Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Drug-resistant tuberculosis: a persistent global health concern

Abstract

Drug-resistant tuberculosis (TB) is estimated to cause 13% of all antimicrobial resistance-attributable deaths worldwide and is driven by both ongoing resistance acquisition and person-to-person transmission. Poor outcomes are exacerbated by late diagnosis and inadequate access to effective treatment. Advances in rapid molecular testing have recently improved the diagnosis of TB and drug resistance. Next-generation sequencing of Mycobacterium tuberculosis has increased our understanding of genetic resistance mechanisms and can now detect mutations associated with resistance phenotypes. All-oral, shorter drug regimens that can achieve high cure rates of drug-resistant TB within 6–9 months are now available and recommended but have yet to be scaled to global clinical use. Promising regimens for the prevention of drug-resistant TB among high-risk contacts are supported by early clinical trial data but final results are pending. A person-centred approach is crucial in managing drug-resistant TB to reduce the risk of poor treatment outcomes, side effects, stigma and mental health burden associated with the diagnosis. In this Review, we describe current surveillance of drug-resistant TB and the causes, risk factors and determinants of drug resistance as well as the stigma and mental health considerations associated with it. We discuss recent advances in diagnostics and drug-susceptibility testing and outline the progress in developing better treatment and preventive therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Global epidemiology and cascade of care for MDR/RR-TB.
Fig. 2: Acquisition and transmission of DR-TB.
Fig. 3: Common mechanisms of drug resistance in Mycobacterium tuberculosis.
Fig. 4: Possible regimens for populations living with drug-resistant tuberculosis.

Similar content being viewed by others

References

  1. Peto, H. M., Pratt, R. H., Harrington, T. A., LoBue, P. A. & Armstrong, L. R. Epidemiology of extrapulmonary tuberculosis in the United States, 1993–2006. Clin. Infect. Dis. 49, 1350–1357 (2009).

    Article  PubMed  Google Scholar 

  2. WHO Consolidated Guidelines on Tuberculosis. Module 4: Treatment — Drug-resistant Tuberculosis Treatment, 2022 Update. World Health Organization https://www.who.int/publications/i/item/9789240063129 (2022).

  3. WHO Consolidated Guidelines on Tuberculosis. Module 4: Treatment — Drug-susceptible Tuberculosis Treatment. World Health Organization https://www.who.int/publications/i/item/9789240048126 (2022).

  4. WHO Consolidated Guidelines on Tuberculosis. Module 3: Diagnosis — Rapid Diagnostics For Tuberculosis Detection, 2021 Update. World Health Organization https://www.who.int/publications/i/item/9789240029415 (2021).

  5. Cohen, K. A., Manson, A. L., Desjardins, C. A., Abeel, T. & Earl, A. M. Deciphering drug resistance in Mycobacterium tuberculosis using whole-genome sequencing: progress, promise, and challenges. Genome Med. 11, 45 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cohen, K. A. et al. Extensive global movement of multidrug-resistant Mycobacterium tuberculosis strains revealed by whole-genome analysis. Thorax 74, 882–889 (2019).

    Article  PubMed  Google Scholar 

  7. Short-course chemotherapy in pulmonary tuberculosis: a controlled trial by the British Thoracic and Tuberculosis Association. Lancet 305, 119–124 (1975).

  8. Zhang, Y. The magic bullets and tuberculosis drug targets. Annu. Rev. Pharmacol. Toxicol. 45, 529–564 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Global Tuberculosis Report 2022. World Health Organization https://www.who.int/publications/i/item/9789240061729 (2022).

  10. Global Tuberculosis Report 2021. World Health Organization https://www.who.int/publications/i/item/9789240037021 (2021).

  11. Boehme, C. C. et al. Rapid molecular detection of tuberculosis and rifampin resistance. N. Engl. J. Med. 363, 1005–1015 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. The Use of Molecular Line Probe Assay for the Detection of Resistance to Isoniazid and Rifampicin: Policy Update. World Health Organization https://www.who.int/publications/i/item/9789241511261 (2016).

  13. Dixit, A. et al. Estimation of country-specific tuberculosis antibiograms using genomic data. Preprint at medRxiv https://doi.org/10.1101/2021.09.23.21263991 (2021).

    Article  Google Scholar 

  14. O’Connor, C. & Brady, M. F. Isoniazid. StatPearls [Internet] https://pubmed.ncbi.nlm.nih.gov/32491549/ (updated 8 April 2022).

  15. Yee, D. et al. Incidence of serious side effects from first-line antituberculosis drugs among patients treated for active tuberculosis. Am. J. Respir. Crit. Care Med. 167, 1472–1477 (2003).

    Article  PubMed  Google Scholar 

  16. Murray, J. F., Schraufnagel, D. E. & Hopewell, P. C. Treatment of tuberculosis: a historical perspective. Ann. Am. Thorac. Soc. 12, 1749–1759 (2015).

    Article  PubMed  Google Scholar 

  17. Jacobson, K. R. et al. Treatment outcomes of isoniazid-resistant tuberculosis patients, Western Cape Province, South Africa. Clin. Infect. Dis. 53, 369–372 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ahmad, N., Ahuja, S. & Akkerman, O. Treatment correlates of successful outcomes in pulmonary multidrug-resistant tuberculosis: an individual patient data meta-analysis. Lancet 392, 821–834 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Stagg, H. R. et al. Fluoroquinolones and isoniazid-resistant tuberculosis: implications for the 2018 WHO guidance. Eur. Respir. J. 54, 1900982 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. WHO Treatment Guidelines for Isoniazid-resistant Tuberculosis: Supplement to the WHO Treatment Guidelines for Drug-resistant Tuberculosis. World Health Organization https://www.who.int/publications/i/item/9789241550079 (2018).

  21. Meeting Report of the WHO Expert Consultation on the Definition of extensively Drug-Resistant Tuberculosis, 27-29 October 2020. World Health Organization https://www.who.int/publications/i/item/9789240018662 (2021).

  22. Global Tuberculosis Report 2023. World Health Organization https://www.who.int/publications/i/item/9789240083851 (2023).

  23. Murray, C. J. et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399, 629–655 (2022).

    Article  CAS  Google Scholar 

  24. Knight, G. M., McQuaid, C. F., Dodd, P. J. & Houben, R. Global burden of latent multidrug-resistant tuberculosis: trends and estimates based on mathematical modelling. Lancet Infect. Dis. 19, 903–912 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  25. WHO Global Task Force on TB Impact Measurement: Report of a Subgroup Meeting on Methods Used by WHO to Estimate TB Disease Burden, 11-12 May 2022, Geneva, Switzerland. World Health Organization https://www.who.int/publications/i/item/9789240057647 (2022).

  26. Global Tuberculosis Report 2015. World Health Organization https://www.who.int/publications/i/item/9789241565059 (2015).

  27. Global Tuberculosis Report 2020. World Health Organization https://www.who.int/publications/i/item/9789240013131 (2020).

  28. Villegas, L. et al. Prevalence, risk factors, and treatment outcomes of isoniazid- and rifampicin-mono-resistant pulmonary tuberculosis in Lima, Peru. PLoS ONE 11, e0152933 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sharling, L., Marks, S. M., Goodman, M., Chorba, T. & Mase, S. Rifampin-resistant tuberculosis in the United States, 1998-2014. Clin. Infect. Dis. 70, 1596–1605 (2019).

    Article  Google Scholar 

  30. Ismail, N. A. et al. Prevalence of drug-resistant tuberculosis and imputed burden in South Africa: a national and sub-national cross-sectional survey. Lancet Infect. Dis. 18, 779–787 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Dean, A. S. Prevalence and genetic profiles of isoniazid resistance in tuberculosis patients: a multicountry analysis of cross-sectional data. PLoS Med. 17, e1003008 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Subbaraman, R., Jhaveri, T. & Nathavitharana, R. R. Closing gaps in the tuberculosis care cascade: an action-oriented research agenda. J. Clin. Tuberc. Mycobact. Dis. 19, 100144 (2020).

    Google Scholar 

  33. Subbaraman, R. et al. Constructing care cascades for active tuberculosis: a strategy for program monitoring and identifying gaps in quality of care. PLoS Med. 16, e1002754 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Naidoo, P. et al. The South African tuberculosis care cascade: estimated losses and methodological challenges. J. Infect. Dis. 216, S702–S713 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Subbaraman, R. et al. The tuberculosis cascade of care in India’s public sector: a systematic review and meta-analysis. PLoS Med. 13, e1002149 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Migliori, G. B. et al. Gauging the impact of the COVID-19 pandemic on tuberculosis services: a global study. Eur. Respir. J. 58, 2101786 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Daniels, B. et al. Use of standardised patients to assess quality of healthcare in Nairobi, Kenya: a pilot, cross-sectional study with international comparisons. BMJ Glob. Health 2, e000333 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Daniels, B., Kwan, A. & Pai, M. Lessons on the quality of tuberculosis diagnosis from standardized patients in China, India, Kenya, and South. Afr. J. Clin. Tuberc. Mycobact. Dis. 16, 100109 (2019).

    Google Scholar 

  39. Boffa, J. et al. Quality of care for tuberculosis and HIV in the private health sector: a cross-sectional, standardised patient study in South Africa. BMJ Glob. Health 6, e005250 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kwan, A. et al. Variations in the quality of tuberculosis care in urban India: a cross-sectional, standardized patient study in two cities. PLoS Med. 15, e1002653 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Daniels, B. et al. Tuberculosis diagnosis and management in the public versus private sector: a standardised patients study in Mumbai, India. BMJ Glob. Health 7, 009657 (2022).

    Article  Google Scholar 

  42. Demers, A. M. et al. Drug susceptibility patterns of Mycobacterium tuberculosis from adults with multidrug-resistant tuberculosis and implications for a household contact preventive therapy trial. BMC Infect. Dis. 21, 205 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Step up for TB 2020 report: Tuberculosis Policies in 37 Countries. Médecins Sans Frontières & Stop TB Partnership https://msfaccess.org/step-tb-tb-policies-37-countries-4th-ed (2020).

  44. Omar, S. V., Ismail, F., Ndjeka, N., Kaniga, K. & Ismail, N. A. Bedaquiline-resistant tuberculosis associated with Rv0678 mutations. N. Engl. J. Med. 386, 93–94 (2022).

    Article  PubMed  Google Scholar 

  45. Ismail, N. A. et al. Assessment of epidemiological and genetic characteristics and clinical outcomes of resistance to bedaquiline in patients treated for rifampicin-resistant tuberculosis: a cross-sectional and longitudinal study. Lancet Infect. Dis. 22, 496–506 (2022).

    Article  CAS  PubMed  Google Scholar 

  46. Azimi, T. et al. Linezolid resistance in multidrug-resistant Mycobacterium tuberculosis: a systematic review and meta-analysis. Front. Pharmacol. 13, 955050 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chesov, E. et al. Emergence of bedaquiline resistance in a high tuberculosis burden country. Eur. Respir. J. 59, 2100621 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mallick, J. S., Nair, P., Abbew, E. T., Van Deun, A. & Decroo, T. Acquired bedaquiline resistance during the treatment of drug-resistant tuberculosis: a systematic review. JAC Antimicrob. Resist. 4, dlac029 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Jenkins, H. E. & Yuen, C. M. The burden of multidrug-resistant tuberculosis in children. Int. J. Tuberc. Lung Dis. 22, 3–6 (2018).

    Article  CAS  PubMed  Google Scholar 

  50. WHO Consolidated Guidelines on Tuberculosis, Module 5: Management of Tuberculosis in children and Adolescents. World Health Organization https://www.who.int/publications/i/item/9789240046764 (2022).

  51. Dodd, P. J., Mafirakureva, N., Seddon, J. A. & McQuaid, C. F. The global impact of household contact management for children on multidrug-resistant and rifampicin-resistant tuberculosis cases, deaths, and health-system costs in 2019: a modelling study. Lancet Glob. Health 10, 1034–1044 (2022).

    Article  Google Scholar 

  52. Dookie, N., Rambaran, S., Padayatchi, N., Mahomed, S. & Naidoo, K. Evolution of drug resistance in Mycobacterium tuberculosis: a review on the molecular determinants of resistance and implications for personalized care. J. Antimicrob. Chemother. 73, 1138–1151 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Casali, N. et al. Evolution and transmission of drug-resistant tuberculosis in a Russian population. Nat. Genet. 46, 279–286 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cohen, K. A. et al. Evolution of extensively drug-resistant tuberculosis over four decades: whole genome sequencing and dating analysis of Mycobacterium tuberculosis isolates from KwaZulu-Natal. PLoS Med. 12, e1001880 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Jiang, Q. et al. The evolution and transmission dynamics of multidrug-resistant tuberculosis in an isolated high-plateau population of Tibet, China. Microbiol. Spectr. 11, e03991-22 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Ektefaie, Y., Dixit, A., Freschi, L. & Farhat, M. R. Globally diverse Mycobacterium tuberculosis resistance acquisition: a retrospective geographical and temporal analysis of whole genome sequences. Lancet Microbe 2, e96–e104 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Auld, S. C. et al. Extensively drug-resistant tuberculosis in South Africa: genomic evidence supporting transmission in communities. Eur. Respir. J. 52, 1800246 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Kendall, E. A., Fofana, M. O. & Dowdy, D. W. Burden of transmitted multidrug resistance in epidemics of tuberculosis: a transmission modelling analysis. Lancet Respir. Med. 3, 963–972 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Yang, C. et al. Transmission of multidrug-resistant Mycobacterium tuberculosis in Shanghai, China: a retrospective observational study using whole-genome sequencing and epidemiological investigation. Lancet Infect. Dis. 17, 275–284 (2017).

    Article  CAS  PubMed  Google Scholar 

  60. Becerra, M. C. et al. Transmissibility and potential for disease progression of drug resistant Mycobacterium tuberculosis: prospective cohort study. BMJ 367, l5894 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Atre, S. R. et al. Tuberculosis pathways to care and transmission of multidrug resistance in India. Am. J. Respir. Crit. Care Med. 205, 233–241 (2022).

    Article  CAS  PubMed  Google Scholar 

  62. El Halabi, J. et al. Measuring health-care delays among privately insured patients with tuberculosis in the USA: an observational cohort study. Lancet Infect. Dis. 21, 1175–1183 (2021).

    Article  PubMed  Google Scholar 

  63. Odone, A. et al. Acquired and transmitted multidrug resistant tuberculosis: the role of social determinants. PLoS ONE 11, e0146642 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Bayer, R. & Wilkinson, D. Directly observed therapy for tuberculosis: history of an idea. Lancet 345, 1545–1548 (1995).

    Article  CAS  PubMed  Google Scholar 

  65. Pasipanodya, J. G., Srivastava, S. & Gumbo, T. Meta-analysis of clinical studies supports the pharmacokinetic variability hypothesis for acquired drug resistance and failure of antituberculosis therapy. Clin. Infect. Dis. 55, 169–177 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Srivastava, S., Pasipanodya, J. G., Meek, C., Leff, R. & Gumbo, T. Multidrug-resistant tuberculosis not due to noncompliance but to between-patient pharmacokinetic variability. J. Infect. Dis. 204, 1951–1959 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. McKay, B., Castellanos, M., Ebell, M., Whalen, C. C. & Handel, A. An attempt to reproduce a previous meta-analysis and a new analysis regarding the impact of directly observed therapy on tuberculosis treatment outcomes. PLoS ONE 14, e0217219 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Manson, A. L. et al. Genomic analysis of globally diverse Mycobacterium tuberculosis strains provides insights into the emergence and spread of multidrug resistance. Nat. Genet. 49, 395–402 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dreyer, V. et al. High fluoroquinolone resistance proportions among multidrug-resistant tuberculosis driven by dominant L2 Mycobacterium tuberculosis clones in the Mumbai Metropolitan Region. Genome Med. 14, 95 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cox, H. et al. Potential contribution of HIV during first-line tuberculosis treatment to subsequent rifampicin-monoresistant tuberculosis and acquired tuberculosis drug resistance in South Africa: a retrospective molecular epidemiology study. Lancet Microbe 2, e584–e593 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wang, Z. et al. Epidemiological characteristics and risk factors of multidrug-resistant tuberculosis in Luoyang, China. Front. Public Health 11, 1117101 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Hang, N. T. L. et al. Primary drug-resistant tuberculosis in Hanoi, Viet Nam: present status and risk factors. PLoS ONE 8, e71867 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Vashakidze, L. et al. Prevalence and risk factors for drug resistance among hospitalized tuberculosis patients in Georgia. Int. J. Tuberc. Lung Dis. 13, 1148–1153 (2009).

    CAS  PubMed  Google Scholar 

  74. Andrews, J. R. et al. Predictors of multidrug-and extensively drug-resistant tuberculosis in a high HIV prevalence community. PLoS ONE 5, e15735 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mesfin, E. A. et al. Drug-resistance patterns of Mycobacterium tuberculosis strains and associated risk factors among multi drug-resistant tuberculosis suspected patients from Ethiopia. PLoS ONE 13, e0197737 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Mbuh, T. P. et al. Predictors of drug-resistant tuberculosis among high-risk population diagnosed under national program conditions in the Littoral region, Cameroon. BioMed. Res. Int. 2021, 8817442 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Skrahina, A. et al. Multidrug-resistant tuberculosis in Belarus: the size of the problem and associated risk factors. Bull. World Health Organ. 91, 36–45 (2013).

    Article  PubMed  Google Scholar 

  78. Urrego, J. et al. The impact of ventilation and early diagnosis on tuberculosis transmission in Brazilian prisons. Am. J. Trop. Med. Hyg. 93, 739–746 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Kerubo, G., Amukoye, E., Niemann, S. & Kariuki, S. Drug susceptibility profiles of pulmonary Mycobacterium tuberculosis isolates from patients in informal urban settlements in Nairobi, Kenya. BMC Infect. Dis. 16, 583 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Oliveira, O. et al. Using Bayesian spatial models to map and to identify geographical hotspots of multidrug-resistant tuberculosis in Portugal between 2000 and 2016. Sci. Rep. 10, 16646 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Jenkins, H. E. et al. Assessing spatial heterogeneity of multidrug-resistant tuberculosis in a high-burden country. Eur. Respir. J. 42, 1291–1301 (2013).

    Article  PubMed  Google Scholar 

  82. Alene, K. A., Viney, K., McBryde, E. S. & Clements, A. C. A. Spatial patterns of multidrug resistant tuberculosis and relationships to socio-economic, demographic and household factors in northwest Ethiopia. PLoS ONE 12, e0171800 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Paleckyte, A., Dissanayake, O., Mpagama, S., Lipman, M. C. & McHugh, T. D. Reducing the risk of tuberculosis transmission for HCWs in high incidence settings. Antimicrob. Resist. Infect. Control 10, 106 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Escombe, A. R. et al. Tuberculosis transmission risk and infection control in a hospital emergency department in Lima, Peru. Int. J. Tuberc. Lung Dis. 14, 1120–1126 (2010).

    CAS  PubMed  Google Scholar 

  85. Telisinghe, L. et al. High tuberculosis prevalence in a South African prison: the need for routine tuberculosis screening. PLoS ONE 9, e87262 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Dheda, K. et al. The epidemiology, pathogenesis, transmission, diagnosis, and management of multidrug-resistant, extensively drug-resistant, and incurable tuberculosis. Lancet Respir. Med. 5, 291–360 (2017).

    Article  Google Scholar 

  87. Houben, R. M. G. J. & Glynn, J. R. A systematic review and meta-analysis of molecular epidemiological studies of tuberculosis: development of a new tool to aid interpretation. Trop. Med. Int. Health 14, 892–909 (2009).

    Article  PubMed  Google Scholar 

  88. Chen, S. et al. Risk factors for multidrug resistance among previously treated patients with tuberculosis in eastern China: a case-control study. Int. J. Infect. Dis. 17, e1116-20 (2013).

    Article  PubMed  Google Scholar 

  89. Pradipta, I. S., Forsman, L. D., Bruchfeld, J., Hak, E. & Alffenaar, J. W. Risk factors of multidrug-resistant tuberculosis: a global systematic review and meta-analysis. J. Infect. 77, 469–478 (2018).

    Article  PubMed  Google Scholar 

  90. Lomtadze, N. et al. Prevalence and risk factors for multidrug-resistant tuberculosis in the Republic of Georgia: a population-based study. Int. J. Tuberc. Lung Dis. 13, 68–73 (2009).

    CAS  PubMed  Google Scholar 

  91. Lee, E. G. et al. Age-stratified anti-tuberculosis drug resistance profiles in South Korea: a multicenter retrospective study. BMC Infect. Dis. 20, 446 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Behr, M. A., Edelstein, P. H. & Ramakrishnan, L. Revisiting the timetable of tuberculosis. BMJ 362, k2738 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Oladimeji, O. et al. Gender and drug-resistant tuberculosis in Nigeria. Trop. Med. Infect. Dis. 8, 104 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  94. McQuaid, C. F., Horton, K. C., Dean, A. S., Knight, G. M. & White, R. G. The risk of multidrug-or rifampicin-resistance in males versus females with tuberculosis. Eur. Respir. J. 56, 2000626 (2020).

    Article  CAS  PubMed  Google Scholar 

  95. O’Donnell, M. R. et al. Extensively drug-resistant tuberculosis in women, KwaZulu-Natal, South Africa. Emerg. Infect. Dis. 17, 1942–1945 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Gandhi, N. R. et al. Extensively drug-resistant tuberculosis as a cause of death in patients co-infected with tuberculosis and HIV in a rural area of South Africa. Lancet 368, 1575–1580 (2006).

    Article  PubMed  Google Scholar 

  97. Kolla, B. P., Oesterle, T., Gold, M., Southwick, F. & Rummans, T. Infectious diseases occurring in the context of substance use disorders: a concise review. J. Neurol. Sci. 411, 116719 (2020).

    Article  CAS  PubMed  Google Scholar 

  98. Soboka, M. et al. Substance use disorders and adherence to antituberculosis medications in Southwest Ethiopia: a prospective cohort study. BMJ Open 11, e043050 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Mekonnen, H. S. & Azagew, A. W. Non-adherence to anti-tuberculosis treatment, reasons and associated factors among TB patients attending at Gondar town health centers, Northwest Ethiopia. BMC Res. Notes 11, 691 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Chaves Torres, N. M., Quijano Rodríguez, J. J., Porras Andrade, P. S., Arriaga, M. B. & Netto, E. M. Factors predictive of the success of tuberculosis treatment: a systematic review with meta-analysis. PLoS ONE 14, e0226507 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Dixit, A. et al. Modern lineages of Mycobacterium tuberculosis were recently introduced in Western India and demonstrate increased transmissibility. Preprint at medRxiv https://doi.org/10.1101/2022.01.04.22268645 (2022).

  102. Casali, N. et al. Microevolution of extensively drug-resistant tuberculosis in Russia. Genome Res. 22, 735–745 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Gygli, S. M. et al. Publisher Correction: prisons as ecological drivers of fitness-compensated multidrug-resistant Mycobacterium tuberculosis. Nat. Med. 27, 1308–1308 (2021).

    Article  CAS  PubMed  Google Scholar 

  104. Loiseau, C. et al. The relative transmission fitness of multidrug-resistant Mycobacterium tuberculosis in a drug resistance hotspot. Nat. Commun. 14, 1988 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Gygli, S. M., Borrell, S., Trauner, A. & Gagneux, S. Antimicrobial resistance in Mycobacterium tuberculosis: mechanistic and evolutionary perspectives. FEMS Microbiol. Rev. 41, 354–373 (2017).

    Article  CAS  PubMed  Google Scholar 

  106. Li, S. et al. CRISPRi chemical genetics and comparative genomics identify genes mediating drug potency in Mycobacterium tuberculosis. Nat. Microbiol. 7, 766–779 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Nguyen, L. & Pieters, J. Mycobacterial subversion of chemotherapeutic reagents and host defense tactics: challenges in tuberculosis drug development. Annu. Rev. Pharmacol. Toxicol. 49, 427–453 (2009).

    Article  CAS  PubMed  Google Scholar 

  108. Morris, R. P. et al. Ancestral antibiotic resistance in Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA 102, 12200–12205 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Mailaender, C. et al. The MspA porin promotes growth and increases antibiotic susceptibility of both Mycobacterium bovis BCG and Mycobacterium tuberculosis. Microbiology 150, 853–864 (2004).

    Article  CAS  PubMed  Google Scholar 

  110. Rodriguez-Rivera, F. P., Zhou, X., Theriot, J. A. & Bertozzi, C. R. Visualization of mycobacterial membrane dynamics in live cells. J. Am. Chem. Soc. 139, 3488–3495 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Madsen, C. T. et al. Methyltransferase Erm(37) slips on rRNA to confer atypical resistance in Mycobacterium tuberculosis. J. Biol. Chem. 280, 38942–38947 (2005).

    Article  CAS  PubMed  Google Scholar 

  112. Wang, F., Cassidy, C. & Sacchettini, J. C. Crystal structure and activity studies of the Mycobacterium tuberculosis beta-lactamase reveal its critical role in resistance to β-lactam antibiotics. Antimicrob. Agents Chemother. 50, 2762–2771 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Chambers, H. F., Kocagoz, T., Sipit, T., Turner, J. & Hopewell, P. C. Activity of amoxicillin/clavulanate in patients with tuberculosis. Clin. Infect. Dis. 26, 874–877 (1998).

    Article  CAS  PubMed  Google Scholar 

  114. Donald, P. R. & Sirge, F. A. Early bactericidal activity of amoxicillin in combination with clavulanic acid in patients with sputum smear-positive pulmonary tuberculosis. Scand. J. Infect. Dis. 33, 466–469 (2001).

    Article  CAS  PubMed  Google Scholar 

  115. Hugonnet, J.-E., Tremblay, L. W., Boshoff, H. I., Barry, C. E. & Blanchard, J. S. Meropenem-clavulanate is effective against extensively drug-desistant Mycobacterium tuberculosis. Science 323, 1215–1218 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Vargas, R. Jr et al. Phase variation as a major mechanism of adaptation in Mycobacterium tuberculosis complex. Proc. Natl Acad. Sci. USA 120, e2301394120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Vargas, R. Jr Role of epistasis in amikacin, kanamycin, bedaquiline, and clofazimine resistance in Mycobacterium tuberculosis complex. Antimicrob. Agents Chemother. 65, e0116421 (2021).

    Article  PubMed  Google Scholar 

  118. Farhat, M. R. et al. Genetic determinants of drug resistance in Mycobacterium tuberculosis and their diagnostic value. Am. J. Respir. Crit. Care Med. 194, 621–630 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Nebenzahl-Guimaraes, H., Jacobson, K. R., Farhat, M. R. & Murray, M. B. Systematic review of allelic exchange experiments aimed at identifying mutations that confer drug resistance in Mycobacterium tuberculosis. J. Antimicrob. Chemother. 69, 331–342 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Kadura, S. et al. Systematic review of mutations associated with resistance to the new and repurposed Mycobacterium tuberculosis drugs bedaquiline, clofazimine, linezolid, delamanid and pretomanid. J. Antimicrob. Chemother. 75, 2031–2043 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Zhang, Y. & Yew, W. W. Mechanisms of drug resistance in Mycobacterium tuberculosis. Int. J. Tuberc. Lung Dis. 13, 1320–1330 (2009).

    CAS  PubMed  Google Scholar 

  122. Green, A. G. et al. Analysis of genome-wide mutational dependence in naturally evolving Mycobacterium tuberculosis populations. Mol. Biol. Evol. 40, msad131 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Barilar, I. et al. Quantitative measurement of antibiotic resistance in Mycobacterium tuberculosis reveals genetic determinants of resistance and susceptibility in a target gene approach. Nat. Commun. 15, 488 (2024).

    Article  Google Scholar 

  124. Farhat, M. R. et al. GWAS for quantitative resistance phenotypes in Mycobacterium tuberculosis reveals resistance genes and regulatory regions. Nat. Commun. 10, 2128 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Walker, T. M. et al. The 2021 WHO catalogue of Mycobacterium tuberculosis complex mutations associated with drug resistance: a genotypic analysis. Lancet Microbe 3, e265–e273 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Ghodousi, A. et al. Isoniazid resistance in Mycobacterium tuberculosis is a heterogeneous phenotype composed of overlapping MIC distributions with different underlying resistance mechanisms. Antimicrob. Agents Chemother. 63, e00092-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Spitaleri, A., Ghodousi, A., Miotto, P. & Cirillo, D. M. Whole genome sequencing in Mycobacterium tuberculosis. Ann. Transl. Med. 7, S197 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Farhat, M. R. et al. Gyrase mutations are associated with variable levels of fluoroquinolone resistance in Mycobacterium tuberculosis. J. Clin. Microbiol. 54, 727–733 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Chen, M. L. et al. Beyond multidrug resistance: leveraging rare variants with machine and statistical learning models in Mycobacterium tuberculosis resistance prediction. EBioMedicine 43, 356–369 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Green, A. G. et al. A convolutional neural network highlights mutations relevant to antimicrobial resistance in Mycobacterium tuberculosis. Nat. Commun. 13, 3817 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Yang, Y. et al. Machine learning for classifying tuberculosis drug-resistance from DNA sequencing data. Bioinformatics 34, 1666–1671 (2018).

    Article  CAS  PubMed  Google Scholar 

  132. Gröeschel, M. I. et al. GenTB: a user-friendly genome-based predictor for tuberculosis resistance powered by machine learning. Genome Med. 13, 138 (2021).

    Article  Google Scholar 

  133. Safi, H. et al. Phase variation in Mycobacterium tuberculosis glpK produces transiently heritable drug tolerance. Proc. Natl Acad. Sci. USA 116, 19665–19674 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Hicks, N. D. et al. Clinically prevalent mutations in Mycobacterium tuberculosis alter propionate metabolism and mediate multidrug tolerance. Nat. Microbiol. 3, 1032–1042 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Liu, Q. et al. Tuberculosis treatment failure associated with evolution of antibiotic resilience. Science 378, 1111–1118 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Kreutzfeldt, K. M. et al. CinA mediates multidrug tolerance in Mycobacterium tuberculosis. Nat. Commun. 13, 2203 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Martini, M. C. et al. Loss of RNase J leads to multi-drug tolerance and accumulation of highly structured mRNA fragments in Mycobacterium tuberculosis. PLoS Pathog. 18, e1010705 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Andersson, D. I., Nicoloff, H. & Hjort, K. Mechanisms and clinical relevance of bacterial heteroresistance. Nat. Rev. Microbiol. 17, 479–496 (2019).

    Article  CAS  PubMed  Google Scholar 

  139. Vargas, R. et al. In-host population dynamics of Mycobacterium tuberculosis complex during active disease. eLife 10, e61805 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Nimmo, C. et al. Dynamics of within-host Mycobacterium tuberculosis diversity and heteroresistance during treatment. EBioMedicine 55, 102747 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Engelthaler, D. M. et al. Minority Mycobacterium tuberculosis genotypic populations as an indicator of subsequent phenotypic resistance. Am. J. Respir. Cell Mol. Biol. 61, 789–791 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. WHO Standard: Universal Access to Rapid Tuberculosis Diagnostics. World Health Organization https://www.who.int/publications/i/item/9789240071315 (2023).

  143. Report of the 16th Meeting of the Strategic and Technical Advisory Group for Tuberculosis 2016. World Health Organization https://www.who.int/publications/m/item/report-of-the-16th-meeting-of-the-strategic-and-technical-advisory-group-for-tb (2016).

  144. Jacobson, K. R. et al. Implications of failure to routinely diagnose resistance to second-line drugs in patients with rifampicin-resistant tuberculosis on Xpert MTB/RIF: a multisite observational study. Clin. Infect. Dis. 64, 1502–1508 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Oga-Omenka, C. et al. Factors influencing diagnosis and treatment initiation for multidrug-resistant/rifampicin-resistant tuberculosis in six sub-Saharan African countries: a mixed-methods systematic review. BMJ Glob. Health 5, e002280 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Svadzian, A., Sulis, G., Gore, G., Pai, M. & Denkinger, C. M. Differential yield of universal versus selective drug susceptibility testing of patients with tuberculosis in high-burden countries: a systematic review and meta-analysis. BMJ Glob. Health 5, e003438 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Kim, S. J. Drug-susceptibility testing in tuberculosis: methods and reliability of results. Eur. Respir. J. 25, 564–569 (2005).

    Article  CAS  PubMed  Google Scholar 

  148. Technical Manual for Drug Susceptibility Testing of Medicines Used in the Treatment of Tuberculosis. World Health Organization https://www.who.int/publications/i/item/9789241514842 (2018).

  149. Yu, H.-J. et al. Performance evaluation of the BACTEC MGIT 960 system for rifampin drug-susceptibility testing of Mycobacterium tuberculosis using the current WHO critical concentration. J. Clin. Microbiol. 61, e01086-22 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Shea, J. et al. Low-level rifampin resistance and rpoB mutations in Mycobacterium tuberculosis: an analysis of whole-genome sequencing and drug susceptibility test data in New York.J. Clin. Microbiol. 59, e01885-20 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Torrea, G. et al. Variable ability of rapid tests to detect Mycobacterium tuberculosis rpoB mutations conferring phenotypically occult rifampicin resistance. Sci. Rep. 9, 11826 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Automated Real-time Nucleic Acid Amplification Technology for Rapid and Simultaneous Detection of Tuberculosis and Rifampicin Resistance: Xpert MTB/RIF System: Policy Statement. World Health Organization https://www.who.int/publications/i/item/9789241501545 (2011).

  153. Rapid Implementation of the Xpert MTB/RIF Diagnostic Test: Technical and Operational “How-to”; Practical Considerations. World Health Organization https://www.who.int/publications/i/item/9789241501569 (2011).

  154. Dorman, S. E. et al. Xpert MTB/RIF Ultra for detection of Mycobacterium tuberculosis and rifampicin resistance: a prospective multicentre diagnostic accuracy study. Lancet Infect. Dis. 18, 76–84 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Albert, H. et al. Development, roll-out and impact of Xpert MTB/RIF for tuberculosis: what lessons have we learnt and how can we do better? Eur. Respir. J. 48, 516–525 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Zifodya, J. S. et al. Xpert Ultra versus Xpert MTB/RIF for pulmonary tuberculosis and rifampicin resistance in adults with presumptive pulmonary tuberculosis. Cochrane Database Syst. Rev. 2021, CD009593 (2021).

    Google Scholar 

  157. Penn-Nicholson, A. et al. A prospective multicentre diagnostic accuracy study for the Truenat tuberculosis assays. Eur. Respir. J. 58, 2100526 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Gomathi, N. S. et al. Validation of an indigenous assay for rapid molecular detection of rifampicin resistance in presumptive multidrug-resistant pulmonary tuberculosis patients. Indian J. Med. Res. 152, 482–489 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Molbio Diagnostics: Molbio launches Truenat MTB-INH test for drug resistance in TB patients. Health News, ET HealthWorld https://health.economictimes.indiatimes.com/news/diagnostics/molbio-launches-truenat-mtb-inh-test-for-drug-resistance-in-tb-patients/96963161 (2023).

  160. Theron, G. et al. Feasibility, accuracy, and clinical effect of point-of-care Xpert MTB/RIF testing for tuberculosis in primary-care settings in Africa: a multicentre, randomised, controlled trial. Lancet 383, 424–435 (2014).

    Article  CAS  PubMed  Google Scholar 

  161. Yoon, C. et al. Impact of Xpert MTB/RIF testing on tuberculosis management and outcomes in hospitalized patients in Uganda. PLoS ONE 7, e48599 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Di Tanna, G. L. et al. Effect of Xpert MTB/RIF on clinical outcomes in routine care settings: individual patient data meta-analysis. Lancet Glob. Health 7, e191–e199 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Churchyard, G. J. et al. Xpert MTB/RIF versus sputum microscopy as the initial diagnostic test for tuberculosis: a cluster-randomised trial embedded in South African roll-out of Xpert MTB/RIF. Lancet Glob. Health 3, 450–457 (2015).

    Article  Google Scholar 

  164. Cattamanchi, A. et al. Multicomponent strategy with decentralized molecular testing for tuberculosis. N. Engl. J. Med. 385, 2441–2450 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Penn-Nicholson, A. et al. Detection of isoniazid, fluoroquinolone, ethionamide, amikacin, kanamycin, and capreomycin resistance by the Xpert MTB/XDR assay: a cross-sectional multicentre diagnostic accuracy study. Lancet Infect. Dis. 22, 242–249 (2022).

    Article  CAS  PubMed  Google Scholar 

  166. Cao, Y. et al. Xpert MTB/XDR: a 10-color reflex assay suitable for point-of-care settings to detect isoniazid, fluoroquinolone, and second-line-injectable-drug resistance directly from Mycobacterium tuberculosis-positive sputum. J. Clin. Microbiol. 59, e02314-20 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  167. De Vos, M. et al. Comparative analytical evaluation of four centralized platforms for the detection of Mycobacterium tuberculosis complex and resistance to rifampicin and isoniazid. J. Clin. Microbiol. 59, e02168-20 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Meaza, A. et al. Evaluation of genotype MTBDRplus VER 2.0 line probe assay for the detection of MDR-TB in smear positive and negative sputum samples. BMC Infect. Dis. 17, 280 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Nathavitharana, R. R. et al. Accuracy of line probe assays for the diagnosis of pulmonary and multidrug-resistant tuberculosis: a systematic review and meta-analysis. Eur. Respir. J. 49, 1601075 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Driesen, M. et al. Evaluation of a novel line probe assay to detect resistance to pyrazinamide, a key drug used for tuberculosis treatment. Clin. Microbiol. Infect. 24, 60–64 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Willby, M. J. et al. Detection of Mycobacterium tuberculosis pncA mutations by the Nipro Genoscholar PZA-TB II assay compared to conventional sequencing. Antimicrob. Agents Chemother. 62, e01871-17 (2018).

    Article  PubMed  Google Scholar 

  172. Catalogue of Mutations in Mycobacterium tuberculosis Complex and their Association with Drug Resistance, 2nd edn. World Health Organization https://www.who.int/publications/i/item/9789240082410 (2023).

  173. Ismail, N. et al. Genetic variants and their association with phenotypic resistance to bedaquiline in Mycobacterium tuberculosis: a systematic review and individual isolate data analysis. Lancet Microbe 2, e604–e616 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. An, Q., Lin, R., Yang, Q., Wang, C. & Wang, D. Evaluation of genetic mutations associated with phenotypic resistance to fluoroquinolones, bedaquiline, and linezolid in clinical Mycobacterium tuberculosis: a systematic review and meta-analysis. J. Glob. Antimicrob. Resist. 34, 214–226 (2023).

    Article  CAS  PubMed  Google Scholar 

  175. Gan, W. C., Ng, H. F. & Ngeow, Y. F. Mechanisms of linezolid resistance in mycobacteria. Pharmaceuticals 16, 784 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. CRyPTIC Consortium & The 100,000 Genomes Project. Prediction of susceptibility to first-line tuberculosis drugs by DNA sequencing. N. Engl. J. Med. 379, 1403–1415 (2018).

    Article  Google Scholar 

  177. Pankhurst, L. J. Rapid, comprehensive, and affordable mycobacterial diagnosis with whole-genome sequencing: a prospective study. Lancet Respir. Med. 4, 49–58 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Use of Targeted Next-generation Sequencing to Detect Drug-resistant Tuberculosis: Rapid Communication. World Health Organization https://www.who.int/publications/i/item/9789240076372 (2023).

  179. The Use of Next-Generation Sequencing for the Surveillance of Drug-Resistant Tuberculosis: An Implementation Manual. World Health Organization https://www.who.int/publications/i/item/9789240078079 (2023).

  180. Dippenaar, A. et al. Nanopore sequencing for Mycobacterium tuberculosis: a critical review of the literature, new developments, and future opportunities. J. Clin. Microbiol. 60, e00646-21 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Sanchez-Padilla, E. et al. Detection of drug-resistant tuberculosis by Xpert MTB/RIF in Swaziland. N. Engl. J. Med. 372, 1181–1182 (2015).

    Article  CAS  PubMed  Google Scholar 

  182. Ng, K. C. et al. Xpert Ultra can unambiguously identify specific rifampin resistance-conferring mutations. J. Clin. Microbiol. 56, 10–1128 (2018).

    Article  Google Scholar 

  183. Daum, L. T. et al. Next-generation sequencing for characterizing drug resistance-conferring Mycobacterium tuberculosis genes from clinical isolates in the Ukraine. J. Clin. Microbiol. 56, e00009-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Tagliani, E. et al. Culture and next-generation sequencing-based drug susceptibility testing unveil high levels of drug-resistant-TB in Djibouti: results from the first national survey. Sci. Rep. 7, 17672 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Walker, T. M. et al. Whole-genome sequencing to delineate Mycobacterium tuberculosis outbreaks: a retrospective observational study. Lancet Infect. Dis. 13, 137–146 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Mahomed, S., Mlisana, K., Cele, L. & Naidoo, K. Discordant line probe genotypic testing vs culture-based drug susceptibility phenotypic testing in TB endemic KwaZulu-Natal: impact on bedside clinical decision making. J. Clin. Tuberc. Mycobact. Dis. 20, 100176 (2020).

    Google Scholar 

  187. Milimo, D. et al. Diagnosis of rifampicin-resistant tuberculosis: discordant results by diagnostic methods. Afr. J. Lab. Med. 7, 1–4 (2018).

    Google Scholar 

  188. Votintseva, A. A. et al. Same-day diagnostic and surveillance data for ttuberculosis via whole-genome sequencing of direct respiratory samples. J. Clin. Microbiol. 55, 1285–1298 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Brown, A. C. et al. Rapid whole-genome sequencing of Mycobacterium tuberculosis isolates directly from clinical samples. J. Clin. Microbiol. 53, 2230–2237 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Doyle, R. M. et al. Direct whole-genome sequencing of sputum accurately identifies drug-resistant Mycobacterium tuberculosis faster than MGIT culture sequencing. J. Clin. Microbiol. 56, e00666–18 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Goig, G. A. et al. Whole-genome sequencing of Mycobacterium tuberculosis directly from clinical samples for high-resolution genomic epidemiology and drug resistance surveillance: an observational study. Lancet Microbe 1, e175–e183 (2020).

    Article  CAS  PubMed  Google Scholar 

  192. Van Rie, A. et al. Sequencing mycobacteria and algorithm-determined resistant tuberculosis treatment (SMARTT): a study protocol for a phase-IV pragmatic randomized controlled patient management strategy trial. Trials 23, 864 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Sibandze, D. B. et al. Rapid molecular diagnostics of tuberculosis resistance by targeted stool sequencing. Genome Med. 14, 52 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Iyer, A. et al. Operationalising targeted next-generation sequencing for routine diagnosis of drug-resistant TB. Public Health Action. 13, 43–49 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Cox, H. et al. Whole-genome sequencing has the potential to improve treatment for rifampicin-resistant tuberculosis in high-burden settings: a retrospective cohort study. J. Clin. Microbiol. 60, e02362–21 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Kwong, J. C., McCallum, N., Sintchenko, V. & Howden, B. P. Whole genome sequencing in clinical and public health microbiology. Pathology 47, 199–210 (2015).

    Article  CAS  PubMed  Google Scholar 

  197. Conradie, F. et al. Treatment of highly drug-resistant pulmonary tuberculosis. N. Engl. J. Med. 382, 893–902 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Nyang’wa, B.-T. et al. A 24-week, all-oral regimen for rifampin-resistant tuberculosis. N. Engl. J. Med. 387, 2331–2343 (2022).

    Article  PubMed  Google Scholar 

  199. Padmapriyadarsini, C. et al. Bedaquiline, delamanid, linezolid and clofazimine for treatment of pre-extensively drug-resistant tuberculosis. Clin. Infect. Dis. 76, e938–e946 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Pym, A. S. et al. Bedaquiline in the treatment of multidrug- and extensively drug-resistant tuberculosis. Eur. Respir. J. 47, 564–574 (2016).

    Article  CAS  PubMed  Google Scholar 

  201. Schnippel, K. et al. Effect of bedaquiline on mortality in South African patients with drug-resistant tuberculosis: a retrospective cohort study. Lancet Respir. Med. 6, 699–706 (2018).

    Article  CAS  PubMed  Google Scholar 

  202. Ndjeka, N. et al. High treatment success rate for multidrug-resistant and extensively drug-resistant tuberculosis using a bedaquiline-containing treatment regimen. Eur. Respir. J. 52, 1801528 (2018).

    Article  CAS  PubMed  Google Scholar 

  203. Ndjeka, N. et al. Treatment outcomes 24 months after initiating short bedaquiline-containing or injectable-containing rifampicin-resistant tuberculosis treatment regimens: a retrospective cohort study in South Africa.Lancet Infect. Dis. 22, 1042–1051 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Zhao, Y. et al. Improved treatment outcomes with bedaquiline when substituted for second-line injectable agents in multidrug-resistant tuberculosis: a retrospective cohort study. Clin. Infect. Dis. 68, 1522–1529 (2019).

    Article  CAS  PubMed  Google Scholar 

  205. Conradie, F. et al. Bedaquiline–pretomanid–linezolid regimens for drug-resistant tuberculosis. N. Engl. J. Med. 387, 810–823 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Esmail, A. et al. An all-oral 6-month regimen for multidrug-resistant tuberculosis: a multicenter, randomized controlled clinical trial (the NExT study). Am. J. Respir. Crit. Care Med. 205, 1214–1227 (2022).

    Article  CAS  PubMed  Google Scholar 

  207. Goodall, R. L. et al. Evaluation of two short standardised regimens for the treatment of rifampicin-resistant tuberculosis (STREAM stage 2): an open-label, multicentre, randomised, non-inferiority trial. Lancet 400, 1858–1868 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. WHO Operational Handbook on Tuberculosis. Module 4: Treatment of Drug-resistant Tuberculosis. World Health Organization https://www.who.int/publications/i/item/9789240006997 (2020).

  209. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02589782 (2021).

  210. Clinical Trial Results Offer Hope to DR-TB patients with short, effective treatment. Médecins Sans Frontières https://www.msf.org/clinical-trial-finds-short-effective-safe-DR-TB-treatment (2022).

  211. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02333799 (2020).

  212. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03086486 (2023).

  213. Drug-resistant Tuberculosis Clinical Trials Progress Report. RESIST-TB https://www.resisttb.org/clinical-trials-progress-report (2023).

  214. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02619994 (2019).

  215. Mok, J. et al. 9 months of delamanid, linezolid, levofloxacin, and pyrazinamide versus conventional therapy for treatment of fluoroquinolone-sensitive multidrug-resistant tuberculosis (MDR-END): a multicentre, randomised, open-label phase 2/3 non-inferiority trial in South Korea. Lancet 400, 1522–1530 (2022).

    Article  CAS  PubMed  Google Scholar 

  216. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04062201 (2022).

  217. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02754765 (2023).

  218. Guglielmetti, L. et al. Evaluating newly approved drugs for multidrug-resistant tuberculosis (endTB): study protocol for an adaptive, multi-country randomized controlled trial. Trials 22, 651 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03896685 (2022).

  220. ShORRT Initiative. Tropical Disease Research https://tdr.who.int/activities/shorrt-research-package (2022).

  221. Tuberculosis Treatment: 2023 Pipeline Report. Treatment Action Group https://www.treatmentactiongroup.org/resources/pipeline-report/2023-pipeline-report/ (2023).

  222. WHO Operational Handbook on Tuberculosis. Module 4: Treatment — Drug-resistant Tuberculosis Treatment, 2022 Update. World Health Organization https://www.who.int/publications/i/item/9789240065116 (2022).

  223. Maugans, C. et al. Best practices for the care of pregnant people living with TB. Int. J. Tuberc. Lung Dis. 27, 357–366 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Patankar, S. et al. Making the case for all-oral, shorter regimens for children with drug-resistant tuberculosis.Am. J. Respir. Crit. Care Med. 208, 130–131 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  225. Turkova, A. et al. Shorter treatment for nonsevere tuberculosis in African and Indian children. N. Engl. J. Med. 386, 911–922 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Management of Multidrug-resistant Tuberculosis in Children: A Field Guide. Sentinel Project on Pediatric Drug-Resistant Tuberculosis https://sentinel-project.org/wp-content/uploads/2022/03/DRTB-Field-Guide-2021_v5.pdf (2022).

  227. Furin, J., Tommasi, M. & Garcia-Prats, A. J. Drug-resistant tuberculosis: will grand promises fail children and adolescents? Lancet Child. Adolesc. Health 2, 237–238 (2018).

    Article  PubMed  Google Scholar 

  228. Karo, B. et al. Isoniazid (INH) mono-resistance and tuberculosis (TB) treatment success: analysis of European surveillance data, 2002 to 2014. Eur. Surveill. 24, 1800392 (2019).

    Article  Google Scholar 

  229. Gegia, M., Winters, N., Benedetti, A., Soolingen, D. & Menzies, D. Treatment of isoniazid-resistant tuberculosis with first-line drugs: a systematic review and meta-analysis. Lancet Infect. Dis. 17, 223–234 (2017).

    Article  CAS  PubMed  Google Scholar 

  230. Furin, J., Cox, H. & Pai, M. Tuberculosis. Lancet 393, 1642–1656 (2019).

    Article  PubMed  Google Scholar 

  231. WHO Consolidated Guidelines on Tuberculosis: Module 1: Prevention: Tuberculosis Preventive Treatment. World Health Organization https://www.who.int/publications/i/item/9789240001503 (2020).

  232. Guidelines for Programmatic Management of Tuberculosis Preventive Treatment in India. National TB Elimination Programme https://tbcindia.gov.in/WriteReadData/l892s/Guidelines%20for%20Programmatic%20Management%20of%20Tuberculosis%20Preventive%20Treatment%20in%20India.pdf (2021).

  233. Latent Tuberculosis Infection: Updated and Consolidated Guidelines for Programmatic Management. World Health Organization https://www.who.int/publications/i/item/9789241550239 (2018).

  234. Kherabi, Y., Tunesi, S., Kay, A. & Guglielmetti, L. Preventive therapy for contacts of drug-resistant tuberculosis. Pathogens 11, 1189 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Huang, C. C. et al. Isoniazid preventive therapy in contacts of multidrug-resistant tuberculosis. Am. J. Respir. Crit. Care Med. 202, 1159–1168 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  236. Seddon, J. A. et al. Levofloxacin versus placebo for the prevention of tuberculosis disease in child contacts of multidrug-resistant tuberculosis: study protocol for a phase-III cluster randomised controlled trial (TB-CHAMP). Trials 19, 693 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Fox, G. J. et al. Levofloxacin versus placebo for the treatment of latent tuberculosis among contacts of patients with multidrug-resistant tuberculosis (the VQUIN MDR trial): a protocol for a randomised controlled trial. BMJ Open 10, e033945 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  238. First Effective Treatment to Prevent Multidrug-Resistant TB. UCL News https://www.ucl.ac.uk/news/2023/nov/first-effective-treatment-prevent-multidrug-resistant-tb (2023).

  239. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03568383 (2023).

  240. WHO announces forthcoming updates on tuberculosis preventive treatment. World Health Organization https://www.who.int/news/item/13-02-2024-who-announces-forthcoming-updates-on-tuberculosis-preventive-treatment (2024).

  241. Zimmerman, E., Smith, J., Banay, R., Kau, M. & Garfin, A. M. C. G. Behavioural barriers and perceived trade-offs to care-seeking for tuberculosis in the Philippines. Glob. Public Health 17, 210–222 (2022).

    Article  PubMed  Google Scholar 

  242. Daftary, A., Frick, M., Venkatesan, N., & Pai, M. Fighting TB stigma: we need to apply lessons learnt from HIV activism. BMJ Glob. Health 2, e000515 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  243. Pradhan, A. et al. Internalized and perceived stigma and depression in pulmonary tuberculosis: do they explain the relationship between drug sensitivity status and adherence? Front. Psychiatry 13, 869647 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  244. Redwood, L. et al. Depression, stigma and quality of life in people with drug-susceptible TB and drug-resistant TB in Vietnam. Int. J. Tuberc. Lung Dis. 25, 461–467 (2021).

    Article  CAS  PubMed  Google Scholar 

  245. Daftary, A., Padayatchi, N. & O’Donnell, M. Preferential adherence to antiretroviral therapy over tuberculosis treatment: a qualitative study of drug-resistant TB/HIV co-infected patients in South Africa. Glob. Public Health 9, 1107–1116 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  246. Susanto, T. D. et al. Anxiety and depression level of patients with multidrug-resistant tuberculosis (MDR-TB) in two hospitals in Banten province, Indonesia. Dialogues Health 2, 100115 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  247. Walker, I. et al. Depression and anxiety in patients with multidrug-resistant tuberculosis in Nepal: an observational study. Public Health Action 9, 42–48 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Sommerland, N. et al. Evidence-based interventions to reduce tuberculosis stigma: a systematic review. Int. J. Tuberc. Lung Dis. 21, S81–S86 (2017).

    Article  Google Scholar 

  249. As’hab, P. P., Keliat, B. A. & Wardani, I. Y. The effects of acceptance and commitment therapy on psychosocial impact and adherence of multidrug-resistant tuberculosis patients. J. Public Health Res. 11, 2737 (2022).

    Google Scholar 

  250. Thomas, B. E. et al. Psycho-socio-economic issues challenging multidrug resistant tuberculosis patients: a systematic review. PLoS ONE 11, e0147397 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  251. Udwadia, Z. & Furin, J. Quality of drug-resistant tuberculosis care: gaps and solutions. J. Clin. Tuberc. Mycobact. Dis. 16, 100101 (2019).

    Google Scholar 

  252. Pai, M., Dewan, P. K. & Swaminathan, S. Transforming tuberculosis diagnosis. Nat. Microbiol. 8, 756–759 (2023).

    Article  CAS  PubMed  Google Scholar 

  253. McKenna, L. et al. The 1/4/6x24 campaign to cure tuberculosis quickly. Nat. Med. 11, 2337 (2023).

    Google Scholar 

  254. Zaunbrecher, M. A., Sikes, R. D. Jr, Metchock, B., Shinnick, T. M. & Posey, J. E. Overexpression of the chromosomally encoded aminoglycoside acetyltransferase eis confers kanamycin resistance in Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA 106, 20004–20009 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Miotto, P. et al. A standardised method for interpreting the association between mutations and phenotypic drug resistance in Mycobacterium tuberculosis. Eur. Respir. J. 50, 1701354 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  256. Rifat, D. et al. Mutations in fbiD (Rv2983) as a novel determinant of resistance to pretomanid and delamanid in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 65, e01948–20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  257. Plinke, C. et al. embCAB sequence variation among ethambutol-resistant Mycobacterium tuberculosis isolates without embB306 mutation. J. Antimicrob. Chemother. 65, 1359–1367 (2010).

    Article  CAS  PubMed  Google Scholar 

  258. Safi, H. et al. Evolution of high-level ethambutol-resistant tuberculosis through interacting mutations in decaprenylphosphoryl-β-D-arabinose biosynthetic and utilization pathway genes. Nat. Genet. 45, 1190–1197 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Srivastava, S., Ayyagari, A., Dhole, T. N., Nyati, K. K. & Dwivedi, S. K. emb nucleotide polymorphisms and the role of embB306 mutations in Mycobacterium tuberculosis resistance to ethambutol. Int. J. Med. Microbiol. 299, 269–280 (2009).

    Article  CAS  PubMed  Google Scholar 

  260. Grant, S. S. et al. Baeyer-Villiger monooxygenases EthA and MymA are required for activation of replicating and non-replicating Mycobacterium tuberculosis inhibitors. Cell Chem. Biol. 23, 666–677 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Dover, L. G. et al. EthA, a common activator of thiocarbamide-containing drugs acting on different mycobacterial targets. Antimicrob. Agents Chemother. 51, 1055–1063 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Vilchèze, C. et al. Mycothiol biosynthesis is essential for ethionamide susceptibility in Mycobacterium tuberculosis. Mol. Microbiol. 69, 1316–1329 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  263. Zhang, Y., Dhandayuthapani, S. & Deretic, V. Molecular basis for the exquisite sensitivity of Mycobacterium tuberculosis to isoniazid. Proc. Natl Acad. Sci. USA 93, 13212–13216 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Ando, H., Miyoshi-Akiyama, T., Watanabe, S. & Kirikae, T. A silent mutation in mabA confers isoniazid resistance on Mycobacterium tuberculosis. Mol. Microbiol. 91, 538–547 (2014).

    Article  CAS  PubMed  Google Scholar 

  265. Vilchèze, C. et al. Altered NADH/NAD+ ratio mediates coresistance to isoniazid and ethionamide in mycobacteria. Antimicrob. Agents Chemother. 49, 708–720 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  266. Reeves, A. Z. et al. Aminoglycoside cross-resistance in Mycobacterium tuberculosis due to mutations in the 5′ untranslated region of whiB7. Antimicrob. Agents Chemother. 57, 1857–1865 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Liu, J. et al. Mutations in efflux pump Rv1258c (tap) cause resistance to pyrazinamide, isoniazid, and streptomycin in Mycobacterium tuberculosis. Front. Microbiol. 10, 216 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  268. Gopal, P. et al. Pyrazinamide triggers degradation of its target aspartate decarboxylase. Nat. Commun. 11, 1661 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Scorpio, A. & Zhang, Y. Mutations in pncA, a gene encoding pyrazinamidase/nicotinamidase, cause resistance to the antituberculous drug pyrazinamide in tubercle bacillus. Nat. Med. 2, 662–667 (1996).

    Article  CAS  PubMed  Google Scholar 

  270. Wong, S. Y. et al. Functional role of methylation of G518 of the 16S rRNA 530 loop by GidB in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 57, 6311–6318 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Catalogue of Mutations in Mycobacterium tuberculosis Complex and their Association with Drug Resistance. World Health Organization https://www.who.int/publications/i/item/9789240028173 (2021).

  272. Farhat, M. R. et al. Rifampicin and rifabutin resistance in 1003 Mycobacterium tuberculosis clinical isolates. J. Antimicrob. Chemother. 74, 1477–1483 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Nahid, P. et al. Treatment of drug-resistant tuberculosis. An Official ATS/CDC/ERS/IDSA clinical practice guideline. Am. J. Respir. Crit. Care Med. 200, e93–e142 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

M.P., M.F., H.C., C.M.D., J.F. and M.G. wrote the article and, together with C.R. and M.S.A.E.A. researched data for the article. All authors contributed substantially to the discussion of the content and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Madhukar Pai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Microbiology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Clinicaltrials.gov: https://clinicaltrials.gov/

Supplementary information

Glossary

Directly observed therapy

Refers to the delivery of anti-tuberculosis drug treatment under direct observation of health workers, community workers or family members with the goal of improving adherence.

Extensively drug-resistant TB

(XDR-TB). Defined as multidrug-resistant or rifampicin-resistant tuberculosis with further resistance to fluoroquinolones and to either bedaquiline or linezolid or both (key second-line drugs).

Inh-resistant and Rif-susceptible TB

(Hr-TB). Defined as resistance to isoniazid and susceptibility to rifampicin.

Multidrug-resistant TB

(MDR-TB). Defined as resistance to rifampicin and isoniazid, the two most important first-line drugs used to treat tuberculosis (TB), regardless of resistance to other TB drugs.

Pre-XDR-TB

Defined as multidrug-resistant or rifampicin-resistant tuberculosis with resistance to fluoroquinolones.

Rif mono-resistant TB

(RMR-TB). Defined as resistance to rifampicin (Rif), with susceptibility to isoniazid.

Rif-resistant TB

(RR-TB). Defined as resistance to rifampicin (Rif), regardless of resistance to other tuberculosis (TB) drugs. Individuals with RR-TB are treated with regimens similar to those for multidrug-resistant TB (MDR-TB) and are therefore grouped with MDR-TB as MDR/RR-TB.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farhat, M., Cox, H., Ghanem, M. et al. Drug-resistant tuberculosis: a persistent global health concern. Nat Rev Microbiol (2024). https://doi.org/10.1038/s41579-024-01025-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41579-024-01025-1

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology