Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The gut microbiota and its biogeography

Abstract

Biogeography is the study of species distribution and diversity within an ecosystem and is at the core of how we understand ecosystem dynamics and interactions at the macroscale. In gut microbial communities, a historical reliance on bulk sequencing to probe community composition and dynamics has overlooked critical processes whereby microscale interactions affect systems-level microbiota function and the relationship with the host. In recent years, higher-resolution sequencing and novel single-cell level data have uncovered an incredible heterogeneity in microbial composition and have enabled a more nuanced spatial understanding of the gut microbiota. In an era when spatial transcriptomics and single-cell imaging and analysis have become key tools in mammalian cell and tissue biology, many of these techniques are now being applied to the microbiota. This fresh approach to intestinal biogeography has given important insights that span temporal and spatial scales, from the discovery of mucus encapsulation of the microbiota to the quantification of bacterial species throughout the gut. In this Review, we highlight emerging knowledge surrounding gut biogeography enabled by the observation and quantification of heterogeneity across multiple scales.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Regional biogeographical features of the gastrointestinal tract at the scale of the whole gut.
Fig. 2: Biogeographical features across the transverse axis of the gut.
Fig. 3: Mucus layer depletion in inflammatory bowel disease and inflammation.

Similar content being viewed by others

References

  1. Tropini, C. How the physical environment shapes the microbiota. mSystems 6, e0067521 (2021).

    Article  PubMed  Google Scholar 

  2. O’May, G. A., Reynolds, N., Smith, A. R., Kennedy, A. & Macfarlane, G. T. Effect of pH and antibiotics on microbial overgrowth in the stomachs and duodena of patients undergoing percutaneous endoscopic gastrostomy feeding. J. Clin. Microbiol. 43, 3059–3065 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ng, K. M. et al. Single-strain behavior predicts responses to environmental pH and osmolality in the gut microbiota. mBio 14, e00753-23 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Friedman, E. S. et al. Microbes vs. chemistry in the origin of the anaerobic gut lumen. Proc. Natl Acad. Sci. USA 115, 4170–4175 (2018). The quantification of oxygen tension and microbial composition across gut regions reveals highly aerobic conditions in the proximal small instestine, and a corresponding high relative abundance of faculative anaerobes in the lumen and mucosa of this region.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cremer, J., Arnoldini, M. & Hwa, T. Effect of water flow and chemical environment on microbiota growth and composition in the human colon. Proc. Natl Acad. Sci. USA 114, 6438–6443 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cremer, J. et al. Effect of flow and peristaltic mixing on bacterial growth in a gut-like channel. Proc. Natl Acad. Sci. USA 113, 11414–11419 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Vaishnava, S. et al. The antibacterial lectin regIIIg promotes the spatial segregation of microbiota and host in the intestine. Science 334, 255–258 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Salzman, N. H. et al. Enteric defensins are essential regulators of intestinal microbial ecology. Nat. Immunol. 11, 76–83 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Hansson, G. C. Role of mucus layers in gut infection and inflammation. Curr. Opin. Microbiol. 15, 57–62 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Berry, D. et al. Host-compound foraging by intestinal microbiota revealed by single-cell stable isotope probing. Proc. Natl Acad. Sci. USA 110, 4720–4725 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Donaldson, G. P., Lee, S. M. & Mazmanian, S. K. Gut biogeography of the bacterial microbiota. Nat. Rev. Microbiol. 14, 20–32 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Tropini, C., Earle, K. A., Huang, K. C. & Sonnenburg, J. L. The gut microbiome: connecting spatial organization to function. Cell Host Microbe 21, 433–442 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tropini, C. et al. Transient osmotic perturbation causes long-term alteration to the gut microbiota. Cell 173, 1742–1754.e17 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Peterson, D. A., Frank, D. N., Pace, N. R. & Gordon, J. I. Metagenomic approaches for defining the pathogenesis of inflammatory bowel diseases. Cell Host Microbe 3, 417–427 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Oren, A. & Garrity, G.M. Valid publication of the names of forty-two phyla of prokaryotes. Int. J. Syst. Evol. Microbiol. 71, 005056 (2021).

    Article  Google Scholar 

  16. Huttenhower, C. et al. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).

    Article  CAS  Google Scholar 

  17. Manor, O. et al. Health and disease markers correlate with gut microbiome composition across thousands of people. Nat. Commun. 11, 5206 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ley, R. E. et al. Obesity alters gut microbial ecology. Proc. Natl Acad. Sci. USA 102, 11070–11075 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Magne, F. et al. The Firmicutes/Bacteroidetes ratio: a relevant marker of gut dysbiosis in obese patients? Nutrients 12, 1474 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Moeller, A. H. The shrinking human gut microbiome. Curr. Opin. Microbiol. 38, 30–35 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Rausch, P. et al. Analysis of factors contributing to variation in the C57BL/6J fecal microbiota across German animal facilities. Int. J. Med. Microbiol. 306, 343–355 (2016).

    Article  PubMed  Google Scholar 

  22. Maghini, D. G. et al. Quantifying bias introduced by sample collection in relative and absolute microbiome measurements. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01754-3 (2023).

  23. Jovel, J. et al. Characterization of the gut microbiome using 16S or shotgun metagenomics. Front. Microbiol. 7, 459 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Nearing, J. T. et al. Microbiome differential abundance methods produce different results across 38 datasets. Nat. Commun. 13, 342 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schmidt, T. S. B. et al. Extensive transmission of microbes along the gastrointestinal tract. eLife 8, e42693 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mcconnell, E. L., Basit, A. W. & Murdan, S. Measurements of rat and mouse gastrointestinal pH, fluid and lymphoid tissue, and implications for in-vivo experiments. J. Pharm. Pharmacol. 60, 63–70 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Lkhagva, E. et al. The regional diversity of gut microbiome along the GI tract of male C57BL/6 mice. BMC Microbiol. 21, 44 (2021). A comprehensive profile of regional pH, water contents and microbiota composition across gastrointestinal regions provides a detailed reference for the gut biogeography of laboratory mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Quigley, E. M. M. & Turnberg, L. A. pH of the microclimate lining human gastric and duodenal mucosa in vivo studies in control subjects and in duodenal ulcer patients. Gastroenterology 92, 1876–1884 (1987).

    Article  CAS  PubMed  Google Scholar 

  29. Konradt, M. et al. The spatial orientation of Helicobacter pylori in the gastric mucus. Proc. Natl Acad. Sci. USA 101, 5024–5029 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Stanforth, K. J. et al. Pepsin properties, structure, and its accurate measurement: a narrative review. Ann. Esophagus https://doi.org/10.21037/aoe-20-95 (2022).

  31. Yeh Lee, Y., Erdogan, A. & Rao, S. S. C. How to assess regional and whole gut transit time with wireless motility capsule. J. Neurogastroenterol. Motil. 20, 265–270 (2014).

    Article  Google Scholar 

  32. Hara, A. M. O. & Shanahan, F. The gut flora as a forgotten organ. EMBO Rep. 7, 688–693 (2006).

    Article  Google Scholar 

  33. Sender, R., Fuchs, S. & Milo, R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 14, e1002533 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bik, E. M. et al. Molecular analysis of the bacterial microbiota in the human stomach. Proc. Natl Acad. Sci. USA 103, 732–737 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wurm, P. et al. Qualitative and quantitative DNA- and RNA-based analysis of the bacterial stomach microbiota in humans, mice, and gerbils. mSystems 3, e00262-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Howitt, M. R. et al. ChePep controls Helicobacter pylori infection of the gastric glands and chemotaxis in the Epsilonproteobacteria. mBio 2, e00098-11 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Earle, K. A. et al. Quantitative imaging of gut microbiota spatial organization. Cell Host Microbe 18, 478–488 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li, X. et al. Bacterial microbiota profiling in gastritis without Helicobacter pylori infection or non-steroidal anti-inflammatory drug use. PLoS ONE 4, e7985 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Sung, J. et al. Comparison of gastric microbiota between gastric juice and mucosa by next generation sequencing method. J. Cancer Prev. 21, 60–65 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Evans, D. F. et al. Measurement of gastrointestinal pH profiles in normal ambulant human subjects. Gut 29, 1035–1041 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Johansson, M. E. V. & Hansson, G. C. Keeping bacteria at a distance. Science 334, 182–183 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Lueschow, S. R. & McElroy, S. J. The Paneth cell: the curator and defender of the immature small intestine. Front. Immunol. 11, 587 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Seekatz, A. M. et al. Spatial and temporal analysis of the stomach and small intestinal microbiota in fasted healthy humans. mSphere 4, e00126-19 (2019). A multi-channel catheter allows sampling of luminal microbiota composition and pH across the small intestine over time, revealing correlations between small intestine resident microorganism abundance and pH levels in individual participants.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Choi, C. H. & Chang, S. K. Role of small intestinal bacterial overgrowth in functional gastrointestinal disorders. J. Neurogastroenterol. Motil. 22, 3–5 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Husebye, E. The pathogenesis of gastrointestinal bacterial overgrowth. Chemotherapy 51, 1–22 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Könönen, E. & Gursoy, U. K. Oral Prevotella species and their connection to events of clinical relevance in gastrointestinal and respiratory tracts. Front. Microbiol. 12, 798763 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Tabula Sapiens Consortium. The Tabula Sapiens: a multiple-organ, single-cell transcriptomic atlas of humans. Science 376, eabl4896 (2022). Single-cell transcriptomics and bacterial sequencing across gut regions in human donors provides the first steps towards a high-resolution map of the microbial and transcriptional landscape of the human gut.

    Article  Google Scholar 

  48. Sheth, R. U. et al. Spatial metagenomic characterization of microbial biogeography in the gut. Nat. Biotechnol. 37, 877–883 (2019). Plot-sampling methods usually reserved for macroscale ecosystems allows ~10–100-μm scale characterization of microbial community composition and organziation across gut regions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zoetendal, E. G. et al. The human small intestinal microbiota is driven by rapid uptake and conversion of simple carbohydrates. ISME J. 6, 1415–1426 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Macfarlane, G. T., Gibson, G. R. & Cummings, J. H. Comparison of fermentation reactions in different regions of the human colon. J. Appl. Bacteriol. 72, 57–64 (1992).

    CAS  PubMed  Google Scholar 

  51. Johansson, M. E. V. et al. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc. Natl Acad. Sci. USA 105, 15064–15069 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Martens, E. C., Chiang, H. C. & Gordon, J. I. Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. Cell Host Microbe 4, 447–457 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lee, K. S. et al. An automated Raman-based platform for the sorting of live cells by functional properties. Nat. Microbiol. 4, 1035–1048 (2019).

    Article  CAS  PubMed  Google Scholar 

  54. Luis, A. S. et al. A single sulfatase is required to access colonic mucin by a gut bacterium. Nature 598, 332–337 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ge, X. et al. SRS-FISH: a high-throughput platform linking microbiome metabolism to identity at the single-cell level. Proc. Natl Acad. Sci. USA 119, e2203519119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gu, S. et al. Bacterial community mapping of the mouse gastrointestinal tract. PLoS ONE 8, e74957 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. James, K. R. et al. Distinct microbial and immune niches of the human colon. Nat. Immunol. 21, 343–353 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Pereira, F. C. & Berry, D. Microbial nutrient niches in the gut. Environ. Microbiol. 19, 1366–1378 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Wexler, H. M. Bacteroides: the good, the bad, and the nitty-gritty. Clin. Microbiol. Rev. 20, 593–621 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Briliūtė, J. et al. Complex N-glycan breakdown by gut Bacteroides involves an extensive enzymatic apparatus encoded by multiple co-regulated genetic loci. Nat. Microbiol. 4, 1571–1581 (2019).

    Article  PubMed  Google Scholar 

  61. Donaldson, G. P. et al. Gut microbiota utilize immunoglobulin a for mucosal colonization. Science 360, 795–800 (2018). IgA is shown to interact with the surface capsule of B. fragilis to support colonization of the epithelium and crypts, and to differentially regulate epithelial colonization by other commensal bacteria in the colon.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Merchant, H. A., Liu, F., Orlu, M. & Basit, A. W. Age-mediated changes in the gastrointestinal tract. Int. J. Pharm. 512, 382–395 (2016).

    Article  CAS  PubMed  Google Scholar 

  63. Depner, M. et al. Maturation of the gut microbiome during the first year of life contributes to the protective farm effect on childhood asthma. Nat. Med. 26, 1766–1775 (2020).

    Article  CAS  PubMed  Google Scholar 

  64. Liu, Y. et al. Examination of the temporal and spatial dynamics of the gut microbiome in newborn piglets reveals distinct microbial communities in six intestinal segments. Sci. Rep. 9, 3453 (2019). Temporal sampling of regional microbiota composition from birth to adulthood in pigs provides insight into the dynamics of microbiota maturation in different gut compartments.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Mariat, D. et al. The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol. 9, 123 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Vaiserman, A. et al. Differences in the gut Firmicutes to Bacteroidetes ratio across age groups in healthy Ukrainian population. BMC Microbiol. 20, 221 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Hopkins, M. J., Sharp, R. & Macfarlane, G. T. Age and disease related changes in intestinal bacterial populations assessed by cell culture, 16S rRNA abundance, and community cellular fatty acid profiles. Gut 48, 198–205 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Leite, G. et al. Age and the aging process significantly alter the small bowel microbiome. Cell Rep. 36, 109765 (2021).

    Article  CAS  PubMed  Google Scholar 

  69. Shalon, D. et al. Profiling the human intestinal environment under physiological conditions. Nature 617, 581–591 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Albenberg, L. et al. Correlation between intraluminal oxygen gradient and radial partitioning of intestinal microbiota. Gastroenterology 147, 1055–1063.e8 (2014).

    Article  PubMed  Google Scholar 

  71. Espey, M. G. Role of oxygen gradients in shaping redox relationships between the human intestine and its microbiota. Free Radic. Biol. Med. 55, 130–140 (2013).

    Article  CAS  PubMed  Google Scholar 

  72. Sun, W. W. et al. Nanoarchitecture and dynamics of the mouse enteric glycocalyx examined by freeze-etching electron tomography and intravital microscopy. Commun. Biol. 3, 5 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Layunta, E., Jäverfelt, S., Dolan, B., Arike, L. & Pelaseyed, T. IL-22 promotes the formation of a MUC17 glycocalyx barrier in the postnatal small intestine during weaning. Cell Rep. 34, 108757 (2021).

    Article  CAS  PubMed  Google Scholar 

  74. Huus, K. E., Petersen, C. & Finlay, B. B. Diversity and dynamism of IgA−microbiota interactions. Nat. Rev. Immunol. 21, 514–525 (2021).

    Article  CAS  PubMed  Google Scholar 

  75. Gehart, H. & Clevers, H. Tales from the crypt: new insights into intestinal stem cells. Nat. Rev. Gastroenterol. Hepatol. 16, 19–34 (2019).

    Article  PubMed  Google Scholar 

  76. Gassler, N. Paneth cells in intestinal physiology and pathophysiology. World J. Gastrointest. Pathophysiol. 8, 150–160 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Liu, Y. et al. The role of MUC2 mucin in intestinal homeostasis and the impact of dietary components on MUC2 expression. Int. J. Biol. Macromol. 164, 884–891 (2020).

    Article  CAS  PubMed  Google Scholar 

  78. Birchenough, G. M. H., Nystrom, E. E. L., Johansson, M. E. V. & Hansson, G. C. A sentinel goblet cell guards the colonic crypt by triggering Nlrp6-dependent Muc2 secretion. Science 352, 1535–1542 (2016). A subpopulation of specialized crypt-resident goblet cells is characterized, which secrete mucus in response to contact with bacterial lipopolysaccharide to flush bacteria away from the crypt openings.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kotarsky, K. et al. A novel role for constitutively expressed epithelial-derived chemokines as antibacterial peptides in the intestinal mucosa. Mucosal Immunol. 3, 40–48 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Pédron, T. et al. A crypt-specific core microbiota resides in the mouse colon. mBio 3, e00116-12 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Pédron, T., Nigro, G. & Sansonetti, P. J. From homeostasis to pathology: decrypting microbe–host symbiotic signals in the intestinal crypt. Phil. Trans. R. Soc. B 371, 20150500 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Wang, W. et al. Three-dimensional quantitative imaging of native microbiota distribution in the gut. Angew. Chem. Int. Ed. Engl. 60, 3055–3061 (2021).

    Article  CAS  PubMed  Google Scholar 

  83. Saffarian, A. et al. Crypt- and mucosa-associated core microbiotas in humans and their alteration in colon cancer patients. mBio 10, e01315-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Zaborin, A. et al. Spatial compartmentalization of the microbiome between the lumen and crypts is lost in the murine cecum following the process of surgery, including overnight fasting and exposure to antibiotics. mSystems https://doi.org/10.1128/msystems.00377-20 (2020).

  85. Mondragón-Palomino, O. et al. Three-dimensional imaging for the quantification of spatial patterns in microbiota of the intestinal mucosa. Proc. Natl Acad. Sci. USA 119, e2118483119 (2022). Tissue clearing, 3D imaging and FISH staining allow high-resolution characterization of bacterial organization at the epithelium and within the crypts, and find large-scale disruptions to crypt microbiota architecture during and following antibiotic treatment.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Lee, S. M. et al. Bacterial colonization factors control specificity and stability of the gut microbiota. Nature 501, 426–429 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Dillon, A. & Lo, D. D. M cells: intelligent engineering of mucosal immune surveillance. Front. Immunol. 10, 1499 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Allaire, J. M. et al. The intestinal epithelium: central coordinator of mucosal immunity. Trends Immunol. 39, 677–696 (2018).

    Article  CAS  PubMed  Google Scholar 

  89. Corr, S. C., Gahan, C. C. G. M. & Hill, C. M-cells: origin, morphology and role in mucosal immunity and microbial pathogenesis. FEMS Immunol. Med. Microbiol. 52, 2–12 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Vazquez-Torres, A. Cellular routes of invasion by enteropathogens. Curr. Opin. Microbiol. 3, 54–59 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Atarashi, K. et al. Th17 cell induction by adhesion of microbes to intestinal epithelial cells. Cell 163, 367–380 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ladinsky, M. S. et al. Endocytosis of commensal antigens by intestinal epithelial cells regulates mucosal T cell homeostasis. Science 363, eaat4042 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ou, J., Liang, S., Guo, X. K. & Hu, X. α-Defensins promote Bacteroides colonization on mucosal reservoir to prevent antibiotic-induced dysbiosis. Front. Immunol. 11, 2065 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Vaga, S. et al. Compositional and functional differences of the mucosal microbiota along the intestine of healthy individuals. Sci. Rep. 10, 14977 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Ndeh, D. et al. Metabolism of multiple glycosaminoglycans by Bacteroides thetaiotaomicron is orchestrated by a versatile core genetic locus. Nat. Commun. 11, 646 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Overbeeke, A. et al. Nutrient niche specificity for glycosaminoglycans is reflected in polysaccharide utilization locus architecture of gut Bacteroides species. Front. Microbiol. 13, 1033355 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Bergstrom, K. et al. Proximal colon-derived O-glycosylated mucus encapsulates and modulates the microbiota. Science 370, 467–472 (2020). A careful analysis of the glycosylation patterns of mucus paired with regional mucin-knockout mice reveals that the outer mucus layer of the distal colon is proximal colon-derived, encapsulating the microbiota in transit through the lower intestine.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Nyström, E. E. L. et al. An intercrypt subpopulation of goblet cells is essential for colonic mucus barrier function. Science 372, eabb1590 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Johansson, M. E. V., Holmén Larsson, J. M. & Hansson, G. C. The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host–microbial interactions. Proc. Natl Acad. Sci. USA 108, 4659–4665 (2011).

    Article  CAS  PubMed  Google Scholar 

  100. Ermund, A., Schütte, A., Johansson, M. E. V., Gustafsson, J. K. & Hansson, G. C. Studies of mucus in mouse stomach, small intestine, and colon. I. Gastrointestinal mucus layers have different properties depending on location as well as over the Peyer’s patches. Am. J. Physiol. Gastrointest. Liver Physiol. 305, 341–347 (2013).

    Article  Google Scholar 

  101. Szentkuti, L. & Lorenz, K. The thickness of the mucus layer in different segments of the rat intestine. Histochem. J. 27, 466–472 (1995).

    Article  CAS  PubMed  Google Scholar 

  102. Johansson, M. E. V. et al. Composition and functional role of the mucus layers in the intestine. Cell. Mol. Life Sci. 68, 3635–3641 (2011).

    Article  CAS  PubMed  Google Scholar 

  103. Duncan, K., Carey-Ewend, K. & Vaishnava, S. Spatial analysis of gut microbiome reveals a distinct ecological niche associated with the mucus layer. Gut Microbes 13, 1874815 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Johansson, M. E. V. et al. Bacteria penetrate the normally impenetrable inner colon mucus layer in both murine colitis models and patients with ulcerative colitis. Gut 63, 281–291 (2014).

    Article  CAS  PubMed  Google Scholar 

  105. Tsai, H. H., Dwarakanath, A. D., Hart, C. A., Milton, J. D. & Rhodes, J. M. Increased faecal mucin sulphatase activity in ulcerative colitis: a potential target for treatment. Gut 36, 570–576 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Krajina, B. A. et al. Dynamic light scattering microrheology reveals multiscale viscoelasticity of polymer gels and precious biological materials. ACS Cent. Sci. 16, 1294–1303 (2017).

    Article  Google Scholar 

  107. Lieleg, O., Vladescu, I. & Ribbeck, K. Characterization of particle translocation through mucin hydrogels. Biophys. J. 98, 1782–1789 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Swidsinski, A. et al. Viscosity gradient within the mucus layer determines the mucosal barrier function and the spatial organization of the intestinal microbiota. Inflamm. Bowel Dis. 13, 963–970 (2007).

    Article  PubMed  Google Scholar 

  109. Rogier, E. W., Frantz, A. L., Bruno, M. E. C. & Kaetzel, C. S. Secretory IgA is concentrated in the outer layer of colonic mucus along with gut bacteria. Pathogens 3, 390–403 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Barr, J. J. A bacteriophages journey through the human body. Immunol. Rev. 279, 106–122 (2017).

    Article  CAS  PubMed  Google Scholar 

  111. Zuppi, M., Hendrickson, H. L., O’Sullivan, J. M. & Vatanen, T. Phages in the gut ecosystem. Front. Cell. Infect. Microbiol. 11, 822562 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Barr, J. J. et al. Bacteriophage adhering to mucus provide a non-host-derived immunity. Proc. Natl Acad. Sci. USA 110, 10771–10776 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Chin, W. H. et al. Bacteriophages evolve enhanced persistence to a mucosal surface. Proc. Natl Acad. Sci. USA 119, e2116197119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Lourenço, M. et al. The spatial heterogeneity of the gut limits predation and fosters coexistence of bacteria and bacteriophages. Cell Host Microbe 28, 390–401.e5 (2020).

    Article  PubMed  Google Scholar 

  115. Welch, J. L. M., Hasegawa, Y., McNulty, N. P., Gordon, J. I. & Borisy, G. G. Spatial organization of a model 15-member human gut microbiota established in gnotobiotic mice. Proc. Natl Acad. Sci. USA 114, E9105–E9114 (2017).

    Google Scholar 

  116. Jakobsson, H. E. et al. The composition of the gut microbiota shapes the colon mucus barrier. EMBO Rep. 16, 164–177 (2015).

    Article  CAS  PubMed  Google Scholar 

  117. Li, H. et al. The outer mucus layer hosts a distinct intestinal microbial niche. Nat. Commun. 6, 8292 (2015).

    Article  CAS  PubMed  Google Scholar 

  118. Yasuda, K. et al. Biogeography of the intestinal mucosal and lumenal microbiome in the rhesus macaque. Cell Host Microbe 17, 385–391 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Nava, G. M., Friedrichsen, H. J. & Stappenbeck, T. S. Spatial organization of intestinal microbiota in the mouse ascending colon. ISME J. 5, 627–638 (2011).

    Article  CAS  PubMed  Google Scholar 

  120. Glover, J. S., Ticer, T. D. & Engevik, M. A. Characterizing the mucin-degrading capacity of the human gut microbiota. Sci. Rep. 12, 8456 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Tailford, L. E., Crost, E. H., Kavanaugh, D. & Juge, N. Mucin glycan foraging in the human gut microbiome. Front. Genet. 6, 81 (2015).

    PubMed  PubMed Central  Google Scholar 

  122. Derrien, M. et al. Modulation of mucosal immune response, tolerance, and proliferation in mice colonized by the mucin-degrader Akkermansia muciniphila. Front. Microbiol. 2, 166 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Donaldson, G. P. et al. Spatially distinct physiology of Bacteroides fragilis within the proximal colon of gnotobiotic mice. Nat. Microbiol. 5, 746–756 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Engevik, M. A. et al. Bifidobacterium dentium fortifies the intestinal mucus layer. mBio 10, e01087-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Derrien, M., Belzer, C. & de Vos, W. M. Akkermansia muciniphila and its role in regulating host functions. Microb. Pathog. 106, 171–181 (2017).

    Article  PubMed  Google Scholar 

  126. Chelakkot, C. et al. Akkermansia muciniphila-derived extracellular vesicles influence gut permeability through the regulation of tight junctions. Exp. Mol. Med. 50, e450 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Ottman, N. et al. Pili-like proteins of Akkermansia muciniphila modulate host immune responses and gut barrier function. PLoS ONE 12, e0173004 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Hiippala, K. et al. The potential of gut commensals in reinforcing intestinal barrier function and alleviating inflammation. Nutrients 10, 988 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Nagara, Y., Takada, T., Nagata, Y., Kado, S. & Kushiro, A. Microscale spatial analysis provides evidence for adhesive monopolization of dietary nutrients by specific intestinal bacteria. PLoS ONE 12, e0175497 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Shi, H. et al. Highly multiplexed spatial mapping of microbial communities. Nature 588, 676–681 (2020). Multiplexed FISH probes combined with spectral imaging enables the labelling and identification of up to 1,023 bacterial species within a sample and is used to characterize bacterial organization at the 10–100-μm scale in tissue samples before and after antibiotic treatment.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Macfarlane, S. & Macfarlane, G. T. Composition and metabolic activities of bacterial biofilms colonizing food residues in the human gut. Appl. Environ. Microbiol. 72, 6204–6211 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Whitaker, W. R., Shepherd, E. S. & Sonnenburg, J. L. Tunable expression tools enable single-cell strain distinction in the gut microbiome. Cell 169, 538–546.e12 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Li, D. et al. Microbial biogeography and core microbiota of the rat digestive tract. Sci. Rep. 8, 45840 (2017).

    Article  CAS  PubMed  Google Scholar 

  134. Mu, C., Yang, Y., Su, Y., Zoetendal, E. G. & Zhu, W. Differences in microbiota membership along the gastrointestinal tract of piglets and their differential alterations following an early-life antibiotic intervention. Front. Microbiol. 8, 797 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Teng, T. et al. Biogeography of the large intestinal mucosal and luminal microbiome in cynomolgus macaques with depressive-like behavior. Mol. Psychiatry 27, 1059–1067 (2022).

    Article  CAS  PubMed  Google Scholar 

  136. Eckburg, P. B. et al. Diversity of the human intestinal microbial flora. Science 308, 1635–1638 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  137. De Cárcer, D. A. et al. Numerical ecology validates a biogeographical distribution and gender-based effect on mucosa-associated bacteria along the human colon. ISME J. 5, 801–809 (2011).

    Article  Google Scholar 

  138. Vijay, A. & Valdes, A. M. Challenges in nutrition role of the gut microbiome in chronic diseases: a narrative review. Eur. J. Clin. Nutr. 76, 489–501 (2022).

    Article  CAS  PubMed  Google Scholar 

  139. Nguyen, J., Pepin, D. M. & Tropini, C. Cause or effect? The spatial organization of pathogens and the gut microbiota in disease. Microbes Infect. 23, 104815 (2021).

    Article  CAS  PubMed  Google Scholar 

  140. Lennon, G. et al. Correlations between colonic crypt mucin chemotype, inflammatory grade and Desulfovibrio species in ulcerative colitis. Colorectal Dis. 16, 161–169 (2013).

    Google Scholar 

  141. Van Der Post, S. et al. Structural weakening of the colonic mucus barrier is an early event in ulcerative colitis pathogenesis. Gut 68, 2142–2151 (2019). Biopsy explants from patients with ulcerative colitis allow the characterization of mucus layer integrity and production rate, and identify depletion of sentinel goblet cells as a mechanism of mucus layer thinning associated with IBD.

    Article  PubMed  Google Scholar 

  142. Hall, A. B. et al. A novel Ruminococcus gnavus clade enriched in inflammatory bowel disease patients. Genome Med. 9, 103 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Lloyd-Price, J. et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 569, 655–662 (2019). Extensive longitudinal sampling and metagenomic, metatransciptomic and metabolomic analysis of stool samples from patients with IBD and healthy controls link periods of dysbiosis and altered microbiome transcriptional activity to active disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Sugihara, K. et al. Mucolytic bacteria license pathobionts to acquire host-derived nutrients during dietary nutrient restriction. Cell Rep. 40, 111093 (2022).

    Article  CAS  PubMed  Google Scholar 

  145. Johansson, M. E. V. et al. Bacteria penetrate the inner mucus layer before inflammation in the dextran sulfate colitis model. PLoS ONE 5, e12238 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Desai, M. S. et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 167, 1339–1353.e21 (2016). Dietary fibre is identified as a critical regulator of mucolytic bacteria abundance and colonic mucus barrier integrity; fibre-deprived mice develop thin, penetrable mucus layers, making them prone to colitis and pathogen infection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Hamilton, M. K., Boudry, G., Lemay, D. G. & Raybould, H. E. Changes in intestinal barrier function and gut microbiota in high-fat diet-fed rats are dynamic and region dependent. Am. J. Physiol. Gastrointest. Live Physiol. 308, G840–G851 (2015).

    Article  CAS  Google Scholar 

  148. Schroeder, B. O. et al. Bifidobacteria or fiber protects against diet-induced microbiota-mediated colonic mucus deterioration. Cell Host Microbe 23, 27–40.e7 (2018).

    Article  CAS  PubMed  Google Scholar 

  149. Chassaing, B. et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature 519, 92–96 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Sheng, Q. S. et al. Comparison of gut microbiome in human colorectal cancer in paired tumor and adjacent normal tissues. Onco Targets Ther. 13, 635–646 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Burns, M. B., Lynch, J., Starr, T. K., Knights, D. & Blekhman, R. Virulence genes are a signature of the microbiome in the colorectal tumor microenvironment. Genome Med. 7, 55 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Dejea, C. M. et al. Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria. Science 359, 592–597 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Bullman, S. et al. Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer. Science 358, 1443–1448 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Bi, D. et al. Profiling Fusobacterium infection at high taxonomic resolution reveals lineage-specific correlations in colorectal cancer. Nat. Commun. 13, 3336 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Han, Y. W. Fusobacterium nucleatum: a commensal-turned pathogen. Curr. Opin. Microbiol. 23, 141–147 (2015).

    Article  CAS  PubMed  Google Scholar 

  156. Kostic, A. D. et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe 14, 207–215 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Yu, T. C. et al. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell 170, 548–563.e16 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Oliero, M. et al. Prevalence of pks + bacteria and enterotoxigenic Bacteroides fragilis in patients with colorectal cancer. Gut Pathog. 14, 51 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Ng, K. M. et al. Recovery of the gut microbiota after antibiotics depends on host diet, community context, and environmental reservoirs. Cell Host Microbe 26, 650–665.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Poteres, E. et al. Selective regional alteration of the gut microbiota by diet and antibiotics. Front. Physiol. 11, 797 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Brown, C. T. et al. Measurement of bacterial replication rates in microbial communities. Nat. Biotechnol. 34, 1256–1263 (2017).

    Article  Google Scholar 

  162. Korem, T. et al. Growth dynamics of gut microbiota in health and disease inferred from single metagenomic samples. Science 349, 1101–1106 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Schmidt, F. et al. Noninvasive assessment of gut function using transcriptional recording sentinel cells. Science 376, eabm6038 (2022).

    Article  CAS  PubMed  Google Scholar 

  164. Riglar, D. T. et al. Bacterial variability in the mammalian gut captured by a single-cell synthetic oscillator. Nat. Commun. 10, 4665 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Dar, D., Dar, N., Cai, L. & Newman, D. K. Spatial transcriptomics of planktonic and sessile bacterial populations at single-cell resolution. Science 373, eabi4882 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Takahashi, H. et al. Direct detection of mRNA expression in microbial cells by fluorescence in situ hybridization using RNase H-assisted rolling circle amplification. Sci. Rep. 10, 9588 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Duboux, S., Muller, J. A., De Franceschi, F., Mercenier, A. & Kleerebezem, M. Using fluorescent promoter-reporters to study sugar utilization control in Bifidobacterium longum NCC 2705. Sci. Rep. 12, 10477 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Hooper, L. V., Xu, J., Falk, P. G., Midtvedt, T. & Gordon, J. I. A molecular sensor that allows a gut commensal to control its nutrient foundation in a competitive ecosystem. Proc. Natl Acad. Sci. USA 96, 9833–9838 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Geier, B. et al. Spatial metabolomics of in situ host–microbe interactions at the micrometre scale. Nat. Microbiol. 5, 498–510 (2020).

    Article  CAS  PubMed  Google Scholar 

  170. Lin, L. et al. Revealing the in vivo growth and division patterns of mouse gut bacteria. Sci. Adv. 6, eabb2531 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Haugan, M. S., Charbon, G., Frimodt-Møller, N. & Løbner-Olesen, A. Chromosome replication as a measure of bacterial growth rate during Escherichia coli infection in the mouse peritonitis model. Sci. Rep. 8, 14961 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Valm, A. M., Mark Welch, J. L. & Borisy, G. G. CLASI-FISH: principles of combinatorial labeling and spectral imaging. Syst. Appl. Microbiol. 35, 496–502 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Wilbert, S. A., Mark Welch, J. L. & Borisy, G. G. Spatial ecology of the human tongue dorsum microbiome. Cell Rep. 30, 4003–4015.e3 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Valm, A. M. et al. Systems-level analysis of microbial community organization through combinatorial labeling and spectral imaging. Proc. Natl Acad. Sci. USA 108, 4152–4157 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Barr, J. J., Blackall, L. L. & Bond, P. Further limitations of phylogenetic group-specific probes used for detection of bacteria in environmental samples. ISME J. 4, 959–961 (2010).

    Article  PubMed  Google Scholar 

  176. Barrero-Canosa, J., Moraru, C., Zeugner, L., Fuchs, B. M. & Amann, R. Direct-geneFISH: a simplified protocol for the simultaneous detection and quantification of genes and rRNA in microorganisms. Environ. Microbiol. 19, 70–82 (2017).

    Article  CAS  PubMed  Google Scholar 

  177. Shi, H., Grodner, B. & De Vlaminck, I. Recent advances in tools to map the microbiome. Curr. Opin. Biomed. Eng. 19, 100289 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Lloréns-Rico, V., Simcock, J. A., Huys, G. R. B. & Raes, J. Single-cell approaches in human microbiome research. Cell 185, 2725–2738 (2022).

    Article  PubMed  Google Scholar 

  179. Armetta, J. et al. Escherichia coli promoters with consistent expression throughout the murine gut. ACS Synth. Biol. 10, 3359–3368 (2021).

    Article  CAS  PubMed  Google Scholar 

  180. Nielsen, A. T. et al. A bistable switch and anatomical site control Vibrio cholerae virulence gene expression in the intestine. PLoS Pathog. 6, e1001102 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Motta, J. P., Wallace, J. L., Buret, A. G., Deraison, C. & Vergnolle, N. Gastrointestinal biofilms in health and disease. Nat. Rev. Gastroenterol. Hepatol. 18, 314–334 (2021).

    Article  PubMed  Google Scholar 

  182. Tytgat, H. L. P., Nobrega, F. L., van der Oost, J. & de Vos, W. M. Bowel biofilms: tipping points between a healthy and compromised gut? Trends Microbiol. 27, 17–25 (2019).

    Article  CAS  PubMed  Google Scholar 

  183. da Re, S. et al. Identification of commensal Escherichia coli genes involved in biofilm resistance to pathogen colonization. PLoS ONE 8, e61628 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Hassall, J., Cheng, J. K. J. & Unnikrishnan, M. Dissecting individual interactions between pathogenic and commensal bacteria within a multispecies gut microbial community. mSphere 6, e00013-21 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Baumgartner, M. et al. Mucosal biofilms are an endoscopic feature of irritable bowel syndrome and ulcerative colitis. Gastroenterology 161, 1245–1256.e20 (2021). Endoscopic, microscopic and genomic characterization of mucosal biofilms finds that differential localization and composition of biofilms are associated with IBD and left and right ulcerative colitis, and identifies common microbial species associated with each disease.

    Article  CAS  PubMed  Google Scholar 

  186. Mima, K. et al. Fusobacterium nucleatum in colorectal carcinoma tissue according to tumor location. Clin. Transl Gastroenterol. 7, e200 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Dejea, C. M. et al. Microbiota organization is a distinct feature of proximal colorectal cancers. Proc. Natl Acad. Sci. USA 111, 18321–18326 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Kim, K., Castro, E. J. T., Shim, H., Advincula, J. V. G. & Kim, Y. W. Differences regarding the molecular features and gut microbiota between right and left colon cancer. Ann. Coloproctol. 34, 292–298 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Raskov, H., Kragh, K. N., Bjarnsholt, T., Alamili, M. & Gögenur, I. Bacterial biofilm formation inside colonic crypts may accelerate colorectal carcinogenesis. Clin. Transl Med. 7, 30 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge that this work was completed on the traditional, ancestral and unceded territory of the xʷməθkʷəy̕əm (Musqueam) people. The authors encourage the reader to learn about the history of the land they work on at Native Land Digital (www.native-land.ca). They thank K. Ng, M. Orozco-Hidalgo, F. Papazotos, J. Burkhardt, H. Ghezzi and M. Hunter for their feedback and guidance in shaping this Review. G.M. acknowledges support from Natural Sciences and Engineering Research Council of Canada, Canada Graduate Scholarships.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Carolina Tropini.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Microbiology thanks Rustem Ismagilov, who co-reviewed with Ojas Pradhan and Natalie Woods, Alex Valm and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCallum, G., Tropini, C. The gut microbiota and its biogeography. Nat Rev Microbiol 22, 105–118 (2024). https://doi.org/10.1038/s41579-023-00969-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41579-023-00969-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing