Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Burkholderia pseudomallei and melioidosis

Abstract

Burkholderia pseudomallei, the causative agent of melioidosis, is found in soil and water of tropical and subtropical regions globally. Modelled estimates of the global burden predict that melioidosis remains vastly under-reported, and a call has been made for it to be recognized as a neglected tropical disease by the World Health Organization. Severe weather events and environmental disturbance are associated with increased case numbers, and it is anticipated that, in some regions, cases will increase in association with climate change. Genomic epidemiological investigations have confirmed B. pseudomallei endemicity in newly recognized regions, including the southern United States. Melioidosis follows environmental exposure to B. pseudomallei and is associated with comorbidities that affect the immune response, such as diabetes, and with socioeconomic disadvantage. Several vaccine candidates are ready for phase I clinical trials. In this Review, we explore the global burden, epidemiology and pathophysiology of B. pseudomallei as well as current diagnostics, treatment recommendations and preventive measures, highlighting research needs and priorities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Global distribution of Burkholderia pseudomallei.
Fig. 2: Virulence factors of Burkholderia pseudomallei and the host immune response.
Fig. 3: Antimicrobial resistance mechanisms of Burkholderia pseudomallei.
Fig. 4: Vaccines against Burkholderia pseudomallei currently under development.

Similar content being viewed by others

References

  1. Wiersinga, W. J. et al. Melioidosis. Nat. Rev. Dis. Primers 4, 17107 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Cheng, A. C., Jacups, S. P., Gal, D., Mayo, M. & Currie, B. J. Extreme weather events and environmental contamination are associated with case-clusters of melioidosis in the Northern Territory of Australia. Int. J. Epidemiol. 35, 323–329 (2006).

    Article  PubMed  Google Scholar 

  3. Limmathurotsakul, D. et al. Melioidosis caused by Burkholderia pseudomallei in drinking water, Thailand, 2012. Emerg. Infect. Dis. 20, 265–268 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Gee, J. E. et al. Multistate outbreak of melioidosis associated with imported aromatherapy spray. N. Engl. J. Med. 386, 861–868 (2022). This study demonstrates the power of combining bacterial genomics with field epidemiology to track a melioidosis outbreak from source to patients.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sarovich, D. S. et al. Whole-genome sequencing to investigate a non-clonal melioidosis cluster on a remote Australian island. Microb. Genom. 3, e000117 (2017).

    PubMed  PubMed Central  Google Scholar 

  6. McRobb, E. et al. Tracing melioidosis back to the source: using whole-genome sequencing to investigate an outbreak originating from a contaminated domestic water supply. J. Clin. Microbiol. 53, 1144–1148 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Birnie, E., Biemond, J. J. & Wiersinga, W. J. Drivers of melioidosis endemicity: epidemiological transition, zoonosis, and climate change. Curr. Opin. Infect. Dis. 35, 196–204 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sprague, L. D. & Neubauer, H. Melioidosis in animals: a review on epizootiology, diagnosis and clinical presentation. J. Vet. Med. B Infect. Dis. Vet. Public Health 51, 305–320 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Currie, B. J. et al. The Darwin Prospective Melioidosis Study: a 30-year prospective, observational investigation. Lancet Infect. Dis. 21, 1737–1746 (2021). A comprehensive analysis of the epidemiology and clinical features of melioidosis in the Northern Territory of Australia over three decades.

    Article  PubMed  Google Scholar 

  10. Chantratita, N. et al. Characteristics and one year outcomes of melioidosis patients in northeastern Thailand: a prospective, multicenter cohort study. Lancet Reg. Health Southeast Asia 9, 100118 (2023). A prospective cohort study describing the epidemiology, clinical features and outcomes of 2,574 melioidosis cases in northeastern Thailand.

    Article  PubMed  Google Scholar 

  11. Limmathurotsakul, D. et al. Increasing incidence of human melioidosis in Northeast Thailand. Am. J. Trop. Med. Hyg. 82, 1113–1117 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Limmathurotsakul, D. et al. Predicted global distribution of Burkholderia pseudomallei and burden of melioidosis. Nat. Microbiol. 1, 15008 (2016). A global map of melioidosis locations and numbers, both known and predicted from modelling, set as a benchmark for future validation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Currie, B. J. Melioidosis and Burkholderia pseudomallei: progress in epidemiology, diagnosis, treatment and vaccination. Curr. Opin. Infect. Dis. 35, 517–523 (2022).

    Article  PubMed  Google Scholar 

  14. Centers for Disease Control and Prevention. Bacteria that Causes Rare Disease Melioidosis Discovered in U.S. Environmental Samples. CDC https://www.cdc.gov/media/releases/2022/p0727-Melioidosis.html (2022).

  15. Gassiep, I. et al. Expanding the geographic boundaries of melioidosis in Queensland, Australia. Am. J. Trop. Med. Hyg. 108, 1215–1219 (2023).

    Article  PubMed  Google Scholar 

  16. Savelkoel, J., Dance, D. A. B., Currie, B. J., Limmathurotsakul, D. & Wiersinga, W. J. A call to action: time to recognise melioidosis as a neglected tropical disease. Lancet Infect. Dis. 22, e176–e182 (2022).

    Article  PubMed  Google Scholar 

  17. Suputtamongkol, Y. et al. The epidemiology of melioidosis in Ubon Ratchatani, northeast Thailand. Int. J. Epidemiol. 23, 1082–1090 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. Hodgetts, K. et al. Melioidosis in the remote Katherine region of northern Australia. PLoS Negl. Trop. Dis. 16, e0010486 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hanson, J., Smith, S., Stewart, J., Horne, P. & Ramsamy, N. Melioidosis — a disease of socioeconomic disadvantage. PLoS Negl. Trop. Dis. 15, e0009544 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  20. McLeod, C. et al. Clinical presentation and medical management of melioidosis in children: a 24-year prospective study in the Northern Territory of Australia and review of the literature. Clin. Infect. Dis. 60, 21–26 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Stoesser, N. et al. Pediatric suppurative parotitis in Cambodia between 2007 and 2011. Pediatr. Infect. Dis. J. 31, 865–868 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Currie, B. J. Melioidosis: evolving concepts in epidemiology, pathogenesis, and treatment. Semin. Respir. Crit. Care Med. 36, 111–125 (2015).

    Article  PubMed  Google Scholar 

  23. Limmathurotsakul, D. et al. Activities of daily living associated with acquisition of melioidosis in northeast Thailand: a matched case-control study. PLoS Negl. Trop. Dis. 7, e2072 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wuthiekanun, V. et al. Development of antibodies to Burkholderia pseudomallei during childhood in melioidosis-endemic northeast Thailand. Am. J. Trop. Med. Hyg. 74, 1074–1075 (2006).

    Article  PubMed  Google Scholar 

  25. James, G. L. et al. Surprisingly low seroprevalence of Burkholderia pseudomallei in exposed healthy adults in the Darwin region of tropical Australia where melioidosis is highly endemic. Clin. Vaccin. Immunol. 20, 759–760 (2013).

    Article  CAS  Google Scholar 

  26. Time. Diseases: Viet Nam’s Time Bomb. Time https://content.time.com/time/subscriber/article/0,33009,840848,00.html (1967).

  27. Kingston, C. W. Chronic or latent melioidosis. Med. J. Aust. 2, 618–621 (1971).

    Article  CAS  PubMed  Google Scholar 

  28. Mays, E. E. & Ricketts, E. A. Melioidosis: recrudescence associated with bronchogenic carcinoma twenty-six years following initial geographic exposure. Chest 68, 261–263 (1975).

    Article  CAS  PubMed  Google Scholar 

  29. Chodimella, U., Hoppes, W. L., Whalen, S., Ognibene, A. J. & Rutecki, G. W. Septicemia and suppuration in a Vietnam veteran. Hosp. Pract. 32, 219–221 (1997).

    Article  CAS  Google Scholar 

  30. Suputtamongkol, Y. et al. Risk factors for melioidosis and bacteremic melioidosis. Clin. Infect. Dis. 29, 408–413 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Geake, J. B. et al. An international, multicentre evaluation and description of Burkholderia pseudomallei infection in cystic fibrosis. BMC Pulm. Med. 15, 116 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Birnie, E. et al. Global burden of melioidosis in 2015: a systematic review and data synthesis. Lancet Infect. Dis. 19, 892–902 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Trinh, T. T. et al. A simple laboratory algorithm for diagnosis of melioidosis in resource-constrained areas: a study from north-central Vietnam. Clin. Microbiol. Infect. 24, 84.e1–84.e4 (2018). This study demonstrated the effectiveness of disc diffusion antimicrobial susceptibility testing of amoxicillin–clavulanate (susceptible), gentamicin (resistant) and colistin (resistant) for the presumptive identification of B. pseudomallei.

    Article  CAS  PubMed  Google Scholar 

  34. Dance, D. A. B. et al. Evaluation of consensus method for the culture of Burkholderia pseudomallei in soil samples from Laos. Wellcome Open Res. 3, 132 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Shaw, T. et al. Environmental factors associated with soil prevalence of the melioidosis pathogen Burkholderia pseudomallei: a longitudinal seasonal study from South West India. Front. Microbiol. 13, 902996 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Oduro, G. et al. On the environmental presence of Burkholderia pseudomallei in South-Central Ghana. Appl. Env. Microbiol. 88, e0060022 (2022).

    Article  Google Scholar 

  37. Cossaboom, C. M. et al. Melioidosis in a resident of Texas with no recent travel history, United States. Emerg. Infect. Dis. 26, 1295–1299 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Palasatien, S., Lertsirivorakul, R., Royros, P., Wongratanacheewin, S. & Sermswan, R. W. Soil physicochemical properties related to the presence of Burkholderia pseudomallei. Trans. R. Soc. Trop. Med. Hyg. 102 (Suppl. 1), 5–9 (2008).

    Article  Google Scholar 

  39. Hantrakun, V. et al. Soil nutrient depletion is associated with the presence of Burkholderia pseudomallei. Appl. Env. Microbiol. 82, 7086–7092 (2016).

    Article  CAS  ADS  Google Scholar 

  40. Inglis, T. J. & Sagripanti, J. L. Environmental factors that affect the survival and persistence of Burkholderia pseudomallei. Appl. Env. Microbiol. 72, 6865–6875 (2006).

    Article  CAS  ADS  Google Scholar 

  41. Yip, T. W. et al. Endemic melioidosis in residents of desert region after atypically intense rainfall in central Australia, 2011. Emerg. Infect. Dis. 21, 1038–1040 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chapple, S. N. J. et al. Whole-genome sequencing of a quarter-century melioidosis outbreak in temperate Australia uncovers a region of low-prevalence endemicity. Microb. Genom. 2, e000067 (2016).

    PubMed  PubMed Central  Google Scholar 

  43. Kaestli, M. et al. Landscape changes influence the occurrence of the melioidosis bacterium Burkholderia pseudomallei in soil in northern Australia. PLoS Negl. Trop. Dis. 3, e364 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Pongmala, K. et al. Distribution of Burkholderia pseudomallei within a 300-cm deep soil profile: implications for environmental sampling. Sci. Rep. 12, 8674 (2022). A detailed investigation of the complex associations between the physicochemical properties of soil and B. pseudomallei to a depth of 3 m.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  45. Baker, A. L., Ezzahir, J., Gardiner, C., Shipton, W. & Warner, J. M. Environmental attributes influencing the distribution of Burkholderia pseudomallei in northern Australia. PLoS ONE 10, e0138953 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kaestli, M. et al. Opportunistic pathogens and large microbial diversity detected in source-to-distribution drinking water of three remote communities in Northern Australia. PLoS Negl. Trop. Dis. 13, e0007672 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Limmathurotsakul, D. et al. Systematic review and consensus guidelines for environmental sampling of Burkholderia pseudomallei. PLoS Negl. Trop. Dis. 7, e2105 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kaestli, M. et al. Out of the ground: aerial and exotic habitats of the melioidosis bacterium Burkholderia pseudomallei in grasses in Australia. Env. Microbiol. 14, 2058–2070 (2012).

    Article  Google Scholar 

  49. Hoger, A. C. et al. The melioidosis agent Burkholderia pseudomallei and related opportunistic pathogens detected in faecal matter of wildlife and livestock in northern Australia. Epidemiol. Infect. 144, 1924–1932 (2016).

    Article  CAS  PubMed  Google Scholar 

  50. Wuthiekanun, V., Smith, M. D., Dance, D. A. & White, N. J. Isolation of Pseudomonas pseudomallei from soil in north-eastern Thailand. Trans. R. Soc. Trop. Med. Hyg. 89, 41–43 (1995).

    Article  CAS  PubMed  Google Scholar 

  51. Kaestli, M. et al. What drives the occurrence of the melioidosis bacterium Burkholderia pseudomallei in domestic gardens? PLoS Negl. Trop. Dis. 9, e0003635 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Rachlin, A. et al. Whole-genome sequencing of Burkholderia pseudomallei from an urban melioidosis hot spot reveals a fine-scale population structure and localised spatial clustering in the environment. Sci. Rep. 10, 5443 (2020).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  53. Smith, S. et al. Increased incidence of melioidosis in far North Queensland, Queensland, Australia, 1998-2019. Emerg. Infect. Dis. 27, 3119–3123 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ribolzi, O. et al. Land use and soil type determine the presence of the pathogen Burkholderia pseudomallei in tropical rivers. Env. Sci. Pollut. Res. Int. 23, 7828–7839 (2016).

    Article  Google Scholar 

  55. Zimmermann, R. E. et al. Rivers as carriers and potential sentinels for Burkholderia pseudomallei in Laos. Sci. Rep. 8, 8674 (2018).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  56. Baker, A. et al. Groundwater seeps facilitate exposure to Burkholderia pseudomallei. Appl. Env. Microbiol. 77, 7243–7246 (2011).

    Article  CAS  ADS  Google Scholar 

  57. Mayo, M. et al. Burkholderia pseudomallei in unchlorinated domestic bore water, tropical Northern Australia. Emerg. Infect. Dis. 17, 1283–1285 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Howard, K. & Inglis, T. J. The effect of free chlorine on Burkholderia pseudomallei in potable water. Water Res. 37, 4425–4432 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Chen, P. S. et al. Airborne transmission of melioidosis to humans from environmental aerosols contaminated with B. pseudomallei. PLoS Negl. Trop. Dis. 9, e0003834 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Sagripanti, J. L., Levy, A., Robertson, J., Merritt, A. & Inglis, T. J. Inactivation of virulent Burkholderia pseudomallei by sunlight. Photochem. Photobiol. 85, 978–986 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Thomas, A. D., Forbes-Faulkner, J. & Parker, M. Isolation of Pseudomonas pseudomallei from clay layers at defined depths. Am. J. Epidemiol. 110, 515–521 (1979).

    Article  CAS  PubMed  Google Scholar 

  62. Kaestli, M. et al. The association of melioidosis with climatic factors in Darwin, Australia: a 23-year time-series analysis. J. Infect. 72, 687–697 (2016).

    Article  PubMed  Google Scholar 

  63. Bulterys, P. L. et al. Climatic drivers of melioidosis in Laos and Cambodia: a 16-year case series analysis. Lancet Planet. Health 2, e334–e343 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Merritt, A. J. & Inglis, T. J. J. The role of climate in the epidemiology of melioidosis. Curr. Trop. Med. Rep. 4, 185–191 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Holden, M. T. et al. Genomic plasticity of the causative agent of melioidosis, Burkholderia pseudomallei. Proc. Natl Acad. Sci. USA 101, 14240–14245 (2004).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  66. Price, E. P., Currie, B. J. & Sarovich, D. S. Genomic insights into the melioidosis pathogen, Burkholderia pseudomallei. Curr. Trop. Med. Rep. 4, 95–102 (2017).

    Article  Google Scholar 

  67. Spring-Pearson, S. M. et al. Pangenome analysis of Burkholderia pseudomallei: genome evolution preserves gene order despite high recombination rates. PLoS ONE 10, e0140274 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Tuanyok, A. et al. Genomic islands from five strains of Burkholderia pseudomallei. BMC Genomics 9, 566 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Tumapa, S. et al. Burkholderia pseudomallei genome plasticity associated with genomic island variation. BMC Genomics 9, 190 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Chewapreecha, C. et al. Co-evolutionary signals identify Burkholderia pseudomallei survival strategies in a hostile environment. Mol. Biol. Evol. 39, msab306 (2022).

    Article  CAS  PubMed  Google Scholar 

  71. Ooi, W. F. et al. The condition-dependent transcriptional landscape of Burkholderia pseudomallei. PLoS Genet. 9, e1003795 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sarovich, D. S. et al. Variable virulence factors in Burkholderia pseudomallei (melioidosis) associated with human disease. PLoS ONE 9, e91682 (2014).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  73. Gora, H. et al. Melioidosis of the central nervous system; impact of the bimABm allele on patient presentation and outcome. Clin. Infect. Dis. https://doi.org/10.1093/cid/ciac111 (2022).

    Article  PubMed  Google Scholar 

  74. Chewapreecha, C. et al. Genetic variation associated with infection and the environment in the accidental pathogen Burkholderia pseudomallei. Commun. Biol. 2, 428 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Price, E. P. et al. Unprecedented melioidosis cases in Northern Australia caused by an Asian Burkholderia pseudomallei strain identified by using large-scale comparative genomics. Appl. Env. Microbiol. 82, 954–963 (2016).

    Article  CAS  ADS  Google Scholar 

  76. Pearson, T. et al. Phylogeographic reconstruction of a bacterial species with high levels of lateral gene transfer. BMC Biol. 7, 78 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Chewapreecha, C. et al. Global and regional dissemination and evolution of Burkholderia pseudomallei. Nat. Microbiol. 2, 16263 (2017). A multinational collaboration using bacterial genomics to map and estimate predicted timing for the global spread of B. pseudomallei.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gee, J. E. et al. Phylogeography of Burkholderia pseudomallei isolates, Western hemisphere. Emerg. Infect. Dis. 23, 1133–1138 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ngauy, V., Lemeshev, Y., Sadkowski, L. & Crawford, G. Cutaneous melioidosis in a man who was taken as a prisoner of war by the Japanese during World War II. J. Clin. Microbiol. 43, 970–972 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Meumann, E. M. et al. Emergence of Burkholderia pseudomallei sequence type 562, northern Australia. Emerg. Infect. Dis. 27, 1057–1067 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Webb, J. R. et al. Genomic epidemiology links Burkholderia pseudomallei from individual human cases to B. pseudomallei from targeted environmental sampling in northern Australia. J. Clin. Microbiol. 60, e0164821 (2022).

    Article  PubMed  Google Scholar 

  82. Lichtenegger, S. et al. Development and validation of a Burkholderia pseudomallei core genome multilocus sequence typing scheme to facilitate molecular surveillance. J. Clin. Microbiol. 59, e0009321 (2021).

    Article  PubMed  Google Scholar 

  83. Ku, J. W. & Gan, Y. H. Modulation of bacterial virulence and fitness by host glutathione. Curr. Opin. Microbiol. 47, 8–13 (2019).

    Article  CAS  PubMed  Google Scholar 

  84. Stevens, M. P. et al. Identification of a bacterial factor required for actin-based motility of Burkholderia pseudomallei. Mol. Microbiol. 56, 40–53 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Mobbs, G. W. et al. Molecular basis of specificity and deamidation of eIF4A by Burkholderia lethal factor 1. Commun. Biol. 5, 272 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Birnie, E. et al. Role of Toll-like receptor 5 (TLR5) in experimental melioidosis. Infect. Immun. 87, e00409-18 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Chomkatekaew, C., Boonklang, P., Sangphukieo, A. & Chewapreecha, C. An evolutionary arms race between Burkholderia pseudomallei and host immune system: what do we know? Front. Microbiol. 11, 612568 (2020).

    Article  PubMed  Google Scholar 

  88. Trottmann, F. et al. Pathogenic bacteria remodel central metabolic enzyme to build a cyclopropanol warhead. Nat. Chem. 14, 884–890 (2022). This study identifies malleicyprols as a novel B. pseudomallei virulence factor.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Pearson, T. et al. Pathogen to commensal? Longitudinal within-host population dynamics, evolution, and adaptation during a chronic >16-year Burkholderia pseudomallei infection. PLoS Pathog. 16, e1008298 (2020). Interesting case study demonstrating the evolutionary progression of a highly virulent B. pseudomallei strain towards commensalism within a single human host.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Viberg, L. T. et al. Within-host evolution of Burkholderia pseudomallei during chronic infection of seven Australasian cystic fibrosis patients. mBio 8, e00356-17(2017).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Jones, A. L., Beveridge, T. J. & Woods, D. E. Intracellular survival of Burkholderia pseudomallei. Infect. Immun. 64, 782–790 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Heacock-Kang, Y. et al. The Burkholderia pseudomallei intracellular ‘TRANSITome’. Nat. Commun. 12, 1907 (2021). Description of the B. pseudomallei ‘TRANSITome’, which reveals a dynamic gene-expression flux during transit in host cells identifying genes that are required for pathogenesis.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  93. Wiersinga, W. J. et al. Toll-like receptor 2 impairs host defense in Gram-negative sepsis caused by Burkholderia pseudomallei (melioidosis). PLoS Med. 4, e248 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  94. West, T. E., Ernst, R. K., Jansson-Hutson, M. J. & Skerrett, S. J. Activation of toll-like receptors by Burkholderia pseudomallei. BMC Immunol. 9, 46 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  95. West, T. E. et al. Toll-like receptor 4 region genetic variants are associated with susceptibility to melioidosis. Genes Immun. 13, 38–46 (2012).

    Article  CAS  PubMed  Google Scholar 

  96. West, T. E. et al. Impaired TLR5 functionality is associated with survival in melioidosis. J. Immunol. 190, 3373–3379 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ceballos-Olvera, I., Sahoo, M., Miller, M. A., Del Barrio, L. & Re, F. Inflammasome-dependent pyroptosis and IL-18 protect against Burkholderia pseudomallei lung infection while IL-1β is deleterious. PLoS Pathog. 7, e1002452 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Weehuizen, T. A. et al. Therapeutic administration of a monoclonal anti-Il-1β antibody protects against experimental melioidosis. Shock 46, 566–574 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. West, T. E. et al. NLRC4 and TLR5 each contribute to host defense in respiratory melioidosis. PLoS Negl. Trop. Dis. 8, e3178 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Myers, N. D. et al. The role of NOD2 in murine and human melioidosis. J. Immunol. 192, 300–307 (2014).

    Article  CAS  PubMed  Google Scholar 

  101. Bast, A. et al. Caspase-1-dependent and -independent cell death pathways in Burkholderia pseudomallei infection of macrophages. PLoS Pathog. 10, e1003986 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Easton, A., Haque, A., Chu, K., Lukaszewski, R. & Bancroft, G. J. A critical role for neutrophils in resistance to experimental infection with Burkholderia pseudomallei. J. Infect. Dis. 195, 99–107 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Sanchez-Villamil, J. I., Tapia, D., Khakhum, N., Widen, S. G. & Torres, A. G. Dual RNA-seq reveals a type 6 secretion system-dependent blockage of TNF-α signaling and BicA as a Burkholderia pseudomallei virulence factor important during gastrointestinal infection. Gut Microbes 14, 2111950 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Kager, L. M. et al. Mice lacking the lectin-like domain of thrombomodulin are protected against melioidosis. Crit. Care Med. 42, e221–e230 (2014).

    Article  CAS  PubMed  Google Scholar 

  105. Whiteley, L. et al. Entry, intracellular survival, and multinucleated-giant-cell-forming activity of Burkholderia pseudomallei in human primary phagocytic and nonphagocytic cells. Infect. Immun. 85, e00468-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Wiersinga, W. J. et al. Immunosuppression associated with interleukin-1R-associated-kinase-M upregulation predicts mortality in Gram-negative sepsis (melioidosis). Crit. Care Med. 37, 569–576 (2009).

    Article  CAS  PubMed  Google Scholar 

  107. Yimthin, T. et al. Blood transcriptomics to characterize key biological pathways and identify biomarkers for predicting mortality in melioidosis. Emerg. Microbes Infect. 10, 8–18 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Natesan, M. et al. Calprotectin as a biomarker for melioidosis disease progression and management. J. Clin. Microbiol. 55, 1205–1210 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. de Jong, H. K. et al. Neutrophil extracellular traps in the host defense against sepsis induced by Burkholderia pseudomallei (melioidosis). Intensive Care Med. Exp. 2, 21 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Riyapa, D. et al. Neutrophil extracellular traps exhibit antibacterial activity against Burkholderia pseudomallei and are influenced by bacterial and host factors. Infect. Immun. 80, 3921–3929 (2012). Evidence of the importance of neutrophils and NETs in host defence against B. pseudomallei.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Syed, I. & Wooten, R. M. Interactions between pathogenic Burkholderia and the complement system: a review of potential immune evasion mechanisms. Front. Cell Infect. Microbiol. 11, 701362 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. DeShazer, D., Brett, P. J. & Woods, D. E. The type II O-antigenic polysaccharide moiety of Burkholderia pseudomallei lipopolysaccharide is required for serum resistance and virulence. Mol. Microbiol. 30, 1081–1100 (1998).

    Article  CAS  PubMed  Google Scholar 

  113. Wiersinga, W. J. et al. Activation of coagulation with concurrent impairment of anticoagulant mechanisms correlates with a poor outcome in severe melioidosis. J. Thromb. Haemost. 6, 32–39 (2008).

    Article  CAS  PubMed  Google Scholar 

  114. Birnie, E. et al. Thrombocytopenia impairs host defense against Burkholderia pseudomallei (melioidosis). J. Infect. Dis. 219, 648–659 (2019). Translational study showing the protective effect of platelets in host defence against B. pseudomallei.

    Article  CAS  PubMed  Google Scholar 

  115. Ketheesan, N. et al. Demonstration of a cell-mediated immune response in melioidosis. J. Infect. Dis. 186, 286–289 (2002).

    Article  PubMed  Google Scholar 

  116. Jenjaroen, K. et al. T-cell responses are associated with survival in acute melioidosis patients. PLoS Negl. Trop. Dis. 9, e0004152 (2015). Demonstration that CD4+ and CD8+ T cell responses to B. pseudomallei are associated with survival in patients with acute melioidosis.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Kronsteiner, B. et al. Diabetes alters immune response patterns to acute melioidosis in humans. Eur. J. Immunol. 49, 1092–1106 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Reynolds, C. et al. T cell immunity to the alkyl hydroperoxide reductase of Burkholderia pseudomallei: a correlate of disease outcome in acute melioidosis. J. Immunol. 194, 4814–4824 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Dunachie, S. J. et al. Infection with Burkholderia pseudomallei — immune correlates of survival in acute melioidosis. Sci. Rep. 7, 12143 (2017).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  120. Sengyee, S. et al. Melioidosis patient survival correlates with strong IFN-γ secreting T cell responses against Hcp1 and TssM. Front. Immunol. 12, 698303 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Healey, G. D., Elvin, S. J., Morton, M. & Williamson, E. D. Humoral and cell-mediated adaptive immune responses are required for protection against Burkholderia pseudomallei challenge and bacterial clearance postinfection. Infect. Immun. 73, 5945–5951 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Haque, A. et al. Role of T cells in innate and adaptive immunity against murine Burkholderia pseudomallei infection. J. Infect. Dis. 193, 370–379 (2006).

    Article  PubMed  Google Scholar 

  123. Chaichana, P. et al. Role of Burkholderia pseudomallei-specific IgG2 in adults with acute melioidosis, Thailand. Emerg. Infect. Dis. 27, 463–470 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Pumpuang, A. et al. Distinct classes and subclasses of antibodies to hemolysin co-regulated protein 1 and O-polysaccharide and correlation with clinical characteristics of melioidosis patients. Sci. Rep. 9, 13972 (2019).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  125. Rongkard, P. et al. Human immune responses to melioidosis and cross-reactivity to low-virulence Burkholderia species, Thailand. Emerg. Infect. Dis. 26, 463–471 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Peacock, S. J. et al. Management of accidental laboratory exposure to Burkholderia pseudomallei and B. mallei. Emerg. Infect. Dis. 14, e2 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Gassiep, I., Bauer, M. J., Harris, P. N. A., Chatfield, M. D. & Norton, R. Laboratory safety: handling Burkholderia pseudomallei isolates without a biosafety cabinet. J. Clin. Microbiol. 59, e0042421 (2021). This study demonstrates no evidence of laboratory-acquired B. pseudomallei infection despite handling of the organism without a biosafety cabinet.

    Article  PubMed  Google Scholar 

  128. Gassiep, I., Armstrong, M. & Norton, R. Human melioidosis.Clin. Microbiol. Rev. 33, e00006-19 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Anuntagool, N. et al. Monoclonal antibody-based rapid identification of Burkholderia pseudomallei in blood culture fluid from patients with community-acquired septicaemia. J. Med. Microbiol. 49, 1075–1078 (2000).

    Article  CAS  PubMed  Google Scholar 

  130. Duval, B. D. et al. Evaluation of a latex agglutination assay for the identification of Burkholderia pseudomallei and Burkholderia mallei. Am. J. Trop. Med. Hyg. 90, 1043–1046 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Hoffmaster, A. R. et al. Melioidosis diagnostic workshop, 2013. Emerg. Infect. Dis. 21, e141045 (2015).

    PubMed  PubMed Central  Google Scholar 

  132. Podin, Y. et al. Burkholderia pseudomallei isolates from Sarawak, Malaysian Borneo, are predominantly susceptible to aminoglycosides and macrolides. Antimicrob. Agents Chemother. 58, 162–166 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Lowe, P., Haswell, H. & Lewis, K. Use of various common isolation media to evaluate the new VITEK 2 colorimetric GN Card for identification of Burkholderia pseudomallei. J. Clin. Microbiol. 44, 854–856 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Deepak, R. N., Crawley, B. & Phang, E. Burkholderia pseudomallei identification: a comparison between the API 20NE and VITEK 2 GN systems. Trans. R. Soc. Trop. Med. Hyg. 102 (Suppl. 1), 42–44 (2008).

    Article  Google Scholar 

  135. Gassiep, I., Armstrong, M. & Norton, R. E. Identification of Burkholderia pseudomallei by use of the Vitek mass spectrometer. J. Clin. Microbiol. 57, e00081-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Watthanaworawit, W. et al. A multi-country study using MALDI-TOF mass spectrometry for rapid identification of Burkholderia pseudomallei. BMC Microbiol. 21, 213 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Dingle, T. C., Butler-Wu, S. M. & Abbott, A. N. Accidental exposure to Burkholderia pseudomallei in the laboratory in the era of matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 52, 3490–3491 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Karatuna, O. et al. Burkholderia pseudomallei multi-centre study to establish EUCAST MIC and zone diameter distributions and epidemiological cut-off values. Clin. Microbiol. Infect. 27, 736–741 (2021). This multinational study established MIC and zone diameter distributions to determine epidemiological cut-off values for antimicrobials used to treat melioidosis; these data have informed the development of EUCAST clinical breakpoints.

    Article  CAS  Google Scholar 

  139. Dance, D. A. B. et al. Interpreting Burkholderia pseudomallei disc diffusion susceptibility test results by the EUCAST method. Clin. Microbiol. Infect. 27, 827–829 (2021).

    Article  PubMed  Google Scholar 

  140. Clinical and Laboratory Standards Institute. M45 Methods for Antimicrobial Dilution and Disk Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria 3rd edn (CLSI, 2015).

  141. Burnard, D. et al. Burkholderia pseudomallei clinical isolates are highly susceptible in vitro to cefiderocol, a siderophore cephalosporin. Antimicrob. Agents Chemother. 65, e00685-20 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Tandhavanant, S. et al. Monoclonal antibody-based immunofluorescence microscopy for the rapid identification of Burkholderia pseudomallei in clinical specimens. Am. J. Trop. Med. Hyg. 89, 165–168 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Meumann, E. M. et al. Clinical evaluation of a type III secretion system real-time PCR assay for diagnosing melioidosis. J. Clin. Microbiol. 44, 3028–3030 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Amornchai, P. et al. Sensitivity and specificity of DPP® Fever Panel II Asia in the diagnosis of malaria, dengue and melioidosis. J. Med. Microbiol. https://doi.org/10.1099/jmm.0.001584 (2022).

  145. Houghton, R. L. et al. Development of a prototype lateral flow immunoassay (LFI) for the rapid diagnosis of melioidosis. PLoS Negl. Trop. Dis. 8, e2727 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Currie, B. J., Woerle, C., Mayo, M., Meumann, E. M. & Baird, R. W. What is the role of lateral flow immunoassay for the diagnosis of melioidosis? Open Forum Infect. Dis. 9, ofac149 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Chaichana, P. et al. Antibodies in melioidosis: the role of the indirect hemagglutination assay in evaluating patients and exposed populations. Am. J. Trop. Med. Hyg. 99, 1378–1385 (2018). Description of the role of antibodies in diagnosis and immune response to melioidosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Cheng, A. C., O’Brien, M., Freeman, K., Lum, G. & Currie, B. J. Indirect hemagglutination assay in patients with melioidosis in northern Australia. Am. J. Trop. Med. Hyg. 74, 330–334 (2006).

    Article  PubMed  Google Scholar 

  149. Davis, J. S. et al. Prevention of opportunistic infections in immunosuppressed patients in the tropical top end of the Northern Territory. Commun. Dis. Intell. Q. Rep. 27, 526–532 (2003).

    PubMed  Google Scholar 

  150. Suttisunhakul, V. et al. Development of rapid enzyme-linked immunosorbent assays for detection of antibodies to Burkholderia pseudomallei. J. Clin. Microbiol. 54, 1259–1268 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Amornchai, P. et al. Evaluation of antigen-detecting and antibody-detecting diagnostic test combinations for diagnosing melioidosis. PLoS Negl. Trop. Dis. 15, e0009840 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Wagner, G. E. et al. Melioidosis DS rapid test: a standardized serological dipstick assay with increased sensitivity and reliability due to multiplex detection. PLoS Negl. Trop. Dis. 14, e0008452 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. White, N. J. et al. Halving of mortality of severe melioidosis by ceftazidime. Lancet 2, 697–701 (1989).

    Article  CAS  PubMed  Google Scholar 

  154. Lipsitz, R. et al. Workshop on treatment of and postexposure prophylaxis for Burkholderia pseudomallei and B. mallei infection, 2010. Emerg. Infect. Dis. 18, e2 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Dance, D. Treatment and prophylaxis of melioidosis. Int. J. Antimicrob. Agents 43, 310–318 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Pitman, M. C. et al. Intravenous therapy duration and outcomes in melioidosis: a new treatment paradigm. PLoS Negl. Trop. Dis. 9, e0003586 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Sullivan, R. P., Marshall, C. S., Anstey, N. M., Ward, L. & Currie, B. J. 2020 Review and revision of the 2015 Darwin melioidosis treatment guideline; paradigm drift not shift. PLoS Negl. Trop. Dis. 14, e0008659 (2020). Current consensus guidelines for the therapy of melioidosis in the Northern Territory of Australia.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Suntornsut, P. et al. Effectiveness of a multifaceted prevention programme for melioidosis in diabetics (PREMEL): a stepped-wedge cluster-randomised controlled trial. PLoS Negl. Trop. Dis. 15, e0009060 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Majoni, S. W., Hughes, J. T., Heron, B. & Currie, B. J. Trimethoprim+sulfamethoxazole reduces rates of melioidosis in high-risk hemodialysis patients. Kidney Int. Rep. 3, 160–167 (2018).

    Article  PubMed  Google Scholar 

  160. Luangasanatip, N. et al. The global impact and cost-effectiveness of a melioidosis vaccine. BMC Med. 17, 129 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  161. International Diabetes Federation. IDF Diabetes Atlas 8th edn (IDF, 2017).

  162. Osterloh, A. Vaccination against bacterial infections: challenges, progress, and new approaches with a focus on intracellular bacteria. Vaccines 10, 751 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Morici, L., Torres, A. G. & Titball, R. W. Novel multi-component vaccine approaches for Burkholderia pseudomallei. Clin. Exp. Immunol. 196, 178–188 (2019). Excellent overview of vaccines for melioidosis that are in development.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Burtnick, M. N. et al. Development of subunit vaccines that provide high-level protection and sterilizing immunity against acute inhalational melioidosis. Infect. Immun. 86, e00724-17 (2018).

    Article  PubMed  Google Scholar 

  165. Burtnick, M. N. et al. Development of capsular polysaccharide-based glycoconjugates for immunization against melioidosis and glanders. Front. Cell Infect. Microbiol. 2, 108 (2012).

    PubMed  PubMed Central  Google Scholar 

  166. Scott, A. E. et al. Protection against experimental melioidosis with a synthetic manno-heptopyranose hexasaccharide glycoconjugate. Bioconjug. Chem. 27, 1435–1446 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Scott, A. E. et al. Burkholderia pseudomallei capsular polysaccharide conjugates provide protection against acute melioidosis. Infect. Immun. 82, 3206–3213 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Schmidt, L. K. et al. Development of melioidosis subunit vaccines using an enzymatically inactive Burkholderia pseudomallei AhpC. Infect. Immun. 90, e0022222 (2022).

    Article  PubMed  Google Scholar 

  169. Tomas-Cortazar, J. et al. BpOmpW antigen stimulates the necessary protective T-cell responses against melioidosis. Front. Immunol. 12, 767359 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Champion, O. L. et al. Immunisation with proteins expressed during chronic murine melioidosis provides enhanced protection against disease. Vaccine 34, 1665–1671 (2016).

    Article  CAS  PubMed  Google Scholar 

  171. Muruato, L. A. et al. Use of reverse vaccinology in the design and construction of nanoglycoconjugate vaccines against Burkholderia pseudomalleiClin. Vaccine Immunol. 24, e00206-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Tapia, D., Sanchez-Villamil, J. I., Stevenson, H. L. & Torres, A. G. Multicomponent gold-linked glycoconjugate vaccine elicits antigen-specific humoral and mixed TH1-TH17 immunity, correlated with increased protection against Burkholderia pseudomallei. mBio 12, e0122721 (2021).

    Article  PubMed  Google Scholar 

  173. Baker, S. M. et al. Burkholderia pseudomallei OMVs derived from infection mimicking conditions elicit similar protection to a live-attenuated vaccine. NPJ Vaccines 6, 18 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Amemiya, K. et al. Deletion of two genes in Burkholderia pseudomallei MSHR668 that target essential amino acids protect acutely infected BALB/c mice and promote long term survival. Vaccines 7, 196 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Khakhum, N. et al. Burkholderia pseudomallei ΔtonB Δhcp1 live attenuated vaccine strain elicits full protective immunity against aerosolized melioidosis infection. mSphere 4, e00570-18 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Scott, A. E. et al. Protection against experimental melioidosis following immunization with live Burkholderia thailandensis expressing a manno-heptose capsule. Clin. Vaccin. Immunol. 20, 1041–1047 (2013).

    Article  CAS  Google Scholar 

  177. Wiersinga, W. J., Currie, B. J. & Peacock, S. J. Melioidosis. N. Engl. J. Med. 367, 1035–1044 (2012).

    Article  CAS  PubMed  Google Scholar 

  178. Tribuddharat, C., Moore, R. A., Baker, P. & Woods, D. E. Burkholderia pseudomallei class a β-lactamase mutations that confer selective resistance against ceftazidime or clavulanic acid inhibition. Antimicrob. Agents Chemother. 47, 2082–2087 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Sarovich, D. S. et al. Characterization of ceftazidime resistance mechanisms in clinical isolates of Burkholderia pseudomallei from Australia. PLoS ONE 7, e30789 (2012).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  180. Sarovich, D. S. et al. Development of ceftazidime resistance in an acute Burkholderia pseudomallei infection. Infect. Drug Resist. 5, 129–132 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Sam, I. C., See, K. H. & Puthucheary, S. D. Variations in ceftazidime and amoxicillin-clavulanate susceptibilities within a clonal infection of Burkholderia pseudomallei. J. Clin. Microbiol. 47, 1556–1558 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Hayden, H. S. et al. Evolution of Burkholderia pseudomallei in recurrent melioidosis. PLoS ONE 7, e36507 (2012).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  183. Bugrysheva, J. V. et al. Antibiotic resistance markers in Burkholderia pseudomallei strain Bp1651 identified by genome sequence analysis. Antimicrob. Agents Chemother. 61, e00010-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Price, E. P. et al. Within-host evolution of Burkholderia pseudomallei over a twelve-year chronic carriage infection. mBio 4, e00388-13 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Chantratita, N. et al. Antimicrobial resistance to ceftazidime involving loss of penicillin-binding protein 3 in Burkholderia pseudomallei. Proc. Natl Acad. Sci. USA 108, 17165–17170 (2011).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  186. Podnecky, N. L. et al. Mechanisms of resistance to folate pathway inhibitors in Burkholderia pseudomallei: deviation from the norm. mBio 8, e01357-17 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Sarovich, D. S. et al. Raising the stakes: loss of efflux pump regulation decreases meropenem susceptibility in Burkholderia pseudomallei. Clin. Infect. Dis. 67, 243–250 (2018).

    Article  CAS  PubMed  Google Scholar 

  188. Madden, D. E. et al. Taking the next-gen step: comprehensive antimicrobial resistance detection from Burkholderia pseudomallei. EBioMedicine 63, 103152 (2021).

    Article  CAS  PubMed  Google Scholar 

  189. Webb, J. R., Price, E. P., Currie, B. J. & Sarovich, D. S. Loss of methyltransferase function and increased efflux activity leads to doxycycline resistance in Burkholderia pseudomallei. Antimicrob. Agents Chemother. 61, e00268-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Hall, C. M. et al. Exploring cefiderocol resistance mechanisms in Burkholderia pseudomallei. Antimicrob. Agents Chemother. 67, e0017123 (2023).

    Article  PubMed  Google Scholar 

  191. Chaichana, P. et al. A nonsense mutation in TLR5 is associated with survival and reduced IL-10 and TNF-α levels in human melioidosis. PLoS Negl. Trop. Dis. 11, e0005587 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Chanchamroen, S., Kewcharoenwong, C., Susaengrat, W., Ato, M. & Lertmemongkolchai, G. Human polymorphonuclear neutrophil responses to Burkholderia pseudomallei in healthy and diabetic subjects. Infect. Immun. 77, 456–463 (2009).

    Article  CAS  PubMed  Google Scholar 

  193. Jones, S. M., Ellis, J. F., Russell, P., Griffin, K. F. & Oyston, P. C. F. Passive protection against Burkholderia pseudomallei infection in mice by monoclonal antibodies against capsular polysaccharide, lipopolysaccharide or proteins. J. Med. Microbiol. 51, 1055–1062 (2002).

    Article  CAS  PubMed  Google Scholar 

  194. AuCoin, D. P. et al. Polysaccharide specific monoclonal antibodies provide passive protection against intranasal challenge with Burkholderia pseudomallei. PLoS ONE 7, e35386 (2012).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  195. Charuchaimontri, C. et al. Antilipopolysaccharide II: an antibody protective against fatal melioidosis. Clin. Infect. Dis. 29, 813–818 (1999).

    Article  CAS  PubMed  Google Scholar 

  196. Ho, M. et al. Specificity and functional activity of anti-Burkholderia pseudomallei polysaccharide antibodies. Infect. Immun. 65, 3648–3653 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Chaichana, P. et al. Serum from melioidosis survivors diminished intracellular Burkholderia pseudomallei growth in macrophages: a brief research report. Front. Cell Infect. Microbiol. 10, 442 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Pumpuang, A., Paksanont, S., Burtnick, M. N., Brett, P. J. & Chantratita, N. Functional activities of O-polysaccharide and hemolysin coregulated protein 1 specific antibodies isolated from melioidosis patients. Infect. Immun. 90, e0021422 (2022).

    Article  PubMed  Google Scholar 

  199. Santanirand, P., Harley, V. S., Dance, D. A., Drasar, B. S. & Bancroft, G. J. Obligatory role of gamma interferon for host survival in a murine model of infection with Burkholderia pseudomallei. Infect. Immun. 67, 3593–3600 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Dharakul, T. et al. HLA-DR and -DQ associations with melioidosis. Hum. Immunol. 59, 580–586 (1998).

    Article  CAS  PubMed  Google Scholar 

  201. Tippayawat, P. et al. Phenotypic and functional characterization of human memory T cell responses to Burkholderia pseudomallei. PLoS Negl. Trop. Dis. 3, e407 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Chierakul, W. et al. Short report: disease severity and outcome of melioidosis in HIV coinfected individuals. Am. J. Trop. Med. Hyg. 73, 1165–1166 (2005).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the excellent work being done by global colleagues within the International Melioidosis Network. S.J.D. is funded by an NIHR Global Research Professorship (NIHR300791).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to the article.

Corresponding author

Correspondence to Ella M. Meumann.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Microbiology thanks Apichai Tuanyok, Robert Norton and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

International Melioidosis Network: https://www.melioidosis.info/infobox.aspx?pageID=101

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meumann, E.M., Limmathurotsakul, D., Dunachie, S.J. et al. Burkholderia pseudomallei and melioidosis. Nat Rev Microbiol 22, 155–169 (2024). https://doi.org/10.1038/s41579-023-00972-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41579-023-00972-5

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology