Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Utilization of the microbiome in personalized medicine

Abstract

Inter-individual human variability, driven by various genetic and environmental factors, complicates the ability to develop effective population-based early disease detection, treatment and prognostic assessment. The microbiome, consisting of diverse microorganism communities including viruses, bacteria, fungi and eukaryotes colonizing human body surfaces, has recently been identified as a contributor to inter-individual variation, through its person-specific signatures. As such, the microbiome may modulate disease manifestations, even among individuals with similar genetic disease susceptibility risks. Information stored within microbiomes may therefore enable early detection and prognostic assessment of disease in at-risk populations, whereas microbiome modulation may constitute an effective and safe treatment tailored to the individual. In this Review, we explore recent advances in the application of microbiome data in precision medicine across a growing number of human diseases. We also discuss the challenges, limitations and prospects of analysing microbiome data for personalized patient care.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Utilization of microbiome data for screening and personalized prevention of disease.
Fig. 2: Site-specific microbiome assessment in disease prediction and diagnosis.
Fig. 3: Utilization of the microbiome in disease treatment.
Fig. 4: Microbiome-mediated modulation of cancer treatment.

Similar content being viewed by others

References

  1. Fan, Y. & Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 19, 55–71 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Carding, S., Verbeke, K., Vipond, D. T., Corfe, B. M. & Owen, L. J. Dysbiosis of the gut microbiota in disease. Microb. Ecol. Health Dis. 26, https://doi.org/10.3402/mehd.v26.26191 (2015).

  3. Stewart, C. J. et al. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature 562, 583–588 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chen, L. et al. The long-term genetic stability and individual specificity of the human gut microbiome. Cell 184, 2302–2315.e12 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Valles-Colomer, M. et al. The person-to-person transmission landscape of the gut and oral microbiomes. Nature 614, 125–135 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schupack, D. A., Mars, R. A. T., Voelker, D. H., Abeykoon, J. P. & Kashyap, P. C. The promise of the gut microbiome as part of individualized treatment strategies. Nat. Rev. Gastroenterol. Hepatol. 19, 7–25 (2022).

    Article  PubMed  Google Scholar 

  7. Owens, D. K. et al. Risk assessment, genetic counseling, and genetic testing for BRCA-related cancer: US preventive services task force recommendation statement. JAMA 322, 652–665 (2019).

    Article  PubMed  Google Scholar 

  8. Marchesi, J. R. et al. The gut microbiota and host health: a new clinical frontier. Gut 65, 330–339 (2016).

    Article  PubMed  Google Scholar 

  9. Oh, J., Byrd, A. L., Park, M., Kong, H. H. & Segre, J. A. Temporal stability of the human skin microbiome. Cell 165, 854–866 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kumari, P., Prakash, P., Yadav, S. & Saran, V. Microbiome analysis: an emerging forensic investigative tool. Forensic Sci. Int. 340, 111462 (2022).

    Article  CAS  PubMed  Google Scholar 

  11. Reitmeier, S. et al. Arrhythmic gut microbiome signatures predict risk of type 2 diabetes. Cell Host Microbe 28, 258–272.e6 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Ferreiro, A. L. et al. Gut microbiome composition may be an indicator of preclinical Alzheimer’s disease. Sci. Transl. Med. 15, eabo2984 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Berry, S. E. et al. Human postprandial responses to food and potential for precision nutrition. Nat. Med. 26, 964–973 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zeevi, D. et al. Personalized nutrition by prediction of glycemic responses. Cell 163, 1079–1094 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Liu, Y. et al. Gut microbiome fermentation determines the efficacy of exercise for diabetes prevention. Cell Metab. 31, 77–91.e5 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Manor, O. et al. Health and disease markers correlate with gut microbiome composition across thousands of people. Nat. Commun. 11, 5206 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006).

    Article  PubMed  Google Scholar 

  18. Thingholm, L. B. et al. Obese individuals with and without type 2 diabetes show different gut microbial functional capacity and composition. Cell Host Microbe 26, 252–264.e10 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pedersen, H. K. et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature 535, 376–381 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Maifeld, A. et al. Fasting alters the gut microbiome reducing blood pressure and body weight in metabolic syndrome patients. Nat. Commun. 12, 1970 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Guo, F., Zhou, J., Li, Z., Yu, Z. & Ouyang, D. The association between trimethylamine N-oxide and its predecessors choline, l-carnitine, and betaine with coronary artery disease and artery stenosis. Cardiol. Res. Pract. 2020, 1–10 (2020).

    Google Scholar 

  22. Chen, T. et al. Branched-chain and aromatic amino acid profiles and diabetes risk in Chinese populations. Sci. Rep. 6, 20594 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wu, H. et al. The gut microbiota in prediabetes and diabetes: a population-based cross-sectional study. Cell Metab. 32, 379–390.e3 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Qin, J. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55–60 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Ghaemi, F. et al. Intestinal microbiota composition in Iranian diabetic, pre-diabetic and healthy individuals. J. Diabetes Metab. Disord. 19, 1199–1203 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Thaiss, C. A. et al. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell 159, 514–529 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Thaiss, C. A. et al. Microbiota diurnal rhythmicity programs host transcriptome oscillations. Cell 167, 1495–1510.e12 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Zheng, D., Ratiner, K. & Elinav, E. Circadian influences of diet on the microbiome and immunity. Trends Immunol. 41, 512–530 (2020).

    Article  CAS  PubMed  Google Scholar 

  29. Ratiner, K., Shapiro, H., Goldenberg, K. & Elinav, E. Time‐limited diets and the gut microbiota in cardiometabolic disease. J. Diabetes 14, 377–393 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Cosnes, J. Smoking, physical activity, nutrition and lifestyle: environmental factors and their impact on IBD. Dig. Dis. 28, 411–417 (2010).

    Article  PubMed  Google Scholar 

  31. Rippe, J. M. Lifestyle strategies for risk factor reduction, prevention, and treatment of cardiovascular disease. Am. J. Lifestyle Med. 13, 204–212 (2019).

    Article  PubMed  Google Scholar 

  32. Schulze, M. B. & Hu, F. B. Primary prevention of diabetes: what can be done and how much can be prevented? Annu. Rev. Public Health 26, 445–467 (2005).

    Article  PubMed  Google Scholar 

  33. Wu, Q., Gao, Z. J., Yu, X. & Wang, P. Dietary regulation in health and disease. Signal Transduct. Target. Ther. 7, 252 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ludwig, D. S. The glycemic index: physiological mechanisms relating to obesity, diabetes, and cardiovascular disease. JAMA 287, 2414–2423 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Leshem, A., Segal, E. & Elinav, E. The gut microbiome and individual-specific responses to diet. mSystems 5, e00665-20 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Korem, T. et al. Bread affects clinical parameters and induces gut microbiome-associated personal glycemic responses. Cell Metab. 25, 1243–1253.e5 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. Vega-López, S., Ausman, L. M., Griffith, J. L. & Lichtenstein, A. H. Interindividual variability and intra-individual reproducibility of glycemic index values for commercial white bread. Diabetes Care 30, 1412–1417 (2007).

    Article  PubMed  Google Scholar 

  38. Vrolix, R. & Mensink, R. P. Variability of the glycemic response to single food products in healthy subjects. Contemp. Clin. Trials 31, 5–11 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Ben-Yacov, O. et al. Personalized postprandial glucose response-targeting diet versus Mediterranean diet for glycemic control in prediabetes. Diabetes Care 44, 1980–1991 (2021).

    Article  CAS  PubMed  Google Scholar 

  40. Rein, M. et al. Effects of personalized diets by prediction of glycemic responses on glycemic control and metabolic health in newly diagnosed T2DM: a randomized dietary intervention pilot trial. BMC Med. 20, 56 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Asnicar, F. et al. Microbiome connections with host metabolism and habitual diet from 1,098 deeply phenotyped individuals. Nat. Med. 27, 321–332 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Thaiss, C. A. et al. Persistent microbiome alterations modulate the rate of post-dieting weight regain. Nature 540, 544–551 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Suez, J. et al. Personalized microbiome-driven effects of non-nutritive sweeteners on human glucose tolerance. Cell 185, 3307–3328.e19 (2022).

    Article  CAS  PubMed  Google Scholar 

  44. Otaru, N. et al. GABA production by human intestinal Bacteroides spp.: prevalence, regulation, and role in acid stress tolerance. Front. Microbiol. 12, 656895 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Harris, K. K., Zopey, M. & Friedman, T. C. Metabolic effects of smoking cessation. Nat. Rev. Endocrinol. 12, 299–308 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Biedermann, L. et al. Smoking cessation induces profound changes in the composition of the intestinal microbiota in humans. PLoS ONE 8, e59260 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Biedermann, L. et al. Smoking cessation alters intestinal microbiota: insights from quantitative investigations on human fecal samples using FISH. Inflamm. Bowel Dis. 20, 1496–1501 (2014).

    Article  PubMed  Google Scholar 

  48. Fluhr, L. et al. Gut microbiota modulates weight gain in mice after discontinued smoke exposure. Nature 600, 713–719 (2021).

    Article  CAS  PubMed  Google Scholar 

  49. Schloss, P. D. Identifying and overcoming threats to reproducibility, replicability, robustness, and generalizability in microbiome research. mBio 9, e00525-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Allaband, C. et al. Time of sample collection critical for microbiome replicability. Preprint at bioRxiv https://doi.org/10.1101/2022.10.26.513817 (2022).

  51. Mirzayi, C. et al. Reporting guidelines for human microbiome research: the STORMS checklist. Nat. Med. 27, 1885–1892 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yu, J. et al. Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer. Gut 66, 70–78 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. Wirbel, J. et al. Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer. Nat. Med. 25, 679–689 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Thomas, A. M. et al. Metagenomic analysis of colorectal cancer datasets identifies cross-cohort microbial diagnostic signatures and a link with choline degradation. Nat. Med. 25, 667–678 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zeller, G. et al. Potential of fecal microbiota for early‐stage detection of colorectal cancer. Mol. Syst. Biol. 10, 766 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Liu, N. N. et al. Multi-kingdom microbiota analyses identify bacterial–fungal interactions and biomarkers of colorectal cancer across cohorts. Nat. Microbiol. 7, 238–250 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yachida, S. et al. Metagenomic and metabolomic analyses reveal distinct stage-specific phenotypes of the gut microbiota in colorectal cancer. Nat. Med. 25, 968–976 (2019).

    Article  CAS  PubMed  Google Scholar 

  58. Loomba, R. et al. Gut microbiome-based metagenomic signature for non-invasive detection of advanced fibrosis in human nonalcoholic fatty liver disease. Cell Metab. 25, 1054–1062.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Oh, T. G. et al. A universal gut-microbiome-derived signature predicts cirrhosis. Cell Metab. 32, 878–888.e6 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chen, F. et al. Integrated analysis of the faecal metagenome and serum metabolome reveals the role of gut microbiome-associated metabolites in the detection of colorectal cancer and adenoma. Gut 71, 1315–1325 (2022).

    Article  CAS  PubMed  Google Scholar 

  61. Serrano-Villar, S. et al. Microbiome-derived cobalamin and succinyl-CoA as biomarkers for improved screening of anal cancer. Nat. Med. 29, 1738–1749 (2023).

    Article  CAS  PubMed  Google Scholar 

  62. Zeng, H., Umar, S., Rust, B., Lazarova, D. & Bordonaro, M. Secondary bile acids and short chain fatty acids in the colon: a focus on colonic microbiome, cell proliferation, inflammation, and cancer. Int. J. Mol. Sci. 20, 1214 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sampson, T. R. et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 167, 1469–1480.e12 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Li, R., Andreu-Sánchez, S., Kuipers, F. & Fu, J. Gut microbiome and bile acids in obesity-related diseases. Best. Pract. Res. Clin. Endocrinol. Metab. 35, 101493 (2021).

    Article  CAS  PubMed  Google Scholar 

  65. Nejman, D. et al. The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Science 368, 973–980 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Pushalkar, S. et al. The pancreatic cancer microbiome promotes oncogenesis by induction of innate and adaptive immune suppression. Cancer Discov. 8, 403–416 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Poore, G. D. et al. Microbiome analyses of blood and tissues suggest cancer diagnostic approach. Nature 579, 567–574 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Narunsky-Haziza, L. et al. Pan-cancer analyses reveal cancer-type-specific fungal ecologies and bacteriome interactions. Cell 185, 3789–3806.e17 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Aykut, B. et al. The fungal mycobiome promotes pancreatic oncogenesis via activation of MBL. Nature 574, 264–267 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gihawi, A. et al. Major data analysis errors invalidate cancer microbiome findings. mBio 14, e0160723 (2023).

    Article  PubMed  Google Scholar 

  71. Offord, C. Key study of cancer microbiomes challenged. Science 381, 590–591 (2023).

    Article  CAS  PubMed  Google Scholar 

  72. Lang, S. & Schnabl, B. Microbiota and fatty liver disease — the known, the unknown, and the future. Cell Host Microbe 28, 233–244 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hill, C. et al. Expert consensus document: the International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 11, 506–514 (2014).

    Article  PubMed  Google Scholar 

  74. O’Toole, P. W., Marchesi, J. R. & Hill, C. Next-generation probiotics: the spectrum from probiotics to live biotherapeutics. Nat. Microbiol. 2, 17057 (2017).

    Article  PubMed  Google Scholar 

  75. Charbonneau, M. R., Isabella, V. M., Li, N. & Kurtz, C. B. Developing a new class of engineered live bacterial therapeutics to treat human diseases. Nat. Commun. 11, 1738 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Gibson, G. R. et al. Expert consensus document: the International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 14, 491–502 (2017).

    Article  PubMed  Google Scholar 

  77. Junca, H., Pieper, D. H. & Medina, E. The emerging potential of microbiome transplantation on human health interventions. Comput. Struct. Biotechnol. J. 20, 615–627 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Federici, S., Nobs, S. P. & Elinav, E. Phages and their potential to modulate the microbiome and immunity. Cell Mol. Immunol. 18, https://doi.org/10.1038/s41423-020-00532-4 (2021).

  79. Salminen, S. et al. The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nat. Rev. Gastroenterol. Hepatol. 18, 649–667 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Suez, J., Zmora, N., Segal, E. & Elinav, E. The pros, cons, and many unknowns of probiotics. Nat. Med. 25, 716–729 (2019).

    Article  CAS  PubMed  Google Scholar 

  81. Khan, M. T. et al. Synergy and oxygen adaptation for development of next-generation probiotics. Nature 620, 381–385 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Singh, T. P. & Natraj, B. H. Next-generation probiotics: a promising approach towards designing personalized medicine. Crit. Rev. Microbiol. 47, 479–498 (2021).

    Article  CAS  PubMed  Google Scholar 

  83. Szajewska, H. et al. Probiotics for the management of pediatric gastrointestinal disorders: position paper of the ESPGHAN special interest group on gut microbiota and modifications. J. Pediatr. Gastroenterol. Nutr. 76, 232–247 (2023).

    Article  PubMed  Google Scholar 

  84. Savarino, E. et al. Functional bowel disorders with diarrhoea: clinical guidelines of the United European Gastroenterology and European Society for Neurogastroenterology and Motility. United Eur. Gastroenterol. J. 10, 556–284 (2022).

    Article  Google Scholar 

  85. Su, G. L. et al. AGA clinical practice guidelines on the role of probiotics in the management of gastrointestinal disorders. Gastroenterology 159, 697–705 (2020).

    Article  CAS  PubMed  Google Scholar 

  86. Sokol, H. et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl Acad. Sci. USA 105, 16731–16736 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Aron-Wisnewsky, J. et al. Gut microbiota and human NAFLD: disentangling microbial signatures from metabolic disorders. Nat. Rev. Gastroenterol. Hepatol. 17, 279–297 (2020).

    Article  PubMed  Google Scholar 

  88. Zhou, L. et al. Faecalibacterium prausnitzii produces butyrate to maintain TH17/Treg balance and to ameliorate colorectal colitis by inhibiting histone deacetylase 1. Inflamm. Bowel Dis. 24, 1926–1940 (2018).

    Article  PubMed  Google Scholar 

  89. Munukka, E. et al. Faecalibacterium prausnitzii treatment improves hepatic health and reduces adipose tissue inflammation in high-fat fed mice. ISME J. 11, 1667–1679 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Miquel, S. et al. Faecalibacterium prausnitzii and human intestinal health. Curr. Opin. Microbiol. 16, 255–261 (2013).

    Article  CAS  PubMed  Google Scholar 

  91. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05542355 (2023).

  92. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04938843 (2021).

  93. Ansaldo, E. et al. Akkermansia muciniphila induces intestinal adaptive immune responses during homeostasis. Science 364, 1179–1184 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Blacher, E. et al. Potential roles of gut microbiome and metabolites in modulating ALS in mice. Nature 572, 474–480 (2019).

    Article  CAS  PubMed  Google Scholar 

  95. Li, J., Lin, S., Vanhoutte, P. M., Woo, C. W. & Xu, A. Akkermansia muciniphila protects against atherosclerosis by preventing metabolic endotoxemia-induced inflammation in apoe−/− mice. Circulation 133, 2434–2446 (2016).

    Article  CAS  PubMed  Google Scholar 

  96. Depommier, C. et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat. Med. 25, 1096–1103 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Jangi, S. et al. Alterations of the human gut microbiome in multiple sclerosis. Nat. Commun. 7, 12015 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Heintz-Buschart, A. et al. The nasal and gut microbiome in Parkinson’s disease and idiopathic rapid eye movement sleep behavior disorder. Mov. Disord. 33, 88–98 (2018).

    Article  CAS  PubMed  Google Scholar 

  99. Desai, M. S. et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 167, 1339–1353.e21 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Sorbara, M. T. & Pamer, E. G. Microbiome-based therapeutics. Nat. Rev. Microbiol. 20, 365–380 (2022).

    Article  CAS  PubMed  Google Scholar 

  101. Dewulf, E. M. et al. Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut 62, 1112–1121 (2013).

    Article  CAS  PubMed  Google Scholar 

  102. Kovatcheva-Datchary, P. et al. Dietary fiber-induced improvement in glucose metabolism is associated with increased abundance of prevotella. Cell Metab. 22, 971–982 (2015).

    Article  CAS  PubMed  Google Scholar 

  103. Spencer, C. N. et al. Dietary fiber and probiotics influence the gut microbiome and melanoma immunotherapy response. Science 374, 1632–1640 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Mehta, R. S. et al. Association of dietary patterns with risk of colorectal cancer subtypes classified by Fusobacterium nucleatum in tumor tissue. JAMA Oncol. 3, 921–927 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Gurry, T. et al. Predictability and persistence of prebiotic dietary supplementation in a healthy human cohort. Sci. Rep. 8, 12699 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Korpela, K. et al. Gut microbiota signatures predict host and microbiota responses to dietary interventions in obese individuals. PLoS ONE 9, e90702 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Nguyen, N. K. et al. Gut microbiota modulation with long-chain corn bran arabinoxylan in adults with overweight and obesity is linked to an individualized temporal increase in fecal propionate. Microbiome 8, https://doi.org/10.7939/r3-9yab-g811 (2020).

  108. Hall, H. et al. Glucotypes reveal new patterns of glucose dysregulation. PLoS Biol. 16, e2005143 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Mendes-Soares, H. et al. Assessment of a personalized approach to predicting postprandial glycemic responses to food among individuals without diabetes. JAMA Netw. Open 2, e188102 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Popp, C. J. et al. Effect of a personalized diet to reduce postprandial glycemic response vs a low-fat diet on weight loss in adults with abnormal glucose metabolism and obesity: a randomized clinical trial. JAMA Netw. Open. 5, E2233760 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Hwang, I. Y. & Chang, M. W. Engineering commensal bacteria to rewire host–microbiome interactions. Curr. Opin. Biotechnol. 62, 116–122 (2020).

    Article  CAS  PubMed  Google Scholar 

  112. Kurtz, C. B. et al. An engineered E. coli Nissle improves hyperammonemia and survival in mice and shows dose-dependent exposure in healthy humans. Sci. Transl. Med. 11, eaau7975 (2019).

    Article  CAS  PubMed  Google Scholar 

  113. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03447730 (2021).

  114. Russell, B. J. et al. Intestinal transgene delivery with native E. coli chassis allows persistent physiological changes. Cell 185, 3263–3277.e15 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Funabashi, M. et al. A metabolic pathway for bile acid dehydroxylation by the gut microbiome. Nature 582, 566–570 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ashraf, M. F., Tageldin, O., Nassar, Y. & Batool, A. Fecal microbiota transplantation in patients with recurrent Clostridium difficile infection: a four-year single-center retrospective review. Gastroenterol. Res. 14, 237–243 (2021).

    Article  Google Scholar 

  117. Bibbò, S. et al. Fecal microbiota transplantation: screening and selection to choose the optimal donor. J. Clin. Med. 9, 1757 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Baruch, E. N., Gaglani, T. & Wargo, J. A. Fecal microbiota transplantation as a mean of overcoming immunotherapy-resistant cancers—hype or hope? Ther. Adv. Med. Oncol. 13, 17588359211045853 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Jensen, C., Antonsen, M. F. & Lied, G. A. Gut microbiota and fecal microbiota transplantation in patients with food allergies: a systematic review. Microorganisms 10, 1904 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Bajaj, J. S. et al. A randomized clinical trial of fecal microbiota transplant for alcohol use disorder. Hepatology 73, 1688–1700 (2021).

    Article  CAS  PubMed  Google Scholar 

  121. Lavelle, A. & Sokol, H. Understanding and predicting the efficacy of FMT. Nat. Med. 28, 1759–1760 (2022).

    Article  CAS  PubMed  Google Scholar 

  122. Schmidt, T. S. B. et al. Drivers and determinants of strain dynamics following fecal microbiota transplantation. Nat. Med. 28, 1902–1912 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Li, S. S. et al. Durable coexistence of donor and recipient strains after fecal microbiota transplantation. Science 352, 586–589 (2016).

    Article  CAS  PubMed  Google Scholar 

  124. Ianiro, G. et al. Variability of strain engraftment and predictability of microbiome composition after fecal microbiota transplantation across different diseases. Nat. Med. 28, 1913–1923 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Louie, T. et al. VE303, a defined bacterial consortium, for prevention of recurrent Clostridioides difficile infection. JAMA 329, 1356 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. DeFilipp, Z. et al. Third-party fecal microbiota transplantation following allo-HCT reconstitutes microbiome diversity. Blood Adv. 2, 745–753 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Taur, Y. et al. Reconstitution of the gut microbiota of antibiotic-treated patients by autologous fecal microbiota transplant. Sci. Transl. Med. 10, eaap9489 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Goeser, F. et al. Fecal microbiota transfer for refractory intestinal graft-versus-host disease—experience from two German tertiary centers. Eur. J. Haematol. 107, 229–245 (2021).

    Article  CAS  PubMed  Google Scholar 

  129. Stein-Thoeringer, C. K. et al. Lactose drives Enterococcus expansion to promote graft-versus-host disease. Science 366, 1143–1149 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Lev-Sagie, A. et al. Vaginal microbiome transplantation in women with intractable bacterial vaginosis. Nat. Med. 25, 1500–1504 (2019).

    Article  CAS  PubMed  Google Scholar 

  131. Nath, S. et al. Development and characterization of an oral microbiome transplant among Australians for the treatment of dental caries and periodontal disease: a study protocol. PLoS ONE 16, e0260433 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Duan, Y. et al. Bacteriophage targeting of gut bacterium attenuates alcoholic liver disease. Nature 575, 505–511 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Yuan, J. et al. Fatty liver disease caused by high-alcohol-producing Klebsiella pneumoniae. Cell Metab. 30, 675–688.e7 (2019).

    Article  CAS  PubMed  Google Scholar 

  134. Chassaing, B. et al. Crohn disease-associated adherent-invasive E. coli bacteria target mouse and human Peyer’s patches via long polar fimbriae. J. Clin. Invest. 121, 966–975 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Kostic, A. D. et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe 14, 207–215 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Huh, J. W. & Roh, T. Y. Opportunistic detection of Fusobacterium nucleatum as a marker for the early gut microbial dysbiosis. BMC Microbiol. 20, 208 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Ventola, C. L. The antibiotics resistance crisis: part 1: causes and threats. P. T. 40, 277–283 (2015).

    PubMed  PubMed Central  Google Scholar 

  138. Stern, A. & Sorek, R. The phage–host arms race: shaping the evolution of microbes. BioEssays 33, 43–51 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Federici, S. et al. Targeted suppression of human IBD-associated gut microbiota commensals by phage consortia for treatment of intestinal inflammation. Cell 185, 2879–2898.e24 (2022).

    Article  CAS  PubMed  Google Scholar 

  140. Gan, L. et al. Bacteriophage targeting microbiota alleviates non-alcoholic fatty liver disease induced by high alcohol-producing Klebsiella pneumoniae. Nat. Commun. 14, 3215 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Ichikawa, M. et al. Bacteriophage therapy against pathological Klebsiella pneumoniae ameliorates the course of primary sclerosing cholangitis. Nat. Commun. 14, 3261 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Gagliardi, A. et al. Rebuilding the gut microbiota ecosystem. Int. J. Environ. Res. Public Health 15, 1679 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Hobley, L. et al. Dual predation by bacteriophage and Bdellovibrio bacteriovorus can eradicate Escherichia coli prey in situations where single predation cannot. J. Bacteriol. 202, e00629-19 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Citorik, R. J., Mimee, M. & Lu, T. K. Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nat. Biotechnol. 32, 1141–1145 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Krautkramer, K. A., Fan, J. & Bäckhed, F. Gut microbial metabolites as multi-kingdom intermediates. Nat. Rev. Microbiol. 19, 77–94 (2021).

    Article  CAS  PubMed  Google Scholar 

  146. Koh, A., De Vadder, F., Kovatcheva-Datchary, P. & Bäckhed, F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165, 1332–1345 (2016).

    Article  CAS  PubMed  Google Scholar 

  147. Anachad, O., Taouil, A., Taha, W., Bennis, F. & Chegdani, F. The implication of short-chain fatty acids in obesity and diabetes. Microbiol. Insights 16, 117863612311627 (2023).

    Article  Google Scholar 

  148. Kim, C. H. Complex regulatory effects of gut microbial short-chain fatty acids on immune tolerance and autoimmunity. Cell. Mol. Immunol. 20, 341–350 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  149. O’Keefe, S. J. D. Diet, microorganisms and their metabolites, and colon cancer. Nat. Rev. Gastroenterol. Hepatol. 13, 691–706 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Silva, Y. P., Bernardi, A. & Frozza, R. L. The role of short-chain fatty acids from gut microbiota in gut–brain communication. Front. Endocrinol. 11, 25 (2020).

    Article  Google Scholar 

  151. Psichas, A. et al. The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents. Int. J. Obes. 39, 424–429 (2015).

    Article  CAS  Google Scholar 

  152. Zhao, L. et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science 359, 1151–1156 (2018).

    Article  CAS  PubMed  Google Scholar 

  153. Bouter, K. E. C. et al. Differential metabolic effects of oral butyrate treatment in lean versus metabolic syndrome subjects article. Clin. Transl. Gastroenterol. 9, 155 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Cherta-Murillo, A. et al. The effects of SCFAs on glycemic control in humans: a systematic review and meta-analysis. Am. J. Clin. Nutr. 116, 335–361 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Kowdley, K. V. et al. A randomized trial of obeticholic acid monotherapy in patients with primary biliary cholangitis. Hepatology 67, 1890–1902 (2018).

    Article  CAS  PubMed  Google Scholar 

  156. Kowdley, K. V. et al. A randomized, placebo-controlled, phase II study of obeticholic acid for primary sclerosing cholangitis. J. Hepatol. 73, 94–101 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Younossi, Z. M. et al. Obeticholic acid for the treatment of non-alcoholic steatohepatitis: interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial. Lancet 394, 2184–2196 (2019).

    Article  CAS  PubMed  Google Scholar 

  158. Loomba, R. et al. Factors associated with histologic response in adult patients with nonalcoholic steatohepatitis. Gastroenterology 156, 88–95.e5 (2019).

    Article  PubMed  Google Scholar 

  159. Wang, Z. et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57–63 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Roberts, A. B. et al. Development of a gut microbe-targeted nonlethal therapeutic to inhibit thrombosis potential. Nat. Med. 24, 1407–1417 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Natividad, J. M. et al. Impaired aryl hydrocarbon receptor ligand production by the gut microbiota is a key factor in metabolic syndrome. Cell Metab. 28, 737–749.e4 (2018).

    Article  CAS  PubMed  Google Scholar 

  162. Lamas, B. et al. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat. Med. 22, 598–605 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Wrzosek, L. et al. Microbiota tryptophan metabolism induces aryl hydrocarbon receptor activation and improves alcohol-induced liver injury. Gut 70, 1299–1308 (2021).

    Article  CAS  PubMed  Google Scholar 

  164. Naganuma, M. et al. Efficacy of indigo naturalis in a multicenter randomized controlled trial of patients with ulcerative colitis. Gastroenterology 154, 935–947 (2018).

    Article  PubMed  Google Scholar 

  165. Alexander, J. L. et al. Gut microbiota modulation of chemotherapy efficacy and toxicity. Nat. Rev. Gastroenterol. Hepatol. 14, 356–365 (2017).

    Article  CAS  PubMed  Google Scholar 

  166. Yoo, J. Y., Groer, M., Dutra, S. V. O., Sarkar, A. & McSkimming, D. I. Gut microbiota and immune system interactions. Microorganisms 8, 1587 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Stein-Thoeringer, C. K. et al. A non-antibiotic-disrupted gut microbiome is associated with clinical responses to CD19–CAR-T cell cancer immunotherapy. Nat. Med. 29, 906–916 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Muñiz Pedrogo, D. A. et al. Gut microbial carbohydrate metabolism hinders weight loss in overweight adults undergoing lifestyle intervention with a volumetric diet. Mayo Clin. Proc. 93, 1104–1110 (2018).

    Article  PubMed  Google Scholar 

  169. Artacho, A. et al. The pretreatment gut microbiome is associated with lack of response to methotrexate in new-onset rheumatoid arthritis. Arthritis Rheumatol. 73, 934–946 (2021).

    Article  Google Scholar 

  170. Geller, L. T. et al. Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science 357, 1156–1160 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Iida, N. et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science 342, 967–970 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Viaud, S. et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 342, 971–976 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Tintelnot, J. et al. Microbiota-derived 3-IAA influences chemotherapy efficacy in pancreatic cancer. Nature 615, 163–174 (2023).

    Article  Google Scholar 

  174. Routy, B. et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359, 91–97 (2018).

    Article  CAS  PubMed  Google Scholar 

  175. Derosa, L. et al. Negative association of antibiotics on clinical activity of immune checkpoint inhibitors in patients with advanced renal cell and non-small-cell lung cancer. Ann. Oncol. 29, 1437–1444 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Vétizou, M. et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 350, 1079–1084 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Sivan, A. et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350, 1084–1089 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Matson, V. et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science 359, 104–108 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Baruch, E. N. et al. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science 371, 602–609 (2021).

    Article  CAS  PubMed  Google Scholar 

  180. Davar, D. et al. Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients. Science 371, 595–602 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Smith, M. et al. Gut microbiome correlates of response and toxicity following anti-CD19 CAR T cell therapy. Nat. Med. 28, 713–723 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Haiser, H. J., Seim, K. L., Balskus, E. P. & Turnbaugh, P. J. Mechanistic insight into digoxin inactivation by Eggerthella lenta augments our understanding of its pharmacokinetics. Gut Microbes 5, 233–238 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Kaddurah-Daouk, R. et al. Enteric microbiome metabolites correlate with response to simvastatin treatment. PLoS ONE 6, e25482 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Liu, Y. et al. Gut microbiome associates with lipid-lowering effect of rosuvastatin in vivo. Front. Microbiol. 9, 530 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Cammarota, G. et al. Gut microbiome, big data and machine learning to promote precision medicine for cancer. Nat. Rev. Gastroenterol. Hepatol. 17, 635–648 (2020).

    Article  PubMed  Google Scholar 

  186. Ferreira, M. R. et al. Microbiota- and radiotherapy-induced gastrointestinal side-effects (MARS) study: a large pilot study of the microbiome in acute and late-radiation enteropathy. Clin. Cancer Res. 25, 6487–6500 (2019).

    Article  CAS  Google Scholar 

  187. Manichanh, C. et al. The gut microbiota predispose to the pathophysiology of acute postradiotherapy diarrhea. Am. J. Gastroenterol. 103, 1754–1761 (2008).

    Article  CAS  PubMed  Google Scholar 

  188. Wallace, B. D. et al. Alleviating cancer drug toxicity by inhibiting a bacterial enzyme. Science 330, 831–835 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. LoGuidice, A., Wallace, B. D., Bendel, L., Redinbo, M. R. & Boelsterli, U. A. Pharmacologic targeting of bacterial β-glucuronidase alleviates nonsteroidal anti-inflammatory drug-induced enteropathy in mice. J. Pharmacol. Exp. Ther. 341, 447–454 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Stein, A., Voigt, W. & Jordan, K. Chemotherapy-induced diarrhea: pathophysiology, frequency and guideline-based management. Ther. Adv. Med. Oncol. 2, 51–63 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Mego, M. et al. Prevention of irinotecan induced diarrhea by probiotics: a randomized double blind, placebo controlled pilot study. Complement Ther. Med. 23, 356–362 (2015).

    Article  PubMed  Google Scholar 

  192. Bhatt, A. P. et al. Targeted inhibition of gut bacterial β-glucuronidase activity enhances anticancer drug efficacy. Proc. Natl Acad. Sci. USA 117, 7374–7381 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Cheng, K. W. et al. Pharmacological inhibition of bacterial β-glucuronidase prevents irinotecan-induced diarrhea without impairing its antitumor efficacy in vivo. Pharmacol. Res. 139, 41–49 (2019).

    Article  CAS  PubMed  Google Scholar 

  194. Ianiro, G. et al. Faecal microbiota transplantation for the treatment of diarrhoea induced by tyrosine-kinase inhibitors in patients with metastatic renal cell carcinoma. Nat. Commun. 11, 4333 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Heinken, A. et al. Genome-scale metabolic reconstruction of 7,302 human microorganisms for personalized medicine. Nat. Biotechnol. 41, 1320–1331 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Liwinski, T., Leshem, A. & Elinav, E. Breakthroughs and bottlenecks in microbiome research. Trends Mol. Med. 27, 298–301 (2021).

    Article  PubMed  Google Scholar 

  197. Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Almeida, A. et al. A new genomic blueprint of the human gut microbiota. Nature 568, 499–504 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).

    Article  Google Scholar 

  200. Gupta, V. K., Paul, S. & Dutta, C. Geography, ethnicity or subsistence-specific variations in human microbiome composition and diversity. Front. Microbiol. 8, 1162 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Porras, A. M. et al. Geographic differences in gut microbiota composition impact susceptibility to enteric infection. Cell Rep. 36, 109457 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. de Jong, S. E., Olin, A. & Pulendran, B. The impact of the microbiome on immunity to vaccination in humans. Cell Host Microbe 28, 169–179 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Kennedy, K. M. et al. Questioning the fetal microbiome illustrates pitfalls of low-biomass microbial studies. Nature 613, 639–649 (2023).

    Article  CAS  PubMed  Google Scholar 

  204. Suez, J. et al. Post-antibiotic gut mucosal microbiome reconstitution is impaired by probiotics and improved by autologous FMT. Cell 174, 1406–1423.e16 (2018).

    Article  CAS  PubMed  Google Scholar 

  205. Zmora, N. et al. Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. Cell 174, 1388–1405.e21 (2018).

    Article  CAS  PubMed  Google Scholar 

  206. Montassier, E. et al. Probiotics impact the antibiotic resistance gene reservoir along the human GI tract in a person-specific and antibiotic-dependent manner. Nat. Microbiol. 6, 1043–1054 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Veiga, P., Suez, J., Derrien, M. & Elinav, E. Moving from probiotics to precision probiotics. Nat. Microbiol. 5, 878–880 (2020).

    Article  PubMed  Google Scholar 

  208. van der Lelie, D. et al. Rationally designed bacterial consortia to treat chronic immune-mediated colitis and restore intestinal homeostasis. Nat. Commun. 12, 3105 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Shalon, D. et al. Profiling the human intestinal environment under physiological conditions. Nature 617, 581–591 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Park, S. et al. A mountable toilet system for personalized health monitoring via the analysis of excreta. Nat. Biomed. Eng. 4, 624–635 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Ge, T. J. et al. Passive monitoring by smart toilets for precision health. Sci. Transl. Med. 15, eabk3489 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Lin, X., Waring, K., Tyson, J. & Ziels, M. R. High-accuracy meets high-throughput for microbiome profiling with near full-length 16S rRNA amplicon sequencing on the Nanopore platform. Preprint at BioRxiv https://doi.org/10.1101/2023.06.19.544637 (2023).

  213. Puschhof, J., Pleguezuelos-Manzano, C. & Clevers, H. Organoids and organs-on-chips: insights into human gut–microbe interactions. Cell Host Microbe 29, 867–878 (2021).

    Article  CAS  PubMed  Google Scholar 

  214. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03999853 (2023).

  215. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05218850 (2023).

  216. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05576597 (2022).

  217. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04566679 (2021).

  218. Nevens, F. et al. A placebo-controlled trial of obeticholic acid in primary biliary cholangitis. N. Engl. J. Med. 375, 631–643 (2016).

    Article  CAS  PubMed  Google Scholar 

  219. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05576038 (2023).

  220. Lopera-Maya, E. A. et al. Effect of host genetics on the gut microbiome in 7,738 participants of the Dutch Microbiome Project. Nat. Genet. 54, 143–151 (2022).

    Article  CAS  PubMed  Google Scholar 

  221. Goodrich, J. K. et al. Human genetics shape the gut microbiome. Cell 159, 789–799 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Zheng, D., Liwinski, T. & Elinav, E. Interaction between microbiota and immunity in health and disease. Cell Res. 30, 492–506 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Schroeder, B. O. et al. Bifidobacteria or fiber protects against diet-induced microbiota-mediated colonic mucus deterioration. Cell Host Microbe 23, 27–40.e7 (2018).

    Article  CAS  PubMed  Google Scholar 

  224. Rothschild, D. et al. Environment dominates over host genetics in shaping human gut microbiota. Nature 555, 210–215 (2018).

    Article  CAS  PubMed  Google Scholar 

  225. David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).

    Article  CAS  PubMed  Google Scholar 

  226. Faith, J. J. et al. The long-term stability of the human gut microbiota. Science 341, 12374339 (2013).

    Article  Google Scholar 

  227. Kundu, P., Blacher, E., Elinav, E. & Pettersson, S. Our gut microbiome: the evolving inner self. Cell 171, 1481–1493 (2017).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

K.R. is supported by The Nehemia Levtzion Scholarship for Outstanding Doctoral Students. D.C. received postdoctoral fellowship funding from the European Union’s Horizon 2020 research and innovation programme under Marie Skłodowska-Curie grant agreement No 101068352. S.K.A. is supported by the Israeli Ministry of Science and Technology Zvi Yanai Fellowship. E.E. is supported by the Leona M. and Harry B. Helmsley Charitable Trust, Adelis Foundation, Ben B. and Joyce E. Eisenberg Foundation, Estate of Bernard Bishin for the WIS-Clalit Program, Jeanne and Joseph Nissim Center for Life Sciences Research, Miel de Botton, Swiss Society Institute for Cancer Prevention Research, Belle S. and Irving E. Meller Center for the Biology of Aging, Sagol Institute for Longevity Research, Sagol Weizmann-MIT Bridge Program, Norman E. Alexander Family M Foundation Coronavirus Research Fund, Mike and Valeria Rosenbloom Foundation, Daniel Morris Trust, Isidore and Penny Myers Foundation and Vainboim Family, and by grants funded by the European Research Council, Israel Science Foundation, Israel Ministry of Science and Technology, Israel Ministry of Health, German–Israeli Helmholtz International Research School: Cancer-TRAX (HIRS-0003), Helmholtz Association’s Initiative and Networking Fund, Minerva Foundation, Garvan Institute, European Crohn’s and Colitis Organization, DeutschIsraelische Projektkooperation, IDSA Foundation, WIS-MIT grant, Emulate, Charlie Teo Foundation, Mark Foundation for Cancer Research and Welcome Trust; is the incumbent of the Sir Marc and Lady Tania Feldmann Professorial Chair of immunology; is a senior fellow at the Canadian Institute of Advanced Research; and is an international scholar at the The Bill & Melinda Gates Foundation and Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Suhaib K. Abdeen or Eran Elinav.

Ethics declarations

Competing interests

E.E. is a scientific founder of Daytwo and BiomX, and a paid consultant to Igen, PurposeBio, Aposense and Zoe. The other authors declare no competing interests.

Peer review

Peer review information

Nature Review Microbiology thanks Marcel van den Brink and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Dysbiosis

An altered microbiome configuration, characterized by imbalances in the microbial community structure such as composition, metabolic activities or distribution, that can be associated with disease.

Next-generation probiotics

Microbial taxa, experimentally evaluated as therapeutic living microorganisms, that would be optimized for human colonization, while featuring a reproducible safety and efficacy in promoting health.

Personalized nutrition

An experimental predictive approach that incorporates multi-faceted information, including data derived from the microbiome, to optimize the precision and efficacy of tailored dietary recommendations.

Postbiotics

Small molecules — metabolites — of varying chemical composition that are produced, degraded or modified by commensal microorganisms, or released following bacterial lysis.

Prebiotics

Nutritional supplements, such as fibres, that are selectively utilized by host microorganisms, conferring a health benefit by promoting the growth of commensal microorganisms.

Probiotics

Living microorganisms that are consumed to confer a health benefit to the host; despite widespread popularity, no probiotic preparations were approved to date by the US and European regulatory agencies as medical treatment or prevention.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ratiner, K., Ciocan, D., Abdeen, S.K. et al. Utilization of the microbiome in personalized medicine. Nat Rev Microbiol 22, 291–308 (2024). https://doi.org/10.1038/s41579-023-00998-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41579-023-00998-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing