Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Clinical course and management of COVID-19 in the era of widespread population immunity

Abstract

The clinical implications of COVID-19 have changed since SARS-CoV-2 first emerged in humans. The current high levels of population immunity, due to prior infection and/or vaccination, have been associated with a vastly decreased overall risk of severe disease. Some people, particularly those with immunocompromising conditions, remain at risk for severe outcomes. Through the course of the pandemic, variants with somewhat different symptom profiles from the original SARS-CoV-2 virus have emerged. The management of COVID-19 has also changed since 2020, with the increasing availability of evidence-based treatments in two main classes: antivirals and immunomodulators. Selecting the appropriate treatment(s) for patients with COVID-19 requires a deep understanding of the evidence and an awareness of the limitations of applying data that have been largely based on immune-naive populations to patients today who most likely have vaccine-derived and/or infection-derived immunity. In this Review, we provide a summary of the clinical manifestations and approaches to caring for adult patients with COVID-19 in the era of vaccine availability and the dominance of the Omicron subvariants, with a focus on the management of COVID-19 in different patient groups, including immunocompromised, pregnant, vaccinated and unvaccinated patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Illness course and severity spectrum for unvaccinated individuals with Wuhan-Hu-1 virus.
Fig. 2: Clinical course of disease in relation to viral load.
Fig. 3: Clinical manifestations of COVID-19 in different patient groups.
Fig. 4: The four scenarios for repeated SARS-CoV-2 PCR positivity.

Similar content being viewed by others

References

  1. Lewnard, J. A. et al. Clinical outcomes associated with SARS-CoV-2 Omicron (B.1.1.529) variant and BA.1/BA.1.1 or BA.2 subvariant infection in southern California. Nat. Med. 28, 1933–1943 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nyberg, T. et al. Comparative analysis of the risks of hospitalisation and death associated with SARS-CoV-2 Omicron (B.1.1.529) and Delta (B.1.617.2) variants in England: a cohort study. Lancet 399, 1303–1312 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Esper, F. P. et al. Alpha to Omicron: disease severity and clinical outcomes of major SARS-CoV-2 variants. J. Infect. Dis. 227, 344–352 (2023).

    Article  CAS  PubMed  Google Scholar 

  4. Abu-Raddad, L. J., Chemaitelly, H. & Bertollini, R.; National Study Group for COVID-19 Epidemiology. Severity of SARS-CoV-2 reinfections as compared with primary infections. N. Engl. J. Med. 385, 2487–2489 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Britton, A. et al. Effectiveness of COVID-19 mRNA vaccines against COVID-19-associated hospitalizations among immunocompromised adults during SARS-CoV-2 Omicron predominance—VISION network, 10 states, December 2021–August 2022. MMWR Morb. Mortal. Wkly. Rep. 71, 1335–1342 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang, W., Kaelber, D. C., Xu, R. & Berger, N. A. Breakthrough SARS-CoV-2 infections, hospitalizations, and mortality in vaccinated patients with cancer in the US between December 2020 and November 2021. JAMA Oncol. 8, 1027–1034 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Song, Q. et al. Risk and outcome of breakthrough COVID-19 infections in vaccinated patients with cancer: real-world evidence from the National COVID Cohort Collaborative. J. Clin. Oncol. 40, 1414–1427 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Allotey, J. et al. Clinical manifestations, risk factors, and maternal and perinatal outcomes of coronavirus disease 2019 in pregnancy: living systematic review and meta-analysis. BMJ 370, m3320 (2020). This systematic review and meta-analysis demonstrates that pregnancy is a risk factor for severe COVID-19 disease.

    Article  PubMed  Google Scholar 

  9. Cevik, M., Kuppalli, K., Kindrachuk, J. & Peiris, M. Virology, transmission, and pathogenesis of SARS-CoV-2. BMJ 371, m3862 (2020).

    Article  PubMed  Google Scholar 

  10. Meyerowitz, E. A. & Richterman, A. SARS-CoV-2 transmission and prevention in the era of the Delta variant. Infect. Dis. Clin. North. Am. 36, 267–293 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Takahashi, K. et al. Duration of infectious virus shedding by SARS-CoV-2 Omicron variant-infected vaccinees. Emerg. Infect. Dis. 28, 998–1001 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Menni, C. et al. Symptom prevalence, duration, and risk of hospital admission in individuals infected with SARS-CoV-2 during periods of Omicron and Delta variant dominance: a prospective observational study from the ZOE COVID Study. Lancet 399, 1618–1624 (2022). This prospective observational study examines more than 60,000 individuals who tested positive for COVID-19 and reported symptoms in the ZOE app, providing important information about symptom duration and severity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Deo, R. et al. Symptom and viral rebound in untreated SARS-CoV-2 infection. Ann. Intern. Med. 176, 348–354 (2023).

    Article  PubMed  Google Scholar 

  14. Ranganath, N. et al. Rebound phenomenon after nirmatrelvir/ritonavir treatment of coronavirus disease-2019 in high-risk persons. Clin. Infect. Dis. 76, e537–e539 (2022).

    Article  Google Scholar 

  15. RECOVERY Collaborative Group et al. Dexamethasone in hospitalized patients with COVID-19. N. Engl. J. Med. 384, 693–704 (2021).

    Article  Google Scholar 

  16. Iuliano, A. D. et al. Trends in disease severity and health care utilization during the early Omicron variant period compared with previous SARS-CoV-2 high transmission periods — United States, December 2020–January 2022. MMWR Morb. Mortal. Wkly. Rep. 71, 146–152 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lee, C. Y. et al. Prolonged SARS-CoV-2 infection in patients with lymphoid malignancies. Cancer Discov. 12, 62–73 (2022).

    Article  CAS  PubMed  Google Scholar 

  18. Cevik, M. et al. SARS-CoV-2, SARS-CoV, and MERS-CoV viral load dynamics, duration of viral shedding, and infectiousness: a systematic review and meta-analysis. Lancet Microbe 2, e13–e22 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Cele, S. et al. SARS-CoV-2 prolonged infection during advanced HIV disease evolves extensive immune escape. Cell Host Microbe 30, 154–162.e5 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Thornhill, J., Orkin, C. & Cevik, M. Estimating the global impact of coronavirus disease 2019 on people living with HIV. Curr. Opin. Infect. Dis. 36, 20–25 (2023).

    Article  PubMed  Google Scholar 

  21. Trottier, C. A. et al. Dual antiviral therapy for persistent COVID-19 and associated organizing pneumonia in an immunocompromised host. Clin. Infect. Dis. 76, 923–925 (2022).

    Article  Google Scholar 

  22. Ford, E. S. et al. Successful treatment of prolonged, severe coronavirus disease 2019 (COVID-19) lower respiratory tract disease in a B-cell acute lymphoblastic leukemia (ALL) patient with an extended course of remdesivir and nirmatrelvir/ritonavir. Clin. Infect. Dis. 76, 926–929 (2022).

    Article  PubMed Central  Google Scholar 

  23. Martínez-Barranco, P. et al. Management of persistent SARS-CoV-2 infection in patients with follicular lymphoma. Acta Haematol. 145, 384–393 (2022).

    Article  PubMed  Google Scholar 

  24. Meyerowitz, E. A., Richterman, A., Bogoch, I. I., Low, N. & Cevik, M. Towards an accurate and systematic characterisation of persistently asymptomatic infection with SARS-CoV-2. Lancet Infect. Dis. 21, e163–e169 (2021).

    Article  CAS  PubMed  Google Scholar 

  25. Buitrago-Garcia, D. et al. Occurrence and transmission potential of asymptomatic and presymptomatic SARS-CoV-2 infections: update of a living systematic review and meta-analysis. PLoS Med. 19, e1003987 (2022). This systematic review and meta-analysis provides an overall estimate about the prevalence of asymptomatic infection, revealing that most studies are of poor quality, whereas those with good methodology suggest that approximately 20% of all infections are asymptomatic.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Varshney, A. S. et al. Epidemiology of cardiogenic shock in hospitalized adults with COVID-19: a report from the American Heart Association COVID-19 Cardiovascular Disease Registry. Circ. Heart Fail. 14, e008477 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shi, H. et al. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. Lancet Infect. Dis. 20, 425–434 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Guo, T. et al. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol. 5, 811–818 (2020).

    Article  PubMed  Google Scholar 

  29. Boehmer, T. K. et al. Association between COVID-19 and myocarditis using hospital-based administrative data—United States, March 2020–January 2021. MMWR Morb. Mortal. Wkly. Rep. 70, 1228–1232 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Katsoularis, I., Fonseca-Rodríguez, O., Farrington, P., Lindmark, K. & Fors Connolly, A.-M. Risk of acute myocardial infarction and ischaemic stroke following COVID-19 in Sweden: a self-controlled case series and matched cohort study. Lancet 398, 599–607 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Patone, M. et al. Risks of myocarditis, pericarditis, and cardiac arrhythmias associated with COVID-19 vaccination or SARS-CoV-2 infection. Nat. Med. 28, 410–422 (2022).

    Article  CAS  PubMed  Google Scholar 

  32. Legrand, M. et al. Pathophysiology of COVID-19-associated acute kidney injury. Nat. Rev. Nephrol. 17, 751–764 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Knight, R. et al. Association of COVID-19 with major arterial and venous thrombotic diseases: a population-wide cohort study of 48 million adults in England and Wales. Circulation 146, 892–906 (2022). This work is the largest study examining vascular disease following COVID-19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. de Freitas, R. F. et al. Syncope and COVID-19 disease—a systematic review. Auton. Neurosci. 235, 102872 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Freeman, E. E. et al. The spectrum of COVID-19-associated dermatologic manifestations: an international registry of 716 patients from 31 countries. J. Am. Acad. Dermatol. 83, 1118–1129 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Levin, A. T. et al. Assessing the age specificity of infection fatality rates for COVID-19: systematic review, meta-analysis, and public policy implications. Eur. J. Epidemiol. 35, 1123–1138 (2020). This comprehensive systematic review and meta-analysis examines fatality rates across age groups.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Williamson, E. J. et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature 584, 430–436 (2020). This work presents the largest data set examining COVID fatality rates and risk factors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Havers, F. P. et al. COVID-19-associated hospitalizations among vaccinated and unvaccinated adults 18 years or older in 13 US States, January 2021 to April 2022. JAMA Intern. Med. 182, 1071–1081 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Andeweg, S. P. et al. Protection of COVID-19 vaccination and previous infection against Omicron BA.1, BA.2 and Delta SARS-CoV-2 infections. Nat. Commun. 13, 4738 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Altarawneh, H. N. et al. Effects of previous infection and vaccination on symptomatic Omicron infections. N. Engl. J. Med. 387, 21–34 (2022).

    Article  CAS  PubMed  Google Scholar 

  41. Knudtzen, F. C. et al. SARS-CoV-2 viral load as a predictor for disease severity in outpatients and hospitalised patients with COVID-19: a prospective cohort study. PLoS ONE 16, e0258421 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fajnzylber, J. et al. SARS-CoV-2 viral load is associated with increased disease severity and mortality. Nat. Commun. 11, 5493 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. ACTIV-3/TICO Study Group et al. The association of baseline plasma SARS-CoV-2 nucleocapsid antigen level and outcomes in patients hospitalized with COVID-19. Ann. Intern. Med. 175, 1401–1410 (2022).

    Article  Google Scholar 

  44. Mayr, F. B. et al. COVID-19 disease severity in US veterans infected during Omicron and Delta variant predominant periods. Nat. Commun. 13, 3647 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Khoury, E. et al. Differences in outcomes and factors associated with mortality among patients with SARS-CoV-2 infection and cancer compared with those without cancer: a systematic review and meta-analysis. JAMA Netw. Open. 5, e2210880 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Pinato, D. J. et al. Time-dependent COVID-19 mortality in patients with cancer: an updated analysis of the oncovid registry. JAMA Oncol. 8, 114–122 (2022).

    Article  PubMed  Google Scholar 

  47. Pinato, D. J. et al. Outcomes of the SARS-CoV-2 Omicron (B.1.1.529) variant outbreak among vaccinated and unvaccinated patients with cancer in Europe: results from the retrospective, multicentre, OnCovid registry study. Lancet Oncol. 23, 865–875 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Heldman, M. R. et al. Changing trends in mortality among solid organ transplant recipients hospitalized for COVID-19 during the course of the pandemic. Am. J. Transpl. 22, 279–288 (2022).

    Article  CAS  Google Scholar 

  49. Cochran, W. et al. COVID-19 clinical outcomes in solid organ transplant recipients during the Omicron surge. Transplantation 106, e346–e347 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Liew, J. et al. SARS-CoV-2 breakthrough infections among vaccinated individuals with rheumatic disease: results from the COVID-19 Global Rheumatology Alliance provider registry. RMD Open 8, e002187 (2022).

    Article  PubMed  Google Scholar 

  51. Sparks, J. A. et al. Associations of baseline use of biologic or targeted synthetic DMARDs with COVID-19 severity in rheumatoid arthritis: results from the COVID-19 Global Rheumatology Alliance physician registry. Ann. Rheum. Dis. 80, 1137–1146 (2021).

    Article  CAS  PubMed  Google Scholar 

  52. Strangfeld, A. et al. Factors associated with COVID-19-related death in people with rheumatic diseases: results from the COVID-19 Global Rheumatology Alliance physician-reported registry. Ann. Rheum. Dis. 80, 930–942 (2021).

    Article  CAS  PubMed  Google Scholar 

  53. Dandachi, D. et al. Characteristics, comorbidities, and outcomes in a multicenter registry of patients with human immunodeficiency virus and coronavirus disease 2019. Clin. Infect. Dis. 73, e1964–e1972 (2021).

    Article  CAS  PubMed  Google Scholar 

  54. Nomah, D. K. et al. Sociodemographic, clinical, and immunological factors associated with SARS-CoV-2 diagnosis and severe COVID-19 outcomes in people living with HIV: a retrospective cohort study. Lancet Hiv. 8, e701–e710 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tesoriero, J. M. et al. COVID-19 outcomes among persons living with or without diagnosed HIV infection in New York State. JAMA Netw. Open. 4, e2037069 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Yang, X. et al. Associations between HIV infection and clinical spectrum of COVID-19: a population level analysis based on US National COVID Cohort Collaborative (N3C) data. Lancet HIV. 8, e690–e700 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lang, R. et al. Analysis of severe illness after postvaccination COVID-19 breakthrough among adults with and without HIV in the US. JAMA Netw. Open. 5, e2236397 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Richterman, A. et al. Durability of SARS-CoV-2 mRNA booster vaccine protection against Omicron among health care workers with a vaccine mandate. Clin. Infect. Dis. 76, e319–e326 (2022).

    Article  Google Scholar 

  59. Callaghan, C. J. et al. Vaccine effectiveness against the SARS-CoV-2 B.1.1.529 Omicron variant in solid organ and islet transplant recipients in England: a National Retrospective Cohort Study. Transplantation 107, 1124–1135 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Li, T.-Z. et al. Duration of SARS-CoV-2 RNA shedding and factors associated with prolonged viral shedding in patients with COVID-19. J. Med. Virol. 93, 506–512 (2021).

    Article  CAS  PubMed  Google Scholar 

  61. Mack, C. D. et al. SARS-CoV-2 transmission risk among national basketball association players, staff, and vendors exposed to individuals with positive test results after COVID-19 recovery during the 2020 regular and postseason. JAMA Intern. Med. 181, 960–966 (2021). This study includes a longitudinal sampling of basketball players and explores the clinical presentation, viral load and transmission dynamics of SARS-CoV-2 in this cohort.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Santos Bravo, M. et al. Viral culture confirmed SARS-CoV-2 subgenomic RNA value as a good surrogate marker of infectivity. J. Clin. Microbiol. 60, e0160921 (2022).

    Article  PubMed  Google Scholar 

  63. Turbett, S. E. et al. Distinguishing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) persistence and reinfection: a retrospective cohort study. Clin. Infect. Dis. 76, 850–860 (2022). This study provides an understanding of SARS-CoV-2 reinfections and shows that Ct value-based assessments fail to identify genomically supported reinfections.

    Article  PubMed Central  Google Scholar 

  64. Bowe, B., Xie, Y. & Al-Aly, Z. Acute and postacute sequelae associated with SARS-CoV-2 reinfection. Nat. Med. 28, 2398–2405 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Nevejan, L. et al. Early SARS-CoV-2 reinfections within 60 days and implications for retesting policies. Emerg. Infect. Dis. 28, 1729–1731 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Edridge, A. W. D. et al. Seasonal coronavirus protective immunity is short-lasting. Nat. Med. 26, 1691–1693 (2020).

    Article  CAS  PubMed  Google Scholar 

  67. Baang, J. H. et al. Prolonged severe acute respiratory syndrome coronavirus 2 replication in an immunocompromised patient. J. Infect. Dis. 223, 23–27 (2021).

    Article  CAS  PubMed  Google Scholar 

  68. Ambati, S. et al. Resolution of persistent SARS-CoV-2 infection with prolonged intravenous remdesivir and vaccination in a patient post CAR-T. Int. J. Hematol. 117, 765–768 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Choi, B. et al. Persistence and evolution of SARS-CoV-2 in an immunocompromised host. N. Engl. J. Med. 383, 2291–2293 (2020).

    Article  PubMed  Google Scholar 

  70. Kemp, S. A. et al. SARS-CoV-2 evolution during treatment of chronic infection. Nature 592, 277–282 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Pandit, J. A. et al. The coronavirus disease 2019 rebound study: a prospective cohort study to evaluate viral and symptom rebound differences in participants treated with nirmatrelvir plus ritonavir versus untreated controls. Clin. Infect. Dis. 77, 25–31 (2023).

    Article  CAS  PubMed  Google Scholar 

  72. Schilling, W. H. K. et al. Antiviral efficacy of molnupiravir versus ritonavir-boosted nirmatrelvir in patients with early symptomatic COVID-19 (PLATCOV): an open-label, phase 2, randomised, controlled, adaptive trial. Lancet Infect. Dis. https://doi.org/10.1016/S1473-3099(23)00493-0 (2023).

  73. Edelstein, G. E. et al. SARS-CoV-2 virologic rebound with nirmatrelvir–ritonavir therapy: an observational study. Ann. Intern. Med. https://doi.org/10.7326/M23-1756 (2023).

  74. Pekosz, A. et al. Antigen-based testing but not real-time polymerase chain reaction correlates with severe acute respiratory syndrome coronavirus 2 viral culture. Clin. Infect. Dis. 73, e2861–e2866 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Almendares, O. et al. Performance characteristics of the Abbott BinaxNOW SARS-CoV-2 antigen test in comparison to real-time reverse transcriptase PCR and viral culture in community testing sites during November 2020. J. Clin. Microbiol. 60, e0174221 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Cheng, H.-Y. et al. Contact tracing assessment of COVID-19 transmission dynamics in Taiwan and risk at different exposure periods before and after symptom onset. JAMA Intern. Med. 180, 1156 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Siegel, D. et al. Discovery and synthesis of a phosphoramidate prodrug of a pyrrolo[2,1-f][triazin-4-amino] adenine C-nucleoside (GS-5734) for the treatment of ebola and emerging viruses. J. Med. Chem. 60, 1648–1661 (2017).

    Article  CAS  PubMed  Google Scholar 

  78. Gordon, C. J. et al. Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency. J. Biol. Chem. 295, 6785–6797 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wang, Y. et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet 395, 1569–1578 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Spinner, C. D. et al. Effect of remdesivir vs standard care on clinical status at 11 days in patients with moderate COVID-19: a randomized clinical trial. JAMA 324, 1048–1057 (2020).

    Article  CAS  PubMed  Google Scholar 

  81. Beigel, J. H. et al. Remdesivir for the treatment of COVID-19—final report. N. Engl. J. Med. 383, 1813–1826 (2020).

    Article  CAS  PubMed  Google Scholar 

  82. Ader, F. et al. Remdesivir plus standard of care versus standard of care alone for the treatment of patients admitted to hospital with COVID-19 (DisCoVeRy): a phase 3, randomised, controlled, open-label trial. Lancet Infect. Dis. 22, 209–221 (2022).

    Article  CAS  PubMed  Google Scholar 

  83. Pan, H. et al. Repurposed antiviral drugs for COVID-19—interim WHO Solidarity trial results. N. Engl. J. Med. 384, 497–511 (2021).

    Article  CAS  PubMed  Google Scholar 

  84. Goldman, J. D. et al. Remdesivir for 5 or 10 days in patients with severe COVID-19. N. Engl. J. Med. 383, 1827–1837 (2020).

    Article  CAS  PubMed  Google Scholar 

  85. Gottlieb, R. L. et al. Early remdesivir to prevent progression to severe COVID-19 in outpatients. N. Engl. J. Med. 386, 305–315 (2022).

    Article  CAS  PubMed  Google Scholar 

  86. Bhimraj, A. et al. Infectious Diseases Society of America guidelines on the treatment and management of patients with COVID-19. Clin. Infect. Dis. https://doi.org/10.1093/cid/ciac724 (2022).

  87. National Institutes of Health. Hospitalized adults: therapeutic management. COVID-19 Treatment Guidelines https://www.covid19treatmentguidelines.nih.gov/tables/therapeutic-management-of-hospitalized-adults/ (2023).

  88. Agarwal, A. et al. A living WHO guideline on drugs for covid-19. BMJ 370, m3379 https://doi.org/10.1136/bmj.m3379 (2020).

  89. Amstutz, A. et al. Effects of remdesivir in patients hospitalised with COVID-19: a systematic review and individual patient data meta-analysis of randomised controlled trials. Lancet Respir. Med. 11, 453–464 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Barkas, F., Styla, C.-P., Bechlioulis, A., Milionis, H. & Liberopoulos, E. Sinus bradycardia associated with remdesivir treatment in COVID-19: a case report and literature review. J. Cardiovasc. Dev. Dis. 8, 18 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Cao, Z. et al. VV116 versus nirmatrelvir–ritonavir for oral treatment of COVID-19. N. Engl. J. Med. 388, 406–417 (2023).

    Article  CAS  PubMed  Google Scholar 

  92. Vangeel, L. et al. Remdesivir, molnupiravir and nirmatrelvir remain active against SARS-CoV-2 Omicron and other variants of concern. Antivir. Res. 198, 105252 (2022).

    Article  CAS  PubMed  Google Scholar 

  93. Takashita, E. et al. Efficacy of antiviral agents against the SARS-CoV-2 Omicron subvariant BA.2. N. Engl. J. Med. 386, 1475–1477 (2022).

    Article  PubMed  Google Scholar 

  94. Takashita, E. et al. Efficacy of antibodies and antiviral drugs against Omicron BA.2.12.1, BA.4, and BA.5 subvariants. N. Engl. J. Med. 387, 468–470 (2022).

    Article  PubMed  Google Scholar 

  95. Owen, D. R. et al. An oral SARS-CoV-2 Mpro inhibitor clinical candidate for the treatment of COVID-19. Science 374, 1586–1593 (2021).

    Article  CAS  PubMed  Google Scholar 

  96. Sevrioukova, I. F. & Poulos, T. L. Structure and mechanism of the complex between cytochrome P4503A4 and ritonavir. Proc. Natl Acad. Sci. USA 107, 18422–18427 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hammond, J. et al. Oral Nirmatrelvir for high-risk, nonhospitalized adults with COVID-19. N. Engl. J. Med. 386, 1397–1408 (2022).

    Article  CAS  PubMed  Google Scholar 

  98. Pfizer. Pfizer reports additional data on PAXLOVIDTM supporting upcoming new drug application submission to U.S. FDA. Pfizer https://www.pfizer.com/news/press-release/press-release-detail/pfizer-reports-additional-data-paxlovidtm-supporting (2022).

  99. Greasley, S. E. et al. Structural basis for the in vitro efficacy of nirmatrelvir against SARS-CoV-2 variants. J. Biol. Chem. 298, 101972 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Imai, M. et al. Efficacy of antiviral agents against Omicron subvariants BQ.1.1 and XBB. N. Engl. J. Med. 388, 89–91 (2023).

    Article  PubMed  Google Scholar 

  101. Arbel, R. et al. Nirmatrelvir use and severe COVID-19 outcomes during the Omicron surge. N. Engl. J. Med. 387, 790–798 (2022).

    Article  CAS  PubMed  Google Scholar 

  102. Najjar-Debbiny, R. et al. Effectiveness of Paxlovid in reducing severe coronavirus disease 2019 and mortality in high-risk patients. Clin. Infect. Dis. 76, e342–e349 (2023).

    Article  CAS  PubMed  Google Scholar 

  103. Dryden-Peterson, S. et al. Nirmatrelvir plus ritonavir for early COVID-19 in a large U.S. health system: a population-based cohort study. Ann. Intern. Med. 176, 77–84 (2023).

    Article  PubMed  Google Scholar 

  104. Shah, M. M. et al. Paxlovid associated with decreased hospitalization rate among adults with COVID-19—United States, April–September 2022. MMWR Morb. Mortal. Wkly. Rep. 71, 1531–1537 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Butler, C. C. et al. Molnupiravir plus usual care versus usual care alone as early treatment for adults with COVID-19 at increased risk of adverse outcomes (PANORAMIC): an open-label, platform-adaptive randomised controlled trial. Lancet 401, 281–293 (2023).

    Article  CAS  PubMed  Google Scholar 

  106. Pfizer. Pfizer shares top-line results from phase 2/3 EPIC-PEP study of PAXLOVIDTM for post-exposure prophylactic use. Pfizer https://www.pfizer.com/news/press-release/press-release-detail/pfizer-shares-top-line-results-phase-23-epic-pep-study (2022).

  107. Marzolini, C. et al. Prescribing nirmatrelvir–ritonavir: how to recognize and manage drug–drug interactions. Ann. Intern. Med. 175, 744–746 (2022).

    Article  PubMed  Google Scholar 

  108. Sheahan, T. P. et al. An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice. Sci. Transl. Med. 12, eabb5883 (2020).

    Article  CAS  PubMed  Google Scholar 

  109. Zou, R. et al. Antiviral efficacy and safety of molnupiravir against Omicron variant infection: a randomized controlled clinical trial. Front. Pharmacol. 13, 939573 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Fischer, W. A. et al. A phase 2a clinical trial of molnupiravir in patients with COVID-19 shows accelerated SARS-CoV-2 RNA clearance and elimination of infectious virus. Sci. Transl. Med. 14, eabl7430 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Jayk Bernal, A. et al. Molnupiravir for oral treatment of COVID-19 in nonhospitalized patients. N. Engl. J. Med. 386, 509–520 (2022).

    Article  PubMed  Google Scholar 

  112. Sanderson, T. et al. A molnupiravir-associated mutational signature in global SARS-CoV-2 genomes. Nature 623, 594–600 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Weinreich, D. M. et al. REGEN-COV antibody combination and outcomes in outpatients with COVID-19. N. Engl. J. Med. 385, e81 (2021).

    Article  CAS  PubMed  Google Scholar 

  114. Chen, P. et al. SARS-CoV-2 neutralizing antibody LY-CoV555 in outpatients with COVID-19. N. Engl. J. Med. 384, 229–237 (2021).

    Article  CAS  PubMed  Google Scholar 

  115. Gupta, A. et al. Effect of sotrovimab on hospitalization or death among high-risk patients with mild to moderate COVID-19: a randomized clinical trial. JAMA 327, 1236–1246 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Levin, M. J. et al. Intramuscular AZD7442 (tixagevimab–cilgavimab) for prevention of COVID-19. N. Engl. J. Med. 386, 2188–2200 (2022).

    Article  CAS  PubMed  Google Scholar 

  117. [No authors listed] Update to living WHO guideline on drugs for COVID-19. BMJ 380, 57 (2023).

  118. National Institutes of Health. Anti-SARS-CoV-2 monoclonal antibodies. COVID-19 Treatment Guidelines https://www.covid19treatmentguidelines.nih.gov/therapies/antivirals-including-antibody-products/anti-sars-cov-2-monoclonal-antibodies/ (2023).

  119. Sullivan, D. J. et al. Early outpatient treatment for COVID-19 with convalescent plasma. N. Engl. J. Med. 386, 1700–1711 (2022).

    Article  CAS  PubMed  Google Scholar 

  120. National Institutes of Health. Convalescent plasma and immune globulins. COVID-19 Treatment Guidelines https://www.covid19treatmentguidelines.nih.gov/therapies/antivirals-including-antibody-products/covid-19-convalescent-plasma/ (2023).

  121. Korley, F. K. et al. Early convalescent plasma for high-risk outpatients with COVID-19. N. Engl. J. Med. 385, 1951–1960 (2021).

    Article  CAS  PubMed  Google Scholar 

  122. Gharbharan, A. et al. Outpatient convalescent plasma therapy for high-risk patients with early COVID-19: a randomized placebo-controlled trial. Clin. Microbiol. Infect. 29, 208–214 (2023).

    Article  CAS  PubMed  Google Scholar 

  123. Reis, G. et al. Effect of early treatment with fluvoxamine on risk of emergency care and hospitalisation among patients with COVID-19: the TOGETHER randomised, platform clinical trial. Lancet Glob. Health 10, e42–e51 (2022).

    Article  CAS  PubMed  Google Scholar 

  124. McCarthy, M. W. et al. Effect of fluvoxamine vs placebo on time to sustained recovery in outpatients with mild to moderate COVID-19: a randomized clinical trial. JAMA 329, 296–305 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Griesel, M. et al. Inhaled corticosteroids for the treatment of COVID-19. Cochrane Database Syst. Rev. 3, CD015125 (2022).

    PubMed  Google Scholar 

  126. Jagannathan, P. et al. Peginterferon Lambda-1a for treatment of outpatients with uncomplicated COVID-19: a randomized placebo-controlled trial. Nat. Commun. 12, 1967 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Mitjà, O. et al. Hydroxychloroquine for early treatment of adults with mild coronavirus disease 2019: a randomized, controlled trial. Clin. Infect. Dis. 73, e4073–e4081 (2021).

    Article  PubMed  Google Scholar 

  128. Butler, C. C. et al. Azithromycin for community treatment of suspected COVID-19 in people at increased risk of an adverse clinical course in the UK (PRINCIPLE): a randomised, controlled, open-label, adaptive platform trial. Lancet 397, 1063–1074 (2021).

    Article  Google Scholar 

  129. Reis, G. et al. Effect of early treatment with hydroxychloroquine or lopinavir and ritonavir on risk of hospitalization among patients with COVID-19: the TOGETHER randomized clinical trial. JAMA Netw. Open. 4, e216468 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Reis, G. et al. Effect of early treatment with ivermectin among patients with COVID-19. N. Engl. J. Med. 386, 1721–1731 (2022).

    Article  CAS  PubMed  Google Scholar 

  131. Tardif, J.-C. et al. Colchicine for community-treated patients with COVID-19 (COLCORONA): a phase 3, randomised, double-blinded, adaptive, placebo-controlled, multicentre trial. Lancet Respir. Med. 9, 924–932 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Eikelboom, J. W. et al. Colchicine and aspirin in community patients with COVID-19 (ACT): an open-label, factorial, randomised, controlled trial. Lancet Respir. Med. 10, 1160–1168 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Horby, P. et al. Dexamethasone in hospitalized patients with COVID-19. N. Engl. J. Med. 384, 693–704 (2021).

    Article  CAS  PubMed  Google Scholar 

  134. Chen, G. et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J. Clin. Invest. 130, 2620–2629 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. RECOVERY Collaborative Group. Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet 397, 1637–1645 (2021).

    Article  Google Scholar 

  136. Higgins, A. M. et al. Long-term (180-day) outcomes in critically Ill patients with COVID-19 in the REMAP-CAP randomized clinical trial. JAMA 329, 39–51 (2023).

    Article  PubMed  Google Scholar 

  137. The WHO Rapid Evidence Appraisal for COVID-19 Therapies (REACT) Working Group et al. Association between administration of systemic corticosteroids and mortality among critically Ill patients with COVID-19: a meta-analysis. JAMA 324, 1330–1341 (2020).

    Article  Google Scholar 

  138. National Institutes of Health. Interleukin-6 inhibitors. COVID-19 Treatment Guidelines https://www.covid19treatmentguidelines.nih.gov/therapies/immunomodulators/interleukin-6-inhibitors (2023).

  139. Babon, J. J., Lucet, I. S., Murphy, J. M., Nicola, N. A. & Varghese, L. N. The molecular regulation of Janus kinase (JAK) activation. Biochem. J. 462, 1–13 (2014).

    Article  CAS  PubMed  Google Scholar 

  140. Bousoik, E. & Montazeri Aliabadi, H. ‘Do We Know Jack’ about JAK? a closer look at JAK/STAT signaling pathway. Front. Oncol. 8, 287 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Stebbing, J. et al. COVID-19: combining antiviral and anti-inflammatory treatments. Lancet Infect. Dis. 20, 400–402 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Richardson, P. et al. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet 395, e30–e31 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Kalil, A. C. et al. Baricitinib plus remdesivir for hospitalized adults with COVID-19. N. Engl. J. Med. 384, 795–807 (2021).

    Article  CAS  PubMed  Google Scholar 

  144. RECOVERY Collaborative Group. Baricitinib in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial and updated meta-analysis. Lancet 400, 359–368 (2022).

    Article  Google Scholar 

  145. Marconi, V. C. et al. Efficacy and safety of baricitinib for the treatment of hospitalised adults with COVID-19 (COV-BARRIER): a randomised, double-blind, parallel-group, placebo-controlled phase 3 trial. Lancet Respir. Med. 9, 1407–1418 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. National Institutes of Health. Janus kinase inhibitors. COVID-19 Treatment Guidelines https://www.covid19treatmentguidelines.nih.gov/therapies/immunomodulators/kinase-inhibitors/ (2023).

  147. National Institutes of Health. Pregnancy, lactation, and COVID-19 therapeutics. COVID-19 Treatment Guidelines. https://www.covid19treatmentguidelines.nih.gov/special-populations/pregnancy/pregnancy-lactation-and-covid-19-therapeutics/ (2023).

  148. Crothers, K. et al. Dexamethasone in hospitalised COVID-19 patients not on intensive respiratory support. Eur. Respir. J. 60, 2102532 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Male, V. Medawar and the immunological paradox of pregnancy: in context. Oxf. Open. Immunol. 2, iqaa006 (2021).

    Article  PubMed  Google Scholar 

  150. Schwartz, D. A. et al. Placental tissue destruction and insufficiency from COVID-19 causes stillbirth and neonatal death from hypoxic–ischemic injury. Arch. Pathol. Lab. Med. 146, 660–676 (2022).

    Article  CAS  PubMed  Google Scholar 

  151. Marchand, G. et al. Systematic review and meta-analysis of COVID-19 maternal and neonatal clinical features and pregnancy outcomes up to June 3, 2021. AJOG Glob. Rep. 2, 100049 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Schwartz, D. A., Mulkey, S. B. & Roberts, D. J. SARS-CoV-2 placentitis, stillbirth, and maternal COVID-19 vaccination: clinical–pathologic correlations. Am. J. Obstet. Gynecol. 228, 261–269 (2023).

    Article  CAS  PubMed  Google Scholar 

  153. Villar, J. et al. Pregnancy outcomes and vaccine effectiveness during the period of omicron as the variant of concern, INTERCOVID-2022: a multinational, observational study. Lancet 401, 447–457 (2023). This epidemiological study demonstrates that, among unvaccinated individuals, the risk of infection with the Omicron variant in pregnancy is no lower than that with the original strain.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Prasad, S. et al. Systematic review and meta-analysis of the effectiveness and perinatal outcomes of COVID-19 vaccination in pregnancy. Nat. Commun. 13, 2414 (2022). This systematic review and meta-analysis demonstrates that COVID-19 vaccination is safe and effective in pregnancy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Bremme, K. A. Haemostatic changes in pregnancy. Best. Pract. Res. Clin. Haematol. 16, 153–168 (2003).

    Article  PubMed  Google Scholar 

  156. D’Souza, R. et al. A critical review of the pathophysiology of thrombotic complications and clinical practice recommendations for thromboprophylaxis in pregnant patients with COVID‐19. Acta Obstet. Gynecol. Scand. 99, 1110–1120 (2020).

    Article  PubMed  Google Scholar 

  157. Bikdeli, B. et al. COVID-19 and thrombotic or thromboembolic disease: implications for prevention, antithrombotic therapy, and follow-up. J. Am. Coll. Cardiol. 75, 2950–2973 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Middleton, P., Shepherd, E. & Gomersall, J. C. Venous thromboembolism prophylaxis for women at risk during pregnancy and the early postnatal period. Cochrane Database Syst. Rev. 3, CD001689 (2021).

    PubMed  Google Scholar 

  159. Eid, J. et al. Early administration of remdesivir and intensive care unit admission in hospitalized pregnant individuals with coronavirus disease 2019 (COVID-19). Obstet. Gynecol. 139, 619–621 (2022).

    Article  CAS  PubMed  Google Scholar 

  160. Budi, D. S. et al. Remdesivir for pregnancy: a systematic review of antiviral therapy for COVID-19. Heliyon 8, e08835 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Chourasia, P. et al. Paxlovid (nirmatrelvir and ritonavir) use in pregnant and lactating woman: current evidence and practice guidelines—a scoping review. Vaccines 11, 107 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Lin, C. Y. et al. Nirmatrelvir–ritonavir (Paxlovid) for mild coronavirus disease 2019 (COVID-19) in pregnancy and lactation. Obstet. Gynecol. 141, 957–960 (2023).

    Article  CAS  PubMed  Google Scholar 

  163. Electronic Medicines Compendium. Lagevrio 200 mg hard capsules. https://www.medicines.org.uk/emc/product/13044#gref (18 Oct 2023).

  164. Thevathasan, I. & Said, J. M. Controversies in antenatal corticosteroid treatment. Prenat. Diagn. 40, 1138–1149 (2020).

    Article  CAS  PubMed  Google Scholar 

  165. Saad, A. F., Chappell, L., Saade, G. R. & Pacheco, L. D. Corticosteroids in the management of pregnant patients with coronavirus disease (COVID-19). Obstet. Gynecol. 136, 823–826 (2020).

    Article  CAS  PubMed  Google Scholar 

  166. Thilagar, B. P. et al. Anti-spike monoclonal antibody therapy in pregnant women with mild-to-moderate coronavirus disease 2019 (COVID-19). Obstet. Gynecol. 139, 616–618 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Abani, O. et al. Casirivimab and imdevimab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet 399, 665–676 (2022).

    Article  Google Scholar 

  168. Jiménez‐Lozano, I. et al. Safety of tocilizumab in COVID‐19 pregnant women and their newborn: a retrospective study. J. Clin. Pharm. Ther. 46, 1062–1070 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  169. European Medicines Agency. Olumiant—summary of product characteristics, https://www.ema.europa.eu/en/documents/product-information/olumiant-epar-product-information_en.pdf.

  170. Mackey, K. et al. Racial and ethnic disparities in COVID-19-related infections, hospitalizations, and deaths: a systematic review. Ann. Intern. Med. 174, 362–373 (2021).

    Article  PubMed  Google Scholar 

  171. Gold, J. A. W. et al. Dispensing of oral antiviral drugs for treatment of COVID-19 by zip code-level social vulnerability—United States, December 23, 2021–May 21, 2022. MMWR Morb. Mortal. Wkly. Rep. 71, 825–829 (2022).

    Article  CAS  PubMed  Google Scholar 

  172. Huang, Y. et al. COVID symptoms, symptom clusters, and predictors for becoming a long-hauler looking for clarity in the haze of the pandemic. Clin. Nurs. Res. 31, 1390–1398 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Heraud, S. O. et al. Post-intensive care syndrome among survivors in a safety net hospital in South Bronx: a comparison of patients with and without coronavirus disease 2019. Open. Forum Infect. Dis. 10, ofac606 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Sudre, C. H. et al. Attributes and predictors of long COVID. Nat. Med. 27, 626–631 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Reese, J. T. et al. Generalisable long COVID subtypes: findings from the NIH N3C and RECOVER programmes. eBioMedicine 87, 104413 (2023).

    Article  PubMed  Google Scholar 

  176. Canas, L. S. et al. Profiling post-COVID-19 condition across different variants of SARS-CoV-2: a prospective longitudinal study in unvaccinated wild-type, unvaccinated Alpha-variant, and vaccinated Delta-variant populations. Lancet Digital Health 5, e421–e434 (2023).

    Article  CAS  PubMed  Google Scholar 

  177. Ballering, A. V., van Zon, S. K. R., Olde Hartman, T. C. & Rosmalen, J. G. M. Persistence of somatic symptoms after COVID-19 in the Netherlands: an observational cohort study. Lancet 400, 452–461 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Wulf Hanson, S. et al. Estimated global proportions of individuals with persistent fatigue, cognitive, and respiratory symptom clusters following symptomatic COVID-19 in 2020 and 2021. JAMA 328, 1604–1615 (2022). This large population-based cohort study is an example of a good study design for estimating PCC.

    Article  PubMed  PubMed Central  Google Scholar 

  179. Daugherty, S. E. et al. Risk of clinical sequelae after the acute phase of SARS-CoV-2 infection: retrospective cohort study. BMJ 373, n1098 (2021). This study uses data from 1.2 million people with symptomatic COVID-19 from 22 countries and demonstrates a good study design adjusting for symptoms in control groups and self-reported health status prior to infection with COVID-19.

    Article  PubMed  Google Scholar 

  180. Taquet, M. et al. Incidence, co-occurrence, and evolution of long-COVID features: a 6-month retrospective cohort study of 273,618 survivors of COVID-19. PLoS Med. 18, e1003773 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Abel, K. M. et al. Association of SARS-CoV-2 infection with psychological distress, psychotropic prescribing, fatigue, and sleep problems among UK primary care patients. JAMA Netw. Open. 4, e2134803 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Azzolini, E. et al. Association between BNT162b2 vaccination and long COVID after infections not requiring hospitalization in health care workers. JAMA 328, 676–678 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Antonelli, M., Pujol, J. C., Spector, T. D., Ourselin, S. & Steves, C. J. Risk of long COVID associated with Delta versus omicron variants of SARS-CoV-2. Lancet 399, 2263–2264 (2022). This observational cohort study examines post-COVID condition prevalence over time, comparing the first, second and third waves.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Antonelli, M. et al. Risk factors and disease profile of post-vaccination SARS-CoV-2 infection in UK users of the COVID Symptom Study app: a prospective, community-based, nested, case–control study. Lancet Infect. Dis. 22, 43–55 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Ayoubkhani, D. et al. Trajectory of long COVID symptoms after COVID-19 vaccination: community based cohort study. BMJ 377, e069676 (2022).

    Article  PubMed  Google Scholar 

  186. Ozonoff, A. et al. Phenotypes of disease severity in a cohort of hospitalized COVID-19 patients: results from the IMPACC study. EBioMedicine 83, 104208 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Bramante, C. T. et al. Outpatient treatment of COVID-19 and incidence of post-COVID-19 condition over 10 months (COVID-OUT): a multicentre, randomised, quadruple-blind, parallel-group, phase 3 trial. Lancet Infect. Dis. 23, 1119–1129 (2023). This work is the first placebo-controlled RCT of early outpatient treatment for SARS-CoV-2 among adults with overweight and obesity with more than 10 months of follow-up.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank all individuals infected with COVID-19 who agreed to allow their medical team to share their data with their permission; and the medical staff who looked after the participants and all researchers for their efforts in collecting the data that informed our understanding of COVID-19.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the manuscript.

Corresponding author

Correspondence to Muge Cevik.

Ethics declarations

Competing interests

M.C. is a member of SAGE-NERVTAG. All other authors declare no competing interest.

Peer review

Peer review information

Nature Reviews Microbiology thanks Jose Arribas, Michael Boeckh, Jincun Zhao and Mary Horgan for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

COVID-19 Drug Interaction checker: https://www.covid19-druginteractions.org/checker

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meyerowitz, E.A., Scott, J., Richterman, A. et al. Clinical course and management of COVID-19 in the era of widespread population immunity. Nat Rev Microbiol 22, 75–88 (2024). https://doi.org/10.1038/s41579-023-01001-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41579-023-01001-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing