Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Extracellular niche establishment by plant pathogens

Abstract

The plant extracellular space, referred to as the apoplast, is inhabited by a variety of microorganisms. Reflecting the crucial nature of this compartment, both plants and microorganisms seek to control, exploit and respond to its composition. Upon sensing the apoplastic environment, pathogens activate virulence programmes, including the delivery of effectors with well-established roles in suppressing plant immunity. We posit that another key and foundational role of effectors is niche establishment — specifically, the manipulation of plant physiological processes to enrich the apoplast in water and nutritive metabolites. Facets of plant immunity counteract niche establishment by restricting water, nutrients and signals for virulence activation. The complex competition to control and, in the case of pathogens, exploit the apoplast provides remarkable insights into the nature of virulence, host susceptibility, host defence and, ultimately, the origin of phytopathogenesis. This novel framework focuses on the ecology of a microbial niche and highlights areas of future research on plant–microorganism interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A model for a feedforward loop supporting pathogenic niche establishment.
Fig. 2: Microbial strategies leading to niche establishment.
Fig. 3: Opposing forces of effector-triggered susceptibility and plant immunity determine niche quality.

Similar content being viewed by others

References

  1. Jones, J. D. G. & Dangl, J. L. The plant immune system. Nature 444, 323–329 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Toruño, T. Y., Stergiopoulos, I. & Coaker, G. Plant-pathogen effectors: cellular probes interfering with plant defenses in spatial and temporal manners. Annu. Rev. Phytopathol. 54, 419–441 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ngou, B. P. M., Ding, P. & Jones, J. D. G. Thirty years of resistance: zig-zag through the plant immune system. Plant Cell 34, 1447–1478 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lovelace, A. H. & Ma, W. How do bacteria transform plants into their oasis? Cell Host Microbe 30, 412–414 (2022).

    Article  CAS  PubMed  Google Scholar 

  5. Cai, J. et al. Manipulation of plant metabolism by pathogen effectors: more than just food. FEMS Microbiol. Rev. 47, fuad007 (2023).

    Article  CAS  PubMed  Google Scholar 

  6. Roussin-Léveillée, C. et al. Evolutionarily conserved bacterial effectors hijack abscisic acid signaling to induce an aqueous environment in the apoplast. Cell Host Microbe 30, 489–501.e4 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hu, Y. et al. Bacterial effectors manipulate plant abscisic acid signaling for creation of an aqueous apoplast. Cell Host Microbe 30, 518–529.e6 (2022).

    Article  CAS  PubMed  Google Scholar 

  8. Gentzel, I. et al. Dynamic nutrient acquisition from a hydrated apoplast supports biotrophic proliferation of a bacterial pathogen of maize. Cell Host Microbe 30, 502–517.e4 (2022).

    Article  CAS  PubMed  Google Scholar 

  9. Takahashi, F. et al. A small peptide modulates stomatal control via abscisic acid in long-distance signalling. Nature 556, 235–238 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Melotto, M., Underwood, W., Koczan, J., Nomura, K. & He, S. Y. Plant stomata function in innate immunity against bacterial invasion. Cell 126, 969–980 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Melotto, M., Zhang, L., Oblessuc, P. R. & He, S. Y. Stomatal defense a decade later. Plant Physiol. 174, 561–571 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wu, J. & Liu, Y. Stomata–pathogen interactions: over a century of research. Trends Plant Sci. 27, 964–967 (2022).

    Article  CAS  PubMed  Google Scholar 

  13. Freeman, B. C. & Beattie, G. A. Bacterial growth restriction during host resistance to Pseudomonas syringae is associated with leaf water loss and localized cessation of vascular activity in Arabidopsis thaliana. Mol. Plant Microbe Interact. 22, 857–867 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Xin, X.-F. et al. Bacteria establish an aqueous living space in plants crucial for virulence. Nature 539, 524–529 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jin, L. et al. Direct and indirect targeting of PP2A by conserved bacterial type-III effector proteins. PLoS Pathog. 12, e1005609 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Waadt, R. et al. Identification of open stomata1-interacting proteins reveals interactions with sucrose non-fermenting1-related protein kinases2 and with type 2A protein phosphatases that function in abscisic acid responses. Plant Physiol. 169, 760–779 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lajeunesse, G. et al. Light prevents pathogen-induced aqueous microenvironments via potentiation of salicylic acid signaling. Nat. Commun. 14, 713 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wu, J. et al. CURLY LEAF modulates apoplast liquid water status in Arabidopsis leaves. Plant Physiol. 193, 792–808 (2023).

    Article  CAS  PubMed  Google Scholar 

  19. Lievens, L., Pollier, J., Goossens, A., Beyaert, R. & Staal, J. Abscisic acid as pathogen effector and immune regulator. Front. Plant Sci. 8, 597 (2017).

    Article  Google Scholar 

  20. Zhang, D., Tian, C., Yin, K., Wang, W. & Qiu, J.-L. Postinvasive bacterial resistance conferred by open stomata in rice. Mol. Plant Microbe Interact. 32, 255–266 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Peng, Z. et al. Xanthomonas translucens commandeers the host rate-limiting step in ABA biosynthesis for disease susceptibility. Proc. Natl Acad. Sci. USA 116, 20938–20946 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. You, Y. et al. The eINTACT system dissects bacterial exploitation of plant osmosignalling to enhance virulence. Nat. Plants 9, 128–141 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Dong, H.-P. et al. The ABI2-dependent abscisic acid signalling controls HrpN-induced drought tolerance in Arabidopsis. Planta 221, 313–327 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Liu, Y., Mahmud, Md. R., Xu, N. & Liu, J. The Pseudomonas syringae effector AvrPtoB targets abscisic acid signaling pathway to promote its virulence in Arabidopsis. Phytopathol. Res. 4, 5 (2022).

    Article  Google Scholar 

  25. Siewers, V., Kokkelink, L., Smedsgaard, J. & Tudzynski, P. Identification of an abscisic acid gene cluster in the grey mold Botrytis cinerea. Appl. Env. Microbiol. 72, 4619–4626 (2006).

    Article  CAS  Google Scholar 

  26. Spence, C. A., Lakshmanan, V., Donofrio, N. & Bais, H. P. Crucial roles of abscisic acid biogenesis in virulence of rice blast fungus Magnaporthe oryzae. Front. Plant Sci. 6, 1082 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Dörffling, K., Petersen, W., Sprecher, E., Urbasch, I. & Hanssen, H.-P. Abscisic acid in phytopathogenic fungi of the genera Botrytis, Ceratocystis, Fusarium, and Rhizoctonia. Z. Naturforsch. C 39, 683–684 (1984).

    Article  Google Scholar 

  28. Hernandez, M. N. & Lindow, S. E. Pseudomonas syringae increases water availability in leaf microenvironments via production of hygroscopic syringafactin. Appl. Env. Microbiol. 85, e01014-19 (2019).

    Article  Google Scholar 

  29. Oulghazi, S. et al. Pectobacterium brasiliense: genomics, host range and disease management. Microorganisms 9, 106 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ekanayake, G., Gohmann, R. & Mackey, D. A method for quantitation of apoplast hydration in Arabidopsis leaves reveals water-soaking activity of effectors of Pseudomonas syringae during biotrophy. Sci. Rep. 12, 18363 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Schwartz, A. R., Morbitzer, R., Lahaye, T. & Staskawicz, B. J. TALE-induced bHLH transcription factors that activate a pectate lyase contribute to water soaking in bacterial spot of tomato. Proc. Natl Acad. Sci. USA 114, E897–E903 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nomura, K. et al. Bacterial pathogens deliver water- and solute-permeable channels to plant cells. Nature 621, 586–591 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Oh, H.-S. & Collmer, A. Basal resistance against bacteria in Nicotiana benthamiana leaves is accompanied by reduced vascular staining and suppressed by multiple Pseudomonas syringae type III secretion system effector proteins: vascular staining assay for basal resistance in Nicotiana benthamiana. Plant J. 44, 348–359 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Gentzel, I., Giese, L., Zhao, W., Alonso, A. P. & Mackey, D. A simple method for measuring apoplast hydration and collecting apoplast contents. Plant Physiol. 179, 1265–1272 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. O’Leary, B. M., Rico, A., McCraw, S., Fones, H. N. & Preston, G. M. The infiltration-centrifugation technique for extraction of apoplastic fluid from plant leaves using Phaseolus vulgaris as an example.J. Vis. Exp. 94, 52113 (2014).

    Google Scholar 

  36. Nouchi, I. et al. Overcoming the difficulties in collecting apoplastic fluid from rice leaves by the infiltration–centrifugation method. Plant Cell Physiol. 53, 1659–1668 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Rico, A. & Preston, G. M. Pseudomonas syringae pv. tomato DC3000 uses constitutive and apoplast-induced nutrient assimilation pathways to catabolize nutrients that are abundant in the tomato apoplast. Mol. Plant Microbe Interact. 21, 269–282 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Zhang, C. & Turgeon, R. Mechanisms of phloem loading. Curr. Opin. Plant Biol. 43, 71–75 (2018).

    Article  CAS  PubMed  Google Scholar 

  39. Kim, J.-Y. et al. Cellular export of sugars and amino acids: role in feeding other cells and organisms. Plant Physiol. 187, 1893–1914 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gupta, P. K., Balyan, H. S. & Gautam, T. SWEET genes and TAL effectors for disease resistance in plants: present status and future prospects. Mol. Plant Pathol. 22, 1014–1026 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen, L.-Q. et al. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature 468, 527–532 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yang, S. et al. Rhizoctonia solani transcriptional activator interacts with rice WRKY53 and grassy tiller 1 to activate SWEET transporters for nutrition. J. Adv. Res. 50, 1–12 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Sonawala, U., Dinkeloo, K., Danna, C. H., McDowell, J. M. & Pilot, G. Review: functional linkages between amino acid transporters and plant responses to pathogens. Plant Sci. 277, 79–88 (2018).

    Article  CAS  PubMed  Google Scholar 

  44. Rudrappa, T., Czymmek, K. J., Paré, P. W. & Bais, H. P. Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiol. 148, 1547–1556 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wen, T. et al. Enrichment of beneficial cucumber rhizosphere microbes mediated by organic acid secretion. Hortic. Res. 7, 154 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Macias-Benitez, S. et al. Rhizospheric organic acids as biostimulants: monitoring feedbacks on soil microorganisms and biochemical properties. Front. Plant Sci. 11, 633 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Guo, W. et al. Ketoglutarate transport protein KgtP is secreted through the type III secretion system and contributes to virulence in Xanthomonas oryzae pv. oryzae. Appl. Env. Microbiol. 78, 5672–5681 (2012).

    Article  CAS  Google Scholar 

  48. Wang, W., Liu, J., Mishra, B., Mukhtar, M. S. & McDowell, J. M. Sparking a sulfur war between plants and pathogens. Trends Plant Sci. 27, 1253–1265 (2022).

    Article  CAS  PubMed  Google Scholar 

  49. Fatima, U. & Senthil-Kumar, M. Plant and pathogen nutrient acquisition strategies. Front. Plant Sci. 6, 750 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Herlihy, J. H., Long, T. A. & McDowell, J. M. Iron homeostasis and plant immune responses: recent insights and translational implications. J. Biol. Chem. 295, 13444–13457 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Firmin, J. L. & Fenwick, G. R. Agropine — a major new plasmid-determined metabolite in crown gall tumours. Nature 276, 842–844 (1978).

    Article  CAS  Google Scholar 

  52. Doehlemann, G. et al. Reprogramming a maize plant: transcriptional and metabolic changes induced by the fungal biotroph Ustilago maydis: plant response to U. maydis infection. Plant J. 56, 181–195 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Kretschmer, M. et al. Organic acids and glucose prime late-stage fungal biotrophy in maize. Science 376, 1187–1191 (2022).

    Article  CAS  PubMed  Google Scholar 

  54. Horst, R. J. et al. Ustilago maydis infection strongly alters organic nitrogen allocation in maize and stimulates productivity of systemic source leaves. Plant Physiol. 152, 293–308 (2009).

    Article  PubMed  Google Scholar 

  55. McIntyre, K. E., Bush, D. R. & Argueso, C. T. Cytokinin regulation of source-sink relationships in plant-pathogen interactions. Front. Plant Sci. 12, 677585 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Voll, L. Common motifs in the response of cereal primary metabolism to fungal pathogens are not based on similar transcriptional reprogramming. Front. Plant Sci. 2, 39 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rodenburg, S. Y. A. et al. Metabolic model of the Phytophthora infestans-tomato interaction reveals metabolic switches during host colonization. mBio 10, e00454–19 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Xu, Y. et al. Phytophthora sojae apoplastic effector AEP1 mediates sugar uptake by mutarotation of extracellular aldose and is recognized as a MAMP. Plant Physiol. 187, 321–335 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Xian, L., Yu, G. & Macho, A. P. The GABA transaminase GabT is required for full virulence of Ralstonia solanacearum in tomato.MicroPubl. Biol. https://doi.org/10.17912/micropub.biology.000478 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Xian, L. et al. A bacterial effector protein hijacks plant metabolism to support pathogen nutrition. Cell Host Microbe 28, 548–557.e7 (2020).

    Article  CAS  PubMed  Google Scholar 

  61. Ward, J. L. et al. The metabolic transition during disease following infection of Arabidopsis thaliana by Pseudomonas syringae pv. tomato: the metabolic transition during disease following infection of Arabidopsis. Plant J. 63, 443–457 (2010).

    Article  CAS  PubMed  Google Scholar 

  62. Asselin, J. A. E. et al. Perturbation of maize phenylpropanoid metabolism by an AvrE family type III effector from Pantoea stewartii. Plant Physiol. 167, 1117–1135 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yoshida, T., Christmann, A., Yamaguchi-Shinozaki, K., Grill, E. & Fernie, A. R. Revisiting the basal role of ABA — roles outside of stress. Trends Plant Sci. 24, 625–635 (2019).

    Article  CAS  PubMed  Google Scholar 

  64. Velásquez, A. C., Castroverde, C. D. M. & He, S. Y. Plant–pathogen warfare under changing climate conditions. Curr. Biol. 28, R619–R634 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Deb, D., Mackey, D., Opiyo, S. O. & McDowell, J. M. Application of alignment-free bioinformatics methods to identify an oomycete protein with structural and functional similarity to the bacterial AvrE effector protein. PLoS ONE 13, e0195559 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Siamer, S. et al. Expression of the bacterial type III effector DspA/E in Saccharomyces cerevisiae down-regulates the sphingolipid biosynthetic pathway leading to growth arrest. J. Biol. Chem. 289, 18466–18477 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Asselbergh, B., Achuo, A. E., Höfte, M. & Van Gijsegem, F. Abscisic acid deficiency leads to rapid activation of tomato defence responses upon infection with Erwinia chrysanthemiMol. Plant Pathol. 9, 11–24 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Mackey, D. & McFall, A. J. MAMPs and MIMPs: proposed classifications for inducers of innate immunity. Mol. Microbiol. 61, 1365–1371 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Liu, Z. et al. Phytocytokine signalling reopens stomata in plant immunity and water loss. Nature 605, 332–339 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wright, C. A. & Beattie, G. A. Pseudomonas syringae pv. tomato cells encounter inhibitory levels of water stress during the hypersensitive response of Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 101, 3269–3274 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Schenstnyi, K. et al. The tomato resistance gene Bs4 suppresses leaf watersoaking phenotypes induced by AvrHah1, a transcription activator‐like effector from tomato‐pathogenic xanthomonads. New Phytol. 236, 1856–1870 (2022).

    Article  CAS  PubMed  Google Scholar 

  72. Zhou, F. et al. High humidity suppresses ssi4-mediated cell death and disease resistance upstream of MAP kinase activation, H2O2 production and defense gene expression. Plant J. 39, 920–932 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Qiu, J. et al. Dual impact of ambient humidity on the virulence of Magnaporthe oryzae and basal resistance in rice. Plant Cell Environ. 45, 3399–3411 (2022).

    Article  CAS  PubMed  Google Scholar 

  74. Ngou, B. P. M., Ahn, H.-K., Ding, P. & Jones, J. D. G. Mutual potentiation of plant immunity by cell-surface and intracellular receptors. Nature 592, 110–115 (2021).

    Article  CAS  PubMed  Google Scholar 

  75. Yuan, M. et al. Pattern-recognition receptors are required for NLR-mediated plant immunity. Nature 592, 105–109 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Pruitt, R. N. et al. The EDS1–PAD4–ADR1 node mediates Arabidopsis pattern-triggered immunity. Nature 598, 495–499 (2021).

    Article  CAS  PubMed  Google Scholar 

  77. Tian, H. et al. Activation of TIR signalling boosts pattern-triggered immunity. Nature 598, 500–503 (2021).

    Article  CAS  PubMed  Google Scholar 

  78. Anderson, J. C. et al. Decreased abundance of type III secretion system-inducing signals in Arabidopsis mkp1 enhances resistance against Pseudomonas syringae. Proc. Natl Acad. Sci. USA 111, 6846–6851 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yan, Q., Rogan, C. J. & Anderson, J. C. Development of a Pseudomonas syringaeArabidopsis suspension cell infection system for investigating host metabolite-dependent regulation of type III secretion and pattern-triggered immunity. Mol. Plant Microbe Interact. 32, 527–539 (2019).

    Article  CAS  PubMed  Google Scholar 

  80. Yamada, K., Saijo, Y., Nakagami, H. & Takano, Y. Regulation of sugar transporter activity for antibacterial defense in Arabidopsis. Science 354, 1427–1430 (2016).

    Article  CAS  PubMed  Google Scholar 

  81. Tubergen, P. J. et al. A computational model of Pseudomonas syringae metabolism unveils the role of branched-chain amino acids in virulence expression at the early stages of Arabidopsis colonization. Preprint at:bioRxiv https://doi.org/10.1101/2022.12.16.520825 (2022).

  82. Zhang, X. et al. MAMP-elicited changes in amino acid transport activity contribute to restricting bacterial growth. Plant Physiol. 189, 2315–2331 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhang, X. et al. Elicitor-induced plant immunity relies on amino acids accumulation to delay the onset of bacterial virulence. Plant Physiol. 192, 601–615 (2023).

    Article  CAS  PubMed  Google Scholar 

  84. Geilfus, C.-M. The pH of the apoplast: dynamic factor with functional impact under stress. Mol. Plant 10, 1371–1386 (2017).

    Article  CAS  PubMed  Google Scholar 

  85. Mittler, R., Zandalinas, S. I., Fichman, Y. & Van Breusegem, F. Reactive oxygen species signalling in plant stress responses. Nat. Rev. Mol. Cell Biol. 23, 663–679 (2022).

    Article  CAS  PubMed  Google Scholar 

  86. Ma, Z. et al. A Phytophthora sojae glycoside hydrolase 12 protein is a major virulence factor during soybean infection and is recognized as a PAMP. Plant Cell 27, 2057–2072 (2015).

    Article  CAS  PubMed Central  Google Scholar 

  87. Ma, Z. et al. A paralogous decoy protects Phytophthora sojae apoplastic effector PsXEG1 from a host inhibitor. Science 355, 710–714 (2017).

    Article  CAS  PubMed  Google Scholar 

  88. Xia, Y. et al. N-glycosylation shields Phytophthora sojae apoplastic effector PsXEG1 from a specific host aspartic protease. Proc. Natl Acad. Sci. USA 117, 27685–27693 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Figueroa, M., Ortiz, D. & Henningsen, E. C. Tactics of host manipulation by intracellular effectors from plant pathogenic fungi. Curr. Opin. Plant Biol. 62, 102054 (2021).

    Article  CAS  PubMed  Google Scholar 

  90. Xing, Y. et al. Bacterial effector targeting of a plant iron sensor facilitates iron acquisition and pathogen colonization. Plant Cell 33, 2015–2031 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Taguchi, F. et al. The siderophore pyoverdine of Pseudomonas syringae pv. tabaci 6605 is an intrinsic virulence factor in host tobacco infection. J. Bacteriol. 192, 117–126 (2010).

    Article  CAS  PubMed  Google Scholar 

  92. Nomura, K. et al. A bacterial virulence protein suppresses host innate immunity to cause plant disease. Science 313, 220–223 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. McDowell, J. M. et al. Downy mildew (Peronospora parasitica) resistance genes in Arabidopsis vary in functional requirements for NDR1, EDS1, NPR1 and salicylic acid accumulation. Plant J. 22, 523–529 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Muskett, P. R. et al. Arabidopsis RAR1 exerts rate-limiting control of R gene-mediated defenses against multiple pathogens. Plant Cell 14, 979–992 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kim, M. G. et al. Two Pseudomonas syringae type III effectors inhibit RIN4-regulated basal defense in Arabidopsis. Cell 121, 749–759 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Redditt, T. J. et al. AvrRpm1 functions as an ADP-ribosyl transferase to modify NOI domain-containing proteins, including Arabidopsis and soybean RPM1-interacting protein4. Plant Cell 31, 2664–2681 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Mackey, D., Holt, B. F., Wiig, A. & Dangl, J. L. RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis. Cell 108, 743–754 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. Mackey, D., Belkhadir, Y., Alonso, J. M., Ecker, J. R. & Dangl, J. L. Arabidopsis RIN4 is a target of the type III virulence effector AvrRpt2 and modulates RPS2-mediated resistance. Cell 112, 379–389 (2003).

    Article  CAS  PubMed  Google Scholar 

  99. Tian, D., Traw, M. B., Chen, J. Q., Kreitman, M. & Bergelson, J. Fitness costs of R-gene-mediated resistance in Arabidopsis thaliana. Nature 423, 74–77 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Mauricio, R. et al. Natural selection for polymorphism in the disease resistance gene Rps2 of Arabidopsis thaliana. Genetics 163, 735–746 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zhou, J. et al. Gene targeting by the TAL effector PthXo2 reveals cryptic resistance gene for bacterial blight of rice. Plant J. 82, 632–643 (2015).

    Article  CAS  PubMed  Google Scholar 

  102. Strauß, T. et al. RNA-seq pinpoints a Xanthomonas TAL-effector activated resistance gene in a large-crop genome. Proc. Natl Acad. Sci. USA 109, 19480–19485 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Ji, C. et al. Xa1 allelic R genes activate rice blight resistance suppressed by interfering TAL effectors. Plant Commun. 1, 100087 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Nowack, M. K., Holmes, D. R. & Lahaye, T. TALE-induced cell death executors: an origin outside immunity? Trends Plant Sci. 27, 536–548 (2022).

    Article  CAS  PubMed  Google Scholar 

  105. Oliva, R. et al. Broad-spectrum resistance to bacterial blight in rice using genome editing. Nat. Biotechnol. 37, 1344–1350 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Rosebrock, T. R. et al. A bacterial E3 ubiquitin ligase targets a host protein kinase to disrupt plant immunity. Nature 448, 370–374 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zhang, J. et al. A Pseudomonas syringae effector inactivates MAPKs to suppress PAMP-induced immunity in plants. Cell Host Microbe 1, 175–185 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Mine, A. et al. Pathogen exploitation of an abscisic acid- and jasmonate-inducible MAPK phosphatase and its interception by Arabidopsis immunity. Proc. Natl Acad. Sci. USA 114, 7456–7461 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Badel, J. L., Shimizu, R., Oh, H.-S. & Collmer, A. A Pseudomonas syringae pv. tomato avrE1/hopM1 mutant is severely reduced in growth and lesion formation in tomato. Mol. Plant Microbe Interact. 19, 99–111 (2006).

    Article  CAS  PubMed  Google Scholar 

  110. DebRoy, S., Thilmony, R., Kwack, Y.-B., Nomura, K. & He, S. Y. A family of conserved bacterial effectors inhibits salicylic acid-mediated basal immunity and promotes disease necrosis in plants. Proc. Natl Acad. Sci. USA 101, 9927–9932 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Xin, X.-F. et al. Pseudomonas syringae effector avirulence protein E localizes to the host plasma membrane and down-regulates the expression of the NONRACE-SPECIFIC DISEASE RESISTANCE1/HARPIN-INDUCED1-LIKE13 gene required for antibacterial immunity in Arabidopsis. Plant Physiol. 169, 793–802 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Gangadharan, A., Sreerekha, M.-V., Whitehill, J., Ham, J. H. & Mackey, D. The Pseudomonas syringae pv. tomato type III effector HopM1 suppresses Arabidopsis defenses independent of suppressing salicylic acid signaling and of targeting AtMIN7. PLoS ONE 8, e82032 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Ham, J. H., Majerczak, D. R., Arroyo-Rodriguez, A. S., Mackey, D. M. & Coplin, D. L. WtsE, an AvrE-family effector protein from Pantoea stewartii subsp. stewartii, causes disease-associated cell death in corn and requires a chaperone protein for stability. Mol. Plant Microbe Interact. 19, 1092–1102 (2006).

    Article  CAS  PubMed  Google Scholar 

  114. Guo, M., Tian, F., Wamboldt, Y. & Alfano, J. R. The majority of the type III effector inventory of Pseudomonas syringae pv. tomato DC3000 can suppress plant immunity. Mol. Plant Microbe Interact. 22, 1069–1080 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Chen, H. et al. A bacterial type III effector targets the master regulator of salicylic acid signaling, NPR1, to subvert plant immunity. Cell Host Microbe 22, 777–788.e7 (2017).

    Article  CAS  PubMed  Google Scholar 

  116. Faris, J. D. et al. A unique wheat disease resistance-like gene governs effector-triggered susceptibility to necrotrophic pathogens. Proc. Natl Acad. Sci. USA 107, 13544–13549 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Shao, D., Smith, D. L., Kabbage, M. & Roth, M. G. Effectors of plant necrotrophic fungi. Front. Plant Sci. 12, 687713 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Malvestiti, M. C. et al. Analysis of plant cell death-inducing proteins of the necrotrophic fungal pathogens Botrytis squamosa and Botrytis elliptica. Front. Plant. Sci. 13, 993325 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Zhu, J. et al. Single-cell profiling of Arabidopsis leaves to Pseudomonas syringae infection. Cell Rep. 42, 112676 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Shi, J., Wang, X. & Wang, E. Mycorrhizal symbiosis in plant growth and stress adaptation: from genes to ecosystems. Annu. Rev. Plant Biol. 74, 569–607 (2023).

    Article  CAS  PubMed  Google Scholar 

  121. Chen, T. et al. A plant genetic network for preventing dysbiosis in the phyllosphere. Nature 580, 653–657 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Helmann, T. C., Deutschbauer, A. M. & Lindow, S. E. Distinctiveness of genes contributing to growth of Pseudomonas syringae in diverse host plant species. PLoS ONE 15, e0239998 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Nobori, T. et al. Multidimensional gene regulatory landscape of a bacterial pathogen in plants. Nat. Plants 6, 883–896 (2020).

    Article  CAS  Google Scholar 

  124. Murdoch, C. C. & Skaar, E. P. Nutritional immunity: the battle for nutrient metals at the host–pathogen interface. Nat. Rev. Microbiol. 20, 657–670 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Marchi, S., Morroni, G., Pinton, P. & Galluzzi, L. Control of host mitochondria by bacterial pathogens. Trends Microbiol. 30, 452–465 (2022).

    Article  CAS  PubMed  Google Scholar 

  126. Shen, Q., Ray, S. C., Evans, H. M., Deepe, G. S. & Rappleye, C. A. Metabolism of gluconeogenic substrates by an intracellular fungal pathogen circumvents nutritional limitations within macrophages. mBio 11, e02712-19 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Research in the Moffett laboratory is supported by funding from the Natural Sciences and Engineering Research Council (NSERC) of Canada, from the Fonds de Recherche Québécois — Nature et Technologies, and C.R-L. is supported by an NSERC doctoral fellowship. Support for the Mackey laboratory is provided by the National Science Foundation (Division of Integrative Organismal Systems, grant no. 1953509). The authors are grateful to members of the research group of Sebastian Schornack (Sainsbury Laboratory, University of Cambridge) for suggestions to improve the visual models.

Author information

Authors and Affiliations

Authors

Contributions

C.R.-L. and D.M. contributed equally to the conceptualization, research and writing of this manuscript. C.R.-L. and D.M. drafted the figures. R.G., G.E. and P.M. contributed to the research and to writing and reviewing of this manuscript. All authors reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to David Mackey or Peter Moffett.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Microbiology thanks Yuanchao Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roussin-Léveillée, C., Mackey, D., Ekanayake, G. et al. Extracellular niche establishment by plant pathogens. Nat Rev Microbiol (2024). https://doi.org/10.1038/s41579-023-00999-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41579-023-00999-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing