Oguchi, Y., Hachikubo, Y., Ishiwata, S. & Muto, E. Key residues on microtubule responsible for activation of kinesin ATPase. EMBO J. 29, 1167–1175 (2010).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  135. Uchimura, S. et al. Identification of a strong binding site for kinesin on the microtubule using mutant analysis of tubulin. EMBO J. 25, 5932–5941 (2006).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  136. Johnson, V., Ayaz, P., Huddleston, P. & Rice, L. M. Design, overexpression, and purification of polymerization-blocked yeast alphabeta-tubulin mutants. Biochemistry 50, 8636–8644 (2011).

    Article  PubMed  CAS  Google Scholar 

  137. Minoura, I. et al. Overexpression, purification, and functional analysis of recombinant human tubulin dimer. FEBS Lett. 587, 3450–3455 (2013).

    Article  PubMed  CAS  Google Scholar 

  138. Ti, S. C. et al. Mutations in human tubulin proximal to the kinesin-binding site alter dynamic instability at microtubule plus- and minus-ends. Dev. Cell 37, 72–84 (2016).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  139. Vemu, A. et al. Structure and dynamics of single-isoform recombinant neuronal human tubulin. J. Biol. Chem. 291, 12907–12915 (2016).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  140. Sirajuddin, M., Rice, L. M. & Vale, R. D. Regulation of microtubule motors by tubulin isotypes and post-translational modifications. Nat. Cell Biol. 16, 335–344 (2014).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  141. Pamula, M. C., Ti, S. C. & Kapoor, T. M. The structured core of human beta tubulin confers isotype-specific polymerization properties. J. Cell Biol. 213, 425–433 (2016).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank S. Chaaban for his masterful work in rendering the microtubule end in Box 1. The authors thank members of the Brouhard and Rice laboratories for helpful discussions and feedback on the manuscript. Work in G.J.B.’s laboratory is supported by the Canadian Institutes of Health Research (PJT-148702 and MOP-137055), the Natural Sciences and Engineering Research Council of Canada (RGPIN-2014-03791), the Fonds de recherche du Québec — Nature et technologies (FRQ-NT 191128), the Canadian Foundation for Innovation and McGill University. L.M.R. is the Thomas O. Hicks Scholar in Medical Research; work in his laboratory is supported by the National Institutes of Health (R01-GM098543), the National Science Foundation (MCB-1615938) and the Robert A. Welch Foundation (I-1908).

Reviewer Information

Nature Reviews Molecular Cell Biology thanks E. Nogales and the other anonymous reviewer(s) for their contribution to the peer review of this work

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to all aspects of article preparation, including researching data for the article, discussion of content, and writing and editing of the manuscript before submission.

Corresponding authors

Correspondence to Gary J. Brouhard or Luke M. Rice.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

End-binding (EB) proteins

A family of evolutionarily conserved proteins that autonomously track the growing microtubule end. EB proteins regulate microtubule dynamics and are also responsible for recruiting the majority of other plus-end tracking proteins to the growing microtubule end.

Microtubule polymerases

Regulatory factors that promote microtubule elongation, typically by making microtubules grow more quickly.

Microtubule depolymerases

Regulatory factors that promote microtubule depolymerization. Well-studied microtubule depolymerases include the mitotic centromere-associated kinesin (MCAK)–kinesin 13 and the Kip3–kinesin 8 families.

Kinesins

A large family of microtubule-associated proteins that use the energy from ATP hydrolysis to walk on microtubules and/or regulate their polymerization dynamics.

Plus end

The end of the microtubule that is crowned by β-tubulin subunits. This more dynamic end of the polymer typically grows from the centre of the cell towards the periphery.

Minus end

The end of the microtubule that is crowned by α-tubulin subunits. This less dynamic end of the polymer is typically capped or anchored in a microtubule-organizing structure such as the centrosome.

Interpolation (morphing)

A computational procedure that creates a series of structural intermediates between two known conformations of a molecule. Conformations generated by morphing provide a useful way to visualize intermediate steps along a conformational change but do not always capture the actual pathway for the conformational change.

Strain energy

Describes internal energy stored by a molecule when that molecule is held in an otherwise unfavourable conformation.

Compressive stress

Strain energy resulting from forces that push against the growing microtubule end.

Tensile stress

Strain energy resulting from forces that pull on the growing or shrinking microtubule end.

Optical tweezers

Device in which radiation pressure from a laser beam focused by a microscope objective is used to trap a small bead or other object. Optical tweezers provide a sensitive way to measure both the position of the trapped object and the forces experienced by the trapped object.

XMAP215 family

The best-studied family of microtubule polymerases. Polymerases in this family, which includes vertebrate XMAP215 and yeast Stu2, are the major factors that promote fast microtubule growth in cells, and their activity is important for proper formation of the mitotic spindle.

Free energy

A thermodynamic quantity that describes the amount of energy that can do work in a given system. The change in free energy associated with a chemical reaction provides the amount of work that is released by that reaction or that must be inputted to drive that reaction.

Baculovirus

A virus that infects invertebrate cells, engineered versions of which are used to direct the expression of heterologous proteins in insect cells.

Allosteric effect

Describes a phenomenon in which the enzymatic or binding activity of one region of a protein can be influenced by binding events at other regions.

Kinesin 13

Kinesin family proteins that act as microtubule depolymerases. These kinesins use ATP hydrolysis to induce outward curvature in protofilaments, triggering catastrophes. An example member of this family is mitotic centromere-associated kinesin (MCAK).

Kinesin 8

Family of kinesins that combines the motility of conventional kinesins with depolymerase activity. Because of this unique combination, some members of the family have been shown to depolymerize microtubules in a length-dependent manner. A well-studied member of the family is yeast kinesin-like protein Kip3.

Rescue factors

Regulatory factors that increase the likelihood of microtubule rescue. The best-studied rescue factors belong to the CLASP family.

TPX2

A spindle assembly factor that functions in the Ran–GTP pathway. TPX2 is released from importins in the vicinity of chromosomes, where it stimulates microtubule nucleation and interacts with motor proteins.

Microtubule nucleation

The process of forming a microtubule de novo (from unpolymerized αβ-tubulin subunits) or on a template such as the γ-tubulin ring complex or a severed microtubule end.

γ-tubulin ring complex

(γ-TuRC). A conical oligomer of γ-tubulins and γ-ring complex proteins (GCPs) that creates a template for microtubule nucleation.

Chromatin-mediated microtubule nucleation pathway

A pathway for microtubule nucleation wherein factors that promote nucleation are selectively activated in the vicinity of chromatin.

Branching nucleation

A microtubule-dependent microtubule nucleation pathway wherein new microtubules are nucleated from the sides of existing ones.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brouhard, G.J., Rice, L.M. Microtubule dynamics: an interplay of biochemistry and mechanics. Nat Rev Mol Cell Biol 19, 451–463 (2018). https://doi.org/10.1038/s41580-018-0009-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-018-0009-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing