Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The cellular lives of Wolbachia

Abstract

Wolbachia are successful Gram-negative bacterial endosymbionts, globally infecting a large fraction of arthropod species and filarial nematodes. Efficient vertical transmission, the capacity for horizontal transmission, manipulation of host reproduction and enhancement of host fitness can promote the spread both within and between species. Wolbachia are abundant and can occupy extraordinary diverse and evolutionary distant host species, suggesting that they have evolved to engage and manipulate highly conserved core cellular processes. Here, we review recent studies identifying Wolbachia–host interactions at the molecular and cellular levels. We explore how Wolbachia interact with a wide array of host cytoplasmic and nuclear components in order to thrive in a diversity of cell types and cellular environments. This endosymbiont has also evolved the ability to precisely target and manipulate specific phases of the host cell cycle. The remarkable diversity of cellular interactions distinguishes Wolbachia from other endosymbionts and is largely responsible for facilitating its global propagation through host populations. Finally, we describe how insights into Wolbachia–host cellular interactions have led to promising applications in controlling insect-borne and filarial nematode-based diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Key features of Wolbachia genomics and cell biology, and effects on the host.
Fig. 2: Wolbachia interactions with cellular organelles.
Fig. 3: The cell biology of Wolbachia vertical transmission.
Fig. 4: Toxin–antitoxin and host-modification models of cytoplasmic incompatibility.

Similar content being viewed by others

References

  1. Weinert, L. A., Araujo-Jnr, E. V., Ahmed, M. Z. & Welch, J. J. The incidence of bacterial endosymbionts in terrestrial arthropods. Proc. Biol. Sci. 282, 20150249 (2015).

    PubMed  PubMed Central  Google Scholar 

  2. Kaur, R. et al. Living in the endosymbiotic world of Wolbachia: a centennial review. Cell Host Microbe 29, 879–893 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Werren, J. H., Baldo, L. & Clark, M. E. Wolbachia: master manipulators of invertebrate biology. Nat. Rev. Microbiol. 6, 741–751 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Serbus, L. R., Casper-Lindley, C., Landmann, F. & Sullivan, W. The genetics and cell biology of Wolbachia–host interactions. Annu. Rev. Genet. 42, 683–707 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Pietri, J. E., DeBruhl, H. & Sullivan, W. The rich somatic life of Wolbachia. Microbiologyopen 5, 923–936 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Utarini, A. et al. Efficacy of Wolbachia-infected mosquito deployments for the control of dengue. N. Engl. J. Med. 384, 2177–2186 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ngwewondo, A., Scandale, I. & Specht, S. Onchocerciasis drug development: from preclinical models to humans. Parasitol. Res. 120, 3939–3964 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hertig, M. The rickettsia, Wolbachia pipientis and associated inclusions of the mosquito Culex pipiens. Parasitology 28, 453–486 (1936).

    Article  Google Scholar 

  9. Bernardes Filho, F. & Avelleira, J. C. Henrique da Rocha Lima. An. Bras. Dermatol. 90, 363–366 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Cowdry, E. V. The distribution of Rickettsia in the tissues of insects and arachnids. J. Exp. Med. 37, 431–456 (1923).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hertig, M. & Wolbach, S. B. Studies on Rickettsia-like micro-organisms in insects. J. Med. Res. 44, 329–374.7 (1924).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Sikora, H. Beobachtungen an Rickettsien, besonders zur Unterscheidung der R. prowazeki von R. pedikuli [German]. Arch. Schiffs. Tropenhyg. 24, 347–353 (1920).

    Google Scholar 

  13. Laven, H. Cytoplasmic inheritance in Culex. Nature 177, 141–142 (1956).

    Article  Google Scholar 

  14. Laven, H. Eradication of Culex pipiens fatigans through cytoplasmic incompatibility. Nature 216, 383–384 (1967).

    Article  CAS  PubMed  Google Scholar 

  15. Yen, J. H. & Barr, A. R. New hypothesis of the cause of cytoplasmic incompatibility in Culex pipiens L. Nature 232, 657–658 (1971).

    Article  CAS  PubMed  Google Scholar 

  16. Yen, J. H. & Barr, A. R. The etiological agent of cytoplasmic incompatibility in Culex pipiens. J. Invertebr. Pathol. 22, 242–250 (1973).

    Article  CAS  PubMed  Google Scholar 

  17. Ryan, S. L. & Saul, G. B. Post-fertilization effect of incompatibility factors in Mormoniella. Mol. Gen. Genet. 103, 29–36 (1968).

    Article  CAS  PubMed  Google Scholar 

  18. Sironi, M. et al. Molecular evidence for a close relative of the arthropod endosymbiont Wolbachia in a filarial worm. Mol. Biochem. Parasitol. 74, 223–227 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. McLaren, D. J., Worms, M. J., Laurence, B. R. & Simpson, M. G. Micro-organisms in filarial larvae (Nematoda). Trans. R. Soc. Trop. Med. Hyg. 69, 509–514 (1975).

    Article  CAS  PubMed  Google Scholar 

  20. Sixl-Voigt, B., Roshdy, M. A., Nosek, J. & Sixl, W. Electronmicroscopic investigations of Wolbachia-like microorganisms in Haemaphysalis inermis. Mikroskopie 33, 255–257 (1977).

    CAS  PubMed  Google Scholar 

  21. Kozek, W. J. & Marroquin, H. F. Intracytoplasmic bacteria in Onchocerca volvulus. Am. J. Trop. Med. Hyg. 26, 663–678 (1977).

    Article  CAS  PubMed  Google Scholar 

  22. Kozek, W. J. Transovarially-transmitted intracellular microorganisms in adult and larval stages of Brugia malayi. J. Parasitol. 63, 992–1000 (1977).

    Article  CAS  PubMed  Google Scholar 

  23. Wright, J. D., Sjöstrand, F. S., Portaro, J. K. & Barr, A. R. The ultrastructure of the rickettsia-like microorganism Wolbachia pipientis and associated virus-like bodies in the mosquito Culex pipiens. J. Ultrastruct. Res. 63, 79–85 (1978).

    Article  CAS  PubMed  Google Scholar 

  24. Vincent, A. L., Portaro, J. K. & Ash, L. R. A comparison of the body wall ultrastructure of Brugia pahangi with that of Brugia malayi. J. Parasitol. 61, 567–570 (1975).

    Article  Google Scholar 

  25. O’Neill, S. L., Giordano, R., Colbert, A. M., Karr, T. L. & Robertson, H. M. 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proc. Natl Acad. Sci. USA 89, 2699–2702 (1992).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kose, H. & Karr, T. L. Organization of Wolbachia pipientis in the Drosophila fertilized egg and embryo revealed by an anti-Wolbachia monoclonal antibody. Mech. Dev. 51, 275–288 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. O’Neill, S. L. et al. In vitro cultivation of Wolbachia pipientis in an Aedes albopictus cell line. Insect Mol. Biol. 6, 33–39 (1997).

    Article  PubMed  Google Scholar 

  28. Boyle, L., O’Neill, S. L., Robertson, H. M. & Karr, T. L. Interspecific and intraspecific horizontal transfer of Wolbachia in Drosophila. Science 260, 1796–1799 (1993).

    Article  CAS  PubMed  Google Scholar 

  29. Reed, K. M. & Werren, J. H. Induction of paternal genome loss by the paternal-sex-ratio chromosome and cytoplasmic incompatibility bacteria (Wolbachia): a comparative study of early embryonic events. Mol. Reprod. Dev. 40, 408–418 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Stouthamer, R., Luck, R. F. & Hamilton, W. D. Antibiotics cause parthenogenetic Trichogramma (Hymenoptera/Trichogrammatidae) to revert to sex. Proc. Natl Acad. Sci. USA 87, 2424–2427 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Turelli, M. & Hoffmann, A. A. Cytoplasmic incompatibility in Drosophila simulans: dynamics and parameter estimates from natural populations. Genetics 140, 1319–1338 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Werren, J. H., Zhang, W. & Guo, L. R. Evolution and phylogeny of Wolbachia: reproductive parasites of arthropods. Proc. Biol. Sci. 261, 55–63 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Hoffmann, A. A., Clancy, D. & Duncan, J. Naturally-occurring Wolbachia infection in Drosophila simulans that does not cause cytoplasmic incompatibility. Heredity 76, 1–8 (1996).

    Article  PubMed  Google Scholar 

  34. Min, K. T. & Benzer, S. Wolbachia, normally a symbiont of Drosophila, can be virulent, causing degeneration and early death. Proc. Natl Acad. Sci. USA 94, 10792–10796 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Braig, H. R., Zhou, W., Dobson, S. L. & O’Neill, S. L. Cloning and characterization of a gene encoding the major surface protein of the bacterial endosymbiont Wolbachia pipientis. J. Bacteriol. 180, 2373–2378 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Breeuwer, J. A. & Werren, J. H. Microorganisms associated with chromosome destruction and reproductive isolation between two insect species. Nature 346, 558–560 (1990).

    Article  CAS  PubMed  Google Scholar 

  37. Shoemaker, D. D., Katju, V. & Jaenike, J. Wolbachia and the evolution of reproductive isolation between Drosophila recens and Drosophila subquinaria. Evolution 53, 1157–1164 (1999).

    Article  PubMed  Google Scholar 

  38. Bandi, C. et al. Effects of tetracycline on the filarial worms Brugia pahangi and Dirofilaria immitis and their bacterial endosymbionts Wolbachia. Int. J. Parasitol. 29, 357–364 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Hoerauf, A. et al. Tetracycline therapy targets intracellular bacteria in the filarial nematode Litomosoides sigmodontis and results in filarial infertility. J. Clin. Invest. 103, 11–18 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Foster, J. et al. The Wolbachia genome of Brugia malayi: endosymbiont evolution within a human pathogenic nematode. PLoS Biol. 3, e121 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Klasson, L. et al. Genome evolution of Wolbachia strain wPip from the Culex pipiens group. Mol. Biol. Evol. 25, 1877–1887 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hedges, L. M., Brownlie, J. C., O’Neill, S. L. & Johnson, K. N. Wolbachia and virus protection in insects. Science 322, 702 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Teixeira, L., Ferreira, A. & Ashburner, M. The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLoS Biol. 6, e2 (2008).

    Article  PubMed  Google Scholar 

  44. Zheng, X. et al. Incompatible and sterile insect techniques combined eliminate mosquitoes. Nature 572, 56–61 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Chen, H., Zhang, M. & Hochstrasser, M. The biochemistry of cytoplasmic incompatibility caused by endosymbiotic bacteria. Genes https://doi.org/10.3390/genes11080852 (2020).

  46. Shropshire, J. D., Leigh, B. & Bordenstein, S. R. Symbiont-mediated cytoplasmic incompatibility: what have we learned in 50 years? eLife https://doi.org/10.7554/eLife.61989 (2020).

  47. Voronin, D. A., Dudkina, N. V. & Kiseleva, E. V. A new form of symbiotic bacteria Wolbachia found in the endoplasmic reticulum of early embryos of Drosophila melanogaster. Dokl. Biol. Sci. 396, 227–229 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Fischer, K., Beatty, W. L., Weil, G. J. & Fischer, P. U. High pressure freezing/freeze substitution fixation improves the ultrastructural assessment of Wolbachia endosymbiont–filarial nematode host interaction. PLoS ONE 9, e86383 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  49. White, P. M. et al. Reliance of Wolbachia on high rates of host proteolysis revealed by a genome-wide RNAi screen of Drosophila cells. Genetics 205, 1473–1488 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Geoghegan, V. et al. Perturbed cholesterol and vesicular trafficking associated with dengue blocking in Wolbachia-infected Aedes aegypti cells. Nat. Commun. 8, 526 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Fattouh, N., Cazevieille, C. & Landmann, F. Wolbachia endosymbionts subvert the endoplasmic reticulum to acquire host membranes without triggering ER stress. PLoS Negl. Trop. Dis. 13, e0007218 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cho, K. O., Kim, G. W. & Lee, O. K. Wolbachia bacteria reside in host Golgi-related vesicles whose position is regulated by polarity proteins. PLoS ONE 6, e22703 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Albertson, R., Casper-Lindley, C., Cao, J., Tram, U. & Sullivan, W. Symmetric and asymmetric mitotic segregation patterns influence Wolbachia distribution in host somatic tissue. J. Cell Sci. 122, 4570–4583 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Callaini, G., Riparbelli, M. G. & Dallai, R. The distribution of cytoplasmic bacteria in the early Drosophila embryo is mediated by astral microtubules. J. Cell Sci. 107, 673–682 (1994).

    Article  PubMed  Google Scholar 

  55. Ferree, P. M. et al. Wolbachia utilizes host microtubules and Dynein for anterior localization in the Drosophila oocyte. PLoS Pathog. 1, e14 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Serbus, L. R. & Sullivan, W. A cellular basis for Wolbachia recruitment to the host germline. PLoS Pathog. 3, e190 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Wu, C. H. et al. Knockdown of Dynamitin in testes significantly decreased male fertility in Drosophila melanogaster. Dev. Biol. 420, 79–89 (2016).

    Article  CAS  PubMed  Google Scholar 

  58. Melnikow, E. et al. A potential role for the interaction of Wolbachia surface proteins with the Brugia malayi glycolytic enzymes and cytoskeleton in maintenance of endosymbiosis. PLoS Negl. Trop. Dis. 7, e2151 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Newton, I. L., Savytskyy, O. & Sheehan, K. B. Wolbachia utilize host actin for efficient maternal transmission in Drosophila melanogaster. PLoS Pathog. 11, e1004798 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Landmann, F. et al. Both asymmetric mitotic segregation and cell-to-cell invasion are required for stable germline transmission of Wolbachia in filarial nematodes. Biol. Open. 1, 536–547 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Hou, H. X., Zhao, D., Xiao, J. H. & Huang, D. W. Transcriptomic analysis reveals the sexually divergent host–Wolbachia interaction patterns in a fig wasp. Microorganisms https://doi.org/10.3390/microorganisms9020288 (2021).

  62. Rice, D. W., Sheehan, K. B. & Newton, I. L. G. Large-scale identification of Wolbachia pipientis effectors. Genome Biol. Evol. 9, 1925–1937 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sheehan, K. B., Martin, M., Lesser, C. F., Isberg, R. R. & Newton, I. L. Identification and characterization of a candidate Wolbachia pipientis type IV effector that interacts with the actin cytoskeleton. mBio https://doi.org/10.1128/mBio.00622-16 (2016).

  64. Carpinone, E. M. et al. Identification of putative effectors of the type IV secretion system from the Wolbachia endosymbiont of Brugia malayi. PLoS ONE 13, e0204736 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Christensen, S. & Serbus, L. R. Comparative analysis of wolbachia genomes reveals streamlining and divergence of minimalist two-component systems. G3 5, 983–996 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Jung, K., Fried, L., Behr, S. & Heermann, R. Histidine kinases and response regulators in networks. Curr. Opin. Microbiol. 15, 118–124 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Lindsey, A. R. I. Sensing, signaling, and secretion: a review and analysis of systems for regulating host interaction in Wolbachia. Genes (Basel) https://doi.org/10.3390/genes11070813 (2020).

  68. Sacchi, L. et al. Bacteriocyte-like cells harbour Wolbachia in the ovary of Drosophila melanogaster (Insecta, Diptera) and Zyginidia pullula (Insecta, Hemiptera). Tissue Cell 42, 328–333 (2010).

    Article  PubMed  Google Scholar 

  69. Strunov, A., Schneider, D. I., Albertson, R. & Miller, W. J. Restricted distribution and lateralization of mutualistic Wolbachia in the Drosophila brain. Cell Microbiol. https://doi.org/10.1111/cmi.12639 (2017).

  70. Hosokawa, T., Koga, R., Kikuchi, Y., Meng, X. Y. & Fukatsu, T. Wolbachia as a bacteriocyte-associated nutritional mutualist. Proc. Natl Acad. Sci. USA 107, 769–774 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Nikoh, N. et al. Evolutionary origin of insect–Wolbachia nutritional mutualism. Proc. Natl Acad. Sci. USA 111, 10257–10262 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Moriyama, M., Nikoh, N., Hosokawa, T. & Fukatsu, T. Riboflavin provisioning underlies Wolbachia’s fitness contribution to its insect host. mBio 6, e01732–01715 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Pannebakker, B. A., Loppin, B., Elemans, C. P., Humblot, L. & Vavre, F. Parasitic inhibition of cell death facilitates symbiosis. Proc. Natl Acad. Sci. USA 104, 213–215 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Kremer, N. et al. Wolbachia interferes with ferritin expression and iron metabolism in insects. PLoS Pathog. 5, e1000630 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Szklarzewicz, T., Kalandyk-Kołodziejczyk, M. & Michalik, A. Ovary structure and symbiotic associates of a ground mealybug, Rhizoecus albidus (Hemiptera, Coccomorpha: Rhizoecidae) and their phylogenetic implications. J. Anat. 241, 860–872 (2022).

    Article  CAS  PubMed  Google Scholar 

  76. Gunderson, E. L. et al. The endosymbiont Wolbachia rebounds following antibiotic treatment. PLoS Pathog. 16, e1008623 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Vancaester, E. & Blaxter, M. Phylogenomic analysis of Wolbachia genomes from the Darwin Tree of Life biodiversity genomics project. PLoS Biol. 21, e3001972 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Vavre, F., Fleury, F., Lepetit, D., Fouillet, P. & Boulétreau, M. Phylogenetic evidence for horizontal transmission of Wolbachia in host–parasitoid associations. Mol. Biol. Evol. 16, 1711–1723 (1999).

    Article  CAS  PubMed  Google Scholar 

  79. Sanaei, E., Charlat, S. & Engelstädter, J. Wolbachia host shifts: routes, mechanisms, constraints and evolutionary consequences. Biol. Rev. Camb. Philos. Soc. 96, 433–453 (2021).

    Article  PubMed  Google Scholar 

  80. Ahmed, M. Z. et al. The intracellular bacterium Wolbachia uses parasitoid wasps as phoretic vectors for efficient horizontal transmission. PLoS Pathog. 10, e1004672 (2015).

    Article  PubMed  Google Scholar 

  81. Clark, M. E., Anderson, C. L., Cande, J. & Karr, T. L. Widespread prevalence of wolbachia in laboratory stocks and the implications for Drosophila research. Genetics 170, 1667–1675 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Tolley, S. J. A., Nonacs, P. & Sapountzis, P. Horizontal transmission events in ants: what do we know and what can we learn? Front. Microbiol. 10, 296 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Bandi, C., Anderson, T. J., Genchi, C. & Blaxter, M. L. Phylogeny of Wolbachia in filarial nematodes. Proc. Biol. Sci. 265, 2407–2413 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Heath, B. D., Butcher, R. D., Whitfield, W. G. & Hubbard, S. F. Horizontal transfer of Wolbachia between phylogenetically distant insect species by a naturally occurring mechanism. Curr. Biol. 9, 313–316 (1999).

    Article  CAS  PubMed  Google Scholar 

  85. Albertson, R. et al. Mapping Wolbachia distributions in the adult Drosophila brain. Cell Microbiol. 15, 1527–1544 (2013).

    Article  CAS  PubMed  Google Scholar 

  86. Rasgon, J. L., Gamston, C. E. & Ren, X. Survival of Wolbachia pipientis in cell-free medium. Appl. Env. Microbiol. 72, 6934–6937 (2006).

    Article  CAS  Google Scholar 

  87. Shi, P. et al. Wolbachia has two different localization patterns in whitefly Bemisia tabaci AsiaII7 species. PLoS ONE 11, e0162558 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Landmann, F., Foster, J. M., Slatko, B. & Sullivan, W. Asymmetric Wolbachia segregation during early Brugia malayi embryogenesis determines its distribution in adult host tissues. PLoS Negl. Trop. Dis. 4, e758 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Fischer, K., Beatty, W. L., Jiang, D., Weil, G. J. & Fischer, P. U. Tissue and stage-specific distribution of Wolbachia in Brugia malayi. PLoS Negl. Trop. Dis. 5, e1174 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Frydman, H. M., Li, J. M., Robson, D. N. & Wieschaus, E. Somatic stem cell niche tropism in Wolbachia. Nature 441, 509–512 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Toomey, M. E., Panaram, K., Fast, E. M., Beatty, C. & Frydman, H. M. Evolutionarily conserved Wolbachia-encoded factors control pattern of stem-cell niche tropism in Drosophila ovaries and favor infection. Proc. Natl Acad. Sci. USA 110, 10788–10793 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. White, P. M. et al. Mechanisms of horizontal cell-to-cell transfer of Wolbachia spp. in Drosophila melanogaster. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.03425-16 (2017).

  93. Gonella, E. et al. Plant-mediated interspecific horizontal transmission of an intracellular symbiont in insects. Sci. Rep. 5, 15811 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Li, S. J. et al. Plantmediated horizontal transmission of Wolbachia between whiteflies. ISME J. 11, 1019–1028 (2017).

    Article  CAS  PubMed  Google Scholar 

  95. Russell, S. L., Chappell, L. & Sullivan, W. A symbiont’s guide to the germline. Curr. Top. Dev. Biol. 135, 315–351 (2019).

    Article  CAS  PubMed  Google Scholar 

  96. Bastock, R. & St Johnston, D. Drosophila oogenesis. Curr. Biol. 18, R1082–R1087 (2008).

    Article  CAS  PubMed  Google Scholar 

  97. Theurkauf, W. E. & Hazelrigg, T. I. In vivo analyses of cytoplasmic transport and cytoskeletal organization during Drosophila oogenesis: characterization of a multi-step anterior localization pathway. Development 125, 3655–3666 (1998).

    Article  CAS  PubMed  Google Scholar 

  98. Bilinski, S. M., Jaglarz, M. K. & Tworzydlo, W. The pole (germ) plasm in insect oocytes. Results Probl. Cell Differ. 63, 103–126 (2017).

    Article  CAS  PubMed  Google Scholar 

  99. Wright, J. & Barr, R. Wolbachia and the normal and incompatible eggs of Aedes polynesiensis (Diptera: Culicidae). J. Invertebr. Pathol. 38, 409–418 (1981).

    Article  Google Scholar 

  100. Zchori-Fein, E., Roush, R. T. & Rosen, D. Distribution of parthenogenesis-inducing symbionts in ovaries and eggs of Aphytis (Hymentoptera: Aphelinidae). Curr. Microbiol. 36, 1–8 (1998).

    Article  CAS  PubMed  Google Scholar 

  101. Pintureau, B. et al. Dynamics of Wolbachia populations in transfected lines of Trichogramma. J. Invertebr. Pathol. 76, 20–25 (2000).

    Article  CAS  PubMed  Google Scholar 

  102. Hadfield, S. J. & Axton, J. M. Germ cells colonized by endosymbiotic bacteria. Nature 402, 482 (1999).

    Article  CAS  PubMed  Google Scholar 

  103. Veneti, Z., Clark, M. E., Karr, T. L., Savakis, C. & Bourtzis, K. Heads or tails: host–parasite interactions in the DrosophilaWolbachia system. Appl. Env. Microbiol. 70, 5366–5372 (2004).

    Article  CAS  Google Scholar 

  104. Radousky, Y. A. et al. Distinct Wolbachia localization patterns in oocytes of diverse host species reveal multiple strategies of maternal transmission. Genetics https://doi.org/10.1093/genetics/iyad038 (2023).

  105. Russell, S. L., Lemseffer, N., White, P. M. & Sullivan, W. T. Wolbachia and host germline components compete for kinesin-mediated transport to the posterior pole of the Drosophila oocyte. PLoS Pathog. 14, e1007216 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Christensen, S. et al. Quantitative methods for assessing local and bodywide contributions to Wolbachia titer in maternal germline cells of Drosophila. BMC Microbiol. 19, 206 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Starr, D. J. & Cline, T. W. A host parasite interaction rescues Drosophila oogenesis defects. Nature 418, 76–79 (2002).

    Article  CAS  PubMed  Google Scholar 

  108. Flores, H. A., Bubnell, J. E., Aquadro, C. F. & Barbash, D. A. The Drosophila bag of marbles gene interacts genetically with Wolbachia and shows female-specific effects of divergence. PLoS Genet. 11, e1005453 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Ote, M., Ueyama, M. & Yamamoto, D. Wolbachia protein TomO targets nanos mRNA and restores germ stem cells in Drosophila sex-lethal mutants. Curr. Biol. 26, 2223–2232 (2016).

    Article  CAS  PubMed  Google Scholar 

  110. Ote, M. & Yamamoto, D. The Wolbachia protein TomO interacts with a host RNA to induce polarization defects in Drosophila oocytes. Arch. Insect Biochem. Physiol. 99, e21475 (2018).

    Article  PubMed  Google Scholar 

  111. Theurkauf, W. E. Microtubules and cytoplasm organization during Drosophila oogenesis. Dev. Biol. 165, 352–360 (1994).

    Article  CAS  PubMed  Google Scholar 

  112. Grieder, N. C., de Cuevas, M. & Spradling, A. C. The fusome organizes the microtubule network during oocyte differentiation in Drosophila. Development 127, 4253–4264 (2000).

    Article  CAS  PubMed  Google Scholar 

  113. Theurkauf, W. E., Smiley, S., Wong, M. L. & Alberts, B. M. Reorganization of the cytoskeleton during Drosophila oogenesis: implications for axis specification and intercellular transport. Development 115, 923–936 (1992).

    Article  CAS  PubMed  Google Scholar 

  114. Casper-Lindley, C. et al. Rapid fluorescence-based screening for Wolbachia endosymbionts in Drosophila germ line and somatic tissues. Appl. Env. Microbiol. 77, 4788–4794 (2011).

    Article  CAS  Google Scholar 

  115. Kamath, A. D., Deehan, M. A. & Frydman, H. M. Polar cell fate stimulates Wolbachia intracellular growth. Development https://doi.org/10.1242/dev.158097 (2018).

  116. Dobson, S. L. et al. Wolbachia infections are distributed throughout insect somatic and germ line tissues. Insect Biochem. Mol. Biol. 29, 153–160 (1999).

    Article  CAS  PubMed  Google Scholar 

  117. Marshall, J. F. The British mosquitos (Trustees of the British Museum, 1938).

  118. Clark, M. E., Veneti, Z., Bourtzis, K. & Karr, T. L. The distribution and proliferation of the intracellular bacteria Wolbachia during spermatogenesis in Drosophila. Mech. Dev. 111, 3–15 (2002).

    Article  CAS  PubMed  Google Scholar 

  119. Clark, M. E., Veneti, Z., Bourtzis, K. & Karr, T. L. Wolbachia distribution and cytoplasmic incompatibility during sperm development: the cyst as the basic cellular unit of CI expression. Mech. Dev. 120, 185–198 (2003).

    Article  CAS  PubMed  Google Scholar 

  120. Veneti, Z. et al. Cytoplasmic incompatibility and sperm cyst infection in different DrosophilaWolbachia associations. Genetics 164, 545–552 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Nasehi, S. F., Fathipour, Y., Asgari, S. & Mehrabadi, M. Environmental temperature, but not male age, affects Wolbachia and prophage WO thereby modulating cytoplasmic incompatibility in the parasitoid wasp, Habrobracon hebetor. Microb. Ecol. 83, 482–491 (2022).

    Article  CAS  PubMed  Google Scholar 

  122. Ross, P. A., Turelli, M. & Hoffmann, A. A. Evolutionary ecology of Wolbachia releases for disease control. Annu. Rev. Genet. 53, 93–116 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Reynolds, K. T. & Hoffmann, A. A. Male age, host effects and the weak expression or non-expression of cytoplasmic incompatibility in Drosophila strains infected by maternally transmitted Wolbachia. Genet. Res. 80, 79–87 (2002).

    Article  PubMed  Google Scholar 

  124. Yamada, R., Floate, K. D., Riegler, M. & O’Neill, S. L. Male development time influences the strength of Wolbachia-induced cytoplasmic incompatibility expression in Drosophila melanogaster. Genetics 177, 801–808 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Layton, E. M., On, J., Perlmutter, J. I., Bordenstein, S. R. & Shropshire, J. D. Paternal grandmother age affects the strength of Wolbachia-induced cytoplasmic incompatibility in Drosophila melanogaster. mBio https://doi.org/10.1128/mBio.01879-19 (2019).

  126. Karr, T. L., Yang, W. & Feder, M. E. Overcoming cytoplasmic incompatibility in Drosophila. Proc. Biol. Sci. 265, 391–395 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Poinsot, D., Bourtzis, K., Markakis, G., Savakis, C. & Merçot, H. Wolbachia transfer from Drosophila melanogaster into D. simulans: host effect and cytoplasmic incompatibility relationships. Genetics 150, 227–237 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Veneti, Z. et al. Loss of reproductive parasitism following transfer of male-killing Wolbachia to Drosophila melanogaster and Drosophila simulans. Heredity 109, 306–312 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Merçot, H. & Charlat, S. Wolbachia infections in Drosophila melanogaster and D. simulans: polymorphism and levels of cytoplasmic incompatibility. Genetica 120, 51–59 (2004).

    Article  PubMed  Google Scholar 

  130. Beckmann, J. F. & Fallon, A. M. Detection of the Wolbachia protein WPIP0282 in mosquito spermathecae: implications for cytoplasmic incompatibility. Insect Biochem. Mol. Biol. 43, 867–878 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Namias, A., Sicard, M., Weill, M. & Charlat, S. From Wolbachia genomics to phenotype: molecular models of cytoplasmic incompatibility must account for the multiplicity of compatibility types. Curr. Opin. Insect Sci. 49, 78–84 (2022).

    Article  PubMed  Google Scholar 

  132. Beckmann, J. F. et al. The toxin–antidote model of cytoplasmic incompatibility: genetics and evolutionary implications. Trends Genet. 35, 175–185 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Wang, W., Cui, W. & Yang, H. Toward an accurate mechanistic understanding of Wolbachia-induced cytoplasmic incompatibility. Env. Microbiol. 24, 4519–4532 (2022).

    Article  CAS  Google Scholar 

  134. Beckmann, J. F., Ronau, J. A. & Hochstrasser, M. A Wolbachia deubiquitylating enzyme induces cytoplasmic incompatibility. Nat. Microbiol. 2, 17007 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  135. LePage, D. P. et al. Prophage WO genes recapitulate and enhance Wolbachia-induced cytoplasmic incompatibility. Nature 543, 243–247 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Chen, H., Ronau, J. A., Beckmann, J. F. & Hochstrasser, M. A Wolbachia nuclease and its binding partner provide a distinct mechanism for cyoplasmic in compatibility. Proc. Natl Acad. Sci. USA 116, 22314–22321 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Shropshire, J. D., On, J., Layton, E. M., Zhou, H. & Bordenstein, S. R. One prophage WO gene rescues cytoplasmic incompatibility in Drosophila melanogaster. Proc. Natl Acad. Sci. USA 115, 4987–4991 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Kaur, R., Leigh, B. A., Ritchie, I. T. & Bordenstein, S. R. The Cif proteins from Wolbachia prophage WO modify sperm genome integrity to establish cytoplasmic incompatibility. PLoS Biol. 20, e3001584 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Xiao, Y. et al. Structural and mechanistic insights into the complexes formed by Wolbachia cytoplasmic incompatibility factors. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2107699118 (2021).

  140. Adams, K. L. et al. Wolbachia cifB induces cytoplasmic incompatibility in the malaria mosquito vector. Nat. Microbiol. 6, 1575–1582 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Sun, G., Zhang, M., Chen, H. & Hochstrasser, M. The CinB Nuclease from wNo Wolbachia is sufficient for induction of cytoplasmic incompatibility in Drosophila. mBio 13, e0317721 (2022).

    Article  PubMed  Google Scholar 

  142. Horard, B. et al. Paternal transmission of the Wolbachia CidB toxin underlies cytoplasmic incompatibility. Curr. Biol. 32, 1319–1331.e5 (2022).

    Article  CAS  PubMed  Google Scholar 

  143. Lassy, C. W. & Karr, T. L. Cytological analysis of fertilization and early embryonic development in incompatible crosses of Drosophila simulans. Mech. Dev. 57, 47–58 (1996).

    Article  CAS  PubMed  Google Scholar 

  144. Tram, U. & Sullivan, W. Role of delayed nuclear envelope breakdown and mitosis in Wolbachia-induced cytoplasmic incompatibility. Science 296, 1124–1126 (2002).

    Article  CAS  PubMed  Google Scholar 

  145. Callaini, G., Dallai, R. & Riparbelli, M. G. Wolbachia-induced delay of paternal chromatin condensation does not prevent maternal chromosomes from entering anaphase in incompatible crosses of Drosophila simulans. J. Cell Sci. 110, 271–280 (1997).

    Article  CAS  PubMed  Google Scholar 

  146. Tram, U., Fredrick, K., Werren, J. H. & Sullivan, W. Paternal chromosome segregation during the first mitotic division determines Wolbachia-induced cytoplasmic incompatibility phenotype. J. Cell Sci. 119, 3655–3663 (2006).

    Article  CAS  PubMed  Google Scholar 

  147. Landmann, F., Orsi, G. A., Loppin, B. & Sullivan, W. Wolbachia-mediated cytoplasmic incompatibility is associated with impaired histone deposition in the male pronucleus. PLoS Pathog. 5, e1000343 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Warecki, B. et al. Wolbachia action in the sperm produces developmentally deferred chromosome segregation defects during the mid-blastula transition. eLife https://doi.org/10.7554/eLife.81292 (2022).

  149. Duron, O. & Weill, M. Wolbachia infection influences the development of Culex pipiens embryo in incompatible crosses. Heredity 96, 493–500 (2006).

    Article  CAS  PubMed  Google Scholar 

  150. Beckmann, J. F., Sharma, G. D., Mendez, L., Chen, H. & Hochstrasser, M. The Wolbachia cytoplasmic incompatibility enzyme CidB targets nuclear import and protamine histone exchange factors. eLife https://doi.org/10.7554/eLife.50026 (2019).

  151. Hague, M. T. J. et al. Temperature effects on cellular host–microbe interactions explain continent-wide endosymbiont prevalence. Curr. Biol. 32, 878–888.e8 (2022).

    Article  CAS  PubMed  Google Scholar 

  152. Newton, I. L. & Sheehan, K. B. Passage of Wolbachia pipientis through mutant Drosophila melanogaster induces phenotypic and genomic changes. Appl. Env. Microbiol. 81, 1032–1037 (2015).

    Article  Google Scholar 

  153. Hague, M. T. J., Mavengere, H., Matute, D. R. & Cooper, B. S. Environmental and genetic contributions imperfect wMel-like Wolbachia transmission and frequency variation. Genetics 215, 1117–1132 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Schneider, D. I., Garschall, K. I., Parker, A. G., Abd-Alla, A. M. & Miller, W. J. Global Wolbachia prevalence, titer fluctuations and their potential of causing cytoplasmic incompatibilities in tsetse flies and hybrids of Glossina morsitans subgroup species. J. Invertebr. Pathol. 112, S104–S115 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Strunov, A., Schmidt, K., Kapun, M. & Miller, W. J. Restriction of Wolbachia bacteria in early embryogenesis of neotropical Drosophila species via endoplasmic reticulum-mediated autophagy. mBio 13, e0386321 (2022).

    Article  PubMed  Google Scholar 

  156. Voronin, D., Cook, D. A., Steven, A. & Taylor, M. J. Autophagy regulates Wolbachia populations across diverse symbiotic associations. Proc. Natl Acad. Sci. USA 109, E1638–E1646 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Deehan, M., Lin, W., Blum, B., Emili, A. & Frydman, H. Intracellular density of Wolbachia is mediated by host autophagy and the bacterial cytoplasmic incompatability gene cifB in a cell type-dependent manner in Drosophila melanogaster. mBio https://doi.org/10.1128/mBio.02205-20 (2021).

  158. Grobler, Y. et al. Whole genome screen reveals a novel relationship between Wolbachia levels and Drosophila host translation. PLoS Pathog. 14, e1007445 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Strunov, A. & Kiseleva, E. Drosophila melanogaster brain invasion: pathogenic Wolbachia in central nervous system of the fly. Insect Sci. 23, 253–264 (2016).

    Article  CAS  PubMed  Google Scholar 

  160. Baldridge, G. et al. Proteomic analysis of a mosquito host cell response to persistent Wolbachia infection. Res. Microbiol. 168, 609–625 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Caragata, E. P., Rancès, E., O’Neill, S. L. & McGraw, E. A. Competition for amino acids between Wolbachia and the mosquito host, Aedes aegypti. Microb. Ecol. 67, 205–218 (2014).

    Article  CAS  PubMed  Google Scholar 

  162. Christensen, S. et al. Wolbachia endosymbionts modify Drosophila ovary protein levels in a context-dependent manner. Appl. Env. Microbiol. 82, 5354–5363 (2016).

    Article  CAS  Google Scholar 

  163. Funkhouser-Jones, L. J., van Opstal, E. J., Sharma, A. & Bordenstein, S. R. The maternal effect gene Wds controls Wolbachia titer in Nasonia. Curr. Biol. 28, 1692–1702.e6 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Neuman-Silberberg, F. S. & Schüpbach, T. The Drosophila dorsoventral patterning gene gurken produces a dorsally localized RNA and encodes a TGFα-like protein. Cell 75, 165–174 (1993).

    Article  CAS  PubMed  Google Scholar 

  165. Serbus, L. R. et al. A feedback loop between Wolbachia and the Drosophila gurken mRNP complex influences Wolbachia titer. J. Cell Sci. 124, 4299–4308 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Serbus, L. R. et al. The impact of host diet on Wolbachia titer in Drosophila. PLoS Pathog. 11, e1004777 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Camacho, M., Oliva, M. & Serbus, L. R. Dietary saccharides and sweet tastants have differential effects on colonization of Drosophila oocytes by Wolbachia endosymbionts. Biol. Open. 6, 1074–1083 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Rohrscheib, C. E. et al. Intensity of mutualism breakdown is determined by temperature not amplification of Wolbachia genes. PLoS Pathog. 12, e1005888 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Hague, M. T. J., Caldwell, C. N. & Cooper, B. S. Pervasive effects of Wolbachia on host temperature preference. mBio https://doi.org/10.1128/mBio.01768-20 (2020).

  170. Kriesner, P., Conner, W. R., Weeks, A. R., Turelli, M. & Hoffmann, A. A. Persistence of a Wolbachia infection frequency cline in Drosophila melanogaster and the possible role of reproductive dormancy. Evolution 70, 979–997 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Kaur, R., Martinez, J., Rota-Stabelli, O., Jiggins, F. M. & Miller, W. J. Age, tissue, genotype and virus infection regulate Wolbachia levels in Drosophila. Mol. Ecol. 29, 2063–2079 (2020).

    Article  CAS  PubMed  Google Scholar 

  172. Bordenstein, S. R., Marshall, M. L., Fry, A. J., Kim, U. & Wernegreen, J. J. The tripartite associations between bacteriophage, Wolbachia, and arthropods. PLoS Pathog. 2, e43 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Baldridge, G. D. et al. The Wolbachia WO bacteriophage proteome in the Aedes albopictus C/wStr1 cell line: evidence for lytic activity? Vitr. Cell Dev. Biol. Anim. 52, 77–88 (2016).

    Article  CAS  Google Scholar 

  174. Woolfit, M. et al. Genomic evolution of the pathogenic Wolbachia strain, wMelPop. Genome Biol. Evol. 5, 2189–2204 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Chrostek, E. & Teixeira, L. Mutualism breakdown by amplification of Wolbachia genes. PLoS Biol. 13, e1002065 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Gutzwiller, F. et al. Dynamics of Wolbachia pipientis gene expression across the Drosophila melanogaster life cycle. G3 5, 2843–2856 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Duarte, E. H., Carvalho, A., López-Madrigal, S., Costa, J. & Teixeira, L. Forward genetics in Wolbachia: regulation of Wolbachia proliferation by the amplification and deletion of an addictive genomic island. PLoS Genet. 17, e1009612 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Landmann, F., Foster, J. M., Michalski, M. L., Slatko, B. E. & Sullivan, W. Co-evolution between an endosymbiont and its nematode host: Wolbachia asymmetric posterior localization and AP polarity establishment. PLoS Negl. Trop. Dis. 8, e3096 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Wang, G. H. et al. Combating mosquito-borne diseases using genetic control technologies. Nat. Commun. 12, 4388 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Crawford, J. E. et al. Efficient production of male Wolbachia-infected Aedes aegypti mosquitoes enables large-scale suppression of wild populations. Nat. Biotechnol. 38, 482–492 (2020).

    Article  CAS  PubMed  Google Scholar 

  181. McClure, K. Landscape-level Mosquito Suppression to Protect Hawai’i’s Rapidly Vanishing Avifauna (Friend of the Hakalau National Forest Wildlife Refuge, 2020).

  182. Caragata, E. P. et al. Dietary cholesterol modulates pathogen blocking by Wolbachia. PLoS Pathog. 9, e1003459 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Gong, J. T. et al. Stable introduction of plant-virus-inhibiting Wolbachia into planthoppers for rice protection. Curr. Biol. 30, 4837–4845.e5 (2020).

    Article  CAS  PubMed  Google Scholar 

  184. Yu, S. et al. Transmission-blocking strategies against malaria parasites during their mosquito stages. Front. Cell Infect. Microbiol. 12, 820650 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Langworthy, N. G. et al. Macrofilaricidal activity of tetracycline against the filarial nematode Onchocerca ochengi: elimination of Wolbachia precedes worm death and suggests a dependent relationship. Proc. Biol. Sci. 267, 1063–1069 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Wan Sulaiman, W. A. et al. Anti-Wolbachia therapy for onchocerciasis and lymphatic filariasis: current perspectives. Indian. J. Med. Res. 149, 706–714 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Taylor, M. J., Hoerauf, A., Townson, S., Slatko, B. E. & Ward, S. A. Anti-Wolbachia drug discovery and development: safe macrofilaricides for onchocerciasis and lymphatic filariasis. Parasitology 141, 119–127 (2014).

    Article  CAS  PubMed  Google Scholar 

  188. Serbus, L. R. et al. A cell-based screen reveals that the albendazole metabolite, albendazole sulfone, targets Wolbachia. PLoS Pathog. 8, e1002922 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Bakowski, M. A. et al. Discovery of short-course antiwolbachial quinazolines for elimination of filarial worm infections. Sci. Transl Med. https://doi.org/10.1126/scitranslmed.aav3523 (2019).

  190. Clare, R. H. et al. Industrial scale high-throughput screening delivers multiple fast acting macrofilaricides. Nat. Commun. 10, 11 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Gayen, P. et al. A double-blind controlled field trial of doxycycline and albendazole in combination for the treatment of bancroftian filariasis in India. Acta Trop. 125, 150–156 (2013).

    Article  CAS  PubMed  Google Scholar 

  192. Turner, J. D. et al. Albendazole and antibiotics synergize to deliver short-course anti-Wolbachia curative treatments in preclinical models of filariasis. Proc. Natl Acad. Sci. USA 114, E9712–E9721 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Ehrens, A., Hoerauf, A. & Hübner, M. P. Current perspective of new anti-Wolbachial and direct-acting macrofilaricidal drugs as treatment strategies for human filariasis. GMS Infect. Dis. 10, Doc02 (2022).

    PubMed  PubMed Central  Google Scholar 

  194. Voronin, D. et al. Pyruvate produced by Brugia spp. via glycolysis is essential for maintaining the mutualistic association between the parasite and its endosymbiont, Wolbachia. PLoS Pathog. 15, e1008085 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. O’Neill, S. L. The use of Wolbachia by the World Mosquito Program to interrupt transmission of Aedes aegypti transmitted viruses. Adv. Exp. Med. Biol. 1062, 355–360 (2018).

    Article  PubMed  Google Scholar 

  196. Edenborough, K. M., Flores, H. A., Simmons, C. P. & Fraser, J. E. Using Wolbachia to eliminate dengue: will the virus fight back? J. Virol. 95, e0220320 (2021).

    Article  PubMed  Google Scholar 

  197. Lindsey, A. R. I., Bhattacharya, T., Newton, I. L. G. & Hardy, R. W. Conflict in the intracellular lives of endosymbionts and viruses: a mechanistic look at Wolbachia-mediated pathogen-blocking. Viruses https://doi.org/10.3390/v10040141 (2018).

  198. Pimentel, A. C., Cesar, C. S., Martins, M. & Cogni, R. The antiviral effects of the symbiont bacteria Wolbachia in insects. Front. Immunol. 11, 626329 (2020).

    Article  CAS  PubMed  Google Scholar 

  199. Lu, P., Bian, G., Pan, X. & Xi, Z. Wolbachia induces density-dependent inhibition to dengue virus in mosquito cells. PLoS Negl. Trop. Dis. 6, e1754 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Osborne, S. E., Iturbe-Ormaetxe, I., Brownlie, J. C., O’Neill, S. L. & Johnson, K. N. Antiviral protection and the importance of Wolbachia density and tissue tropism in Drosophila simulans. Appl. Env. Microbiol. 78, 6922–6929 (2012).

    Article  CAS  Google Scholar 

  201. Martinez, J. et al. Symbiont strain is the main determinant of variation in Wolbachia-mediated protection against viruses across Drosophila species. Mol. Ecol. 26, 4072–4084 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Ant, T. H., Herd, C. S., Geoghegan, V., Hoffmann, A. A. & Sinkins, S. P. The Wolbachia strain wAu provides highly efficient virus transmission blocking in Aedes aegypti. PLoS Pathog. 14, e1006815 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Pan, X. et al. The bacterium Wolbachia exploits host innate immunity to establish a symbiotic relationship with the dengue vector mosquito Aedes aegypti. ISME J. 12, 277–288 (2018).

    Article  CAS  PubMed  Google Scholar 

  204. Ye, Y. H., Carrasco, A. M., Dong, Y., Sgrò, C. M. & McGraw, E. A. The effect of temperature on Wolbachia-mediated dengue virus blocking in Aedes aegypti. Am. J. Trop. Med. Hyg. 94, 812–819 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Chrostek, E., Martins, N., Marialva, M. S. & Teixeira, L. Wolbachia-conferred antiviral protection Is determined by developmental temperature. mBio 12, e0292320 (2021).

    Article  PubMed  Google Scholar 

  206. Mancini, M. V. et al. High temperature cycles result in maternal transmission and dengue infection differences between Wolbachia strains in Aedes aegypti. mBio 12, e0025021 (2021).

    Article  PubMed  Google Scholar 

  207. Bhattacharya, T., Newton, I. L. G. & Hardy, R. W. Viral RNA is a target for Wolbachia-mediated pathogen blocking. PLoS Pathog. 16, e1008513 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Rainey, S. M. et al. Wolbachia blocks viral genome replication early in infection without a transcriptional response by the endosymbiont or host small RNA pathways. PLoS Pathog. 12, e1005536 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Frentiu, F. D. et al. Limited dengue virus replication in field-collected Aedes aegypti mosquitoes infected with Wolbachia. PLoS Negl. Trop. Dis. 8, e2688 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Thomas, S., Verma, J., Woolfit, M. & O’Neill, S. L. Wolbachia-mediated virus blocking in mosquito cells is dependent on XRN1-mediated viral RNA degradation and influenced by viral replication rate. PLoS Pathog. 14, e1006879 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Pan, X. et al. Wolbachia induces reactive oxygen species (ROS)-dependent activation of the Toll pathway to control dengue virus in the mosquito Aedes aegypti. Proc. Natl Acad. Sci. USA 109, E23–E31 (2012).

    Article  PubMed  Google Scholar 

  212. Wong, Z. S., Brownlie, J. C. & Johnson, K. N. Oxidative stress correlates with Wolbachia-mediated antiviral protection in WolbachiaDrosophila associations. Appl. Env. Microbiol. 81, 3001–3005 (2015).

    Article  CAS  Google Scholar 

  213. Valanne, S., Wang, J. H. & Rämet, M. The Drosophila Toll signaling pathway. J. Immunol. 186, 649–656 (2011).

    Article  CAS  PubMed  Google Scholar 

  214. Rancès, E. et al. The Toll and Imd pathways are not required for Wolbachia-mediated dengue virus interference. J. Virol. 87, 11945–11949 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Ferreira, Á. et al. The Toll–dorsal pathway is required for resistance to viral oral infection in Drosophila. PLoS Pathog. 10, e1004507 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Skelton, E. et al. A native Wolbachia endosymbiont does not limit dengue virus infection in the mosquito Aedes notoscriptus (Diptera: Culicidae). J. Med. Entomol. 53, 401–408 (2016).

    Article  CAS  PubMed  Google Scholar 

  217. Schultz, M. J. et al. Variable inhibition of Zika virus replication by different Wolbachia strains in mosquito cell cultures. J. Virol. https://doi.org/10.1128/JVI.00339-17 (2017).

  218. Schultz, M. J. et al. Wolbachia wStri blocks Zika virus growth at two independent stages of viral replication. mBio https://doi.org/10.1128/mBio.00738-18 (2018).

  219. Lu, P. et al. Wolbachia inhibits binding of dengue and Zika viruses to mosquito cells. Front. Microbiol. 11, 1750 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Reyes, J. I. L., Suzuki, Y., Carvajal, T., Muñoz, M. N. M. & Watanabe, K. Intracellular interactions between arboviruses and Wolbachia in Aedes aegypti. Front. Cell Infect. Microbiol. 11, 690087 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Negri, I. et al. Unravelling the Wolbachia evolutionary role: the reprogramming of the host genomic imprinting. Proc. Biol. Sci. 276, 2485–2491 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Hughes, G. L. et al. Wolbachia infections in Anopheles gambiae cells: transcriptomic characterization of a novel host–symbiont interaction. PLoS Pathog. 7, e1001296 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Ye, Y. H. et al. Infection with a virulent strain of Wolbachia disrupts genome wide-patterns of cytosine methylation in the mosquito Aedes aegypti. PLoS ONE 8, e66482 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. LePage, D. P., Jernigan, K. K. & Bordenstein, S. R. The relative importance of DNA methylation and Dnmt2-mediated epigenetic regulation on Wolbachia densities and cytoplasmic incompatibility. PeerJ 2, e678 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  225. Wu, X. et al. Distinct epigenomic and transcriptomic modifications associated with Wolbachia-mediated asexuality. PLoS Pathog. 16, e1008397 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Lindsey, A. R. I., Bhattacharya, T., Hardy, R. W. & Newton, I. L. G. Wolbachia and virus alter the host transcriptome at the interface of nucleotide metabolism pathways. mBio https://doi.org/10.1128/mBio.03472-20 (2021).

  227. Bhattacharya, T., Newton, I. L. G. & Hardy, R. W. Wolbachia elevates host methyltransferase expression to block an RNA virus early during infection. PLoS Pathog. 13, e1006427 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  228. Mao, W. et al. Wolbachia utilizes lncRNAs to activate the anti-dengue Toll pathway and balance reactive oxygen species stress in Aedes aegypti through a competitive endogenous RNA network. Front. Cell Infect. Microbiol. 11, 823403 (2021).

    Article  CAS  PubMed  Google Scholar 

  229. Stouthamer, R., Breeuwert, J. A., Luck, R. F. & Werren, J. H. Molecular identification of microorganisms associated with parthenogenesis. Nature 361, 66–68 (1993).

    Article  CAS  PubMed  Google Scholar 

  230. Gottlieb, Y., Zchori-Fein, E., Werren, J. H. & Karr, T. L. Diploidy restoration in Wolbachia-infected Muscidifurax uniraptor (Hymenoptera: Pteromalidae). J. Invertebr. Pathol. 81, 166–174 (2002).

    Article  PubMed  Google Scholar 

  231. Ma, W. J. et al. Diploid males support a two-step mechanism of endosymbiont-induced thelytoky in a parasitoid wasp. BMC Evol. Biol. 15, 84 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  232. Magni, G. E. Sex-ratio; a non-Mendelian character in Drosophila bifasciata. Nature 172, 81 (1953).

    Article  CAS  PubMed  Google Scholar 

  233. Katsuma, S. et al. A Wolbachia factor for male killing in lepidopteran insects. Nat. Commun. 13, 6764 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Perlmutter, J. I. et al. The phage gene wmk is a candidate for male killing by a bacterial endosymbiont. PLoS Pathog. 15, e1007936 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Sasaki, T., Massaki, N. & Kubo, T. Wolbachia variant that induces two distinct reproductive phenotypes in different hosts. Heredity 95, 389–393 (2005).

    Article  CAS  PubMed  Google Scholar 

  236. Juchault, P., Martin, G. & Legrand, J. Induction par la température d’une physiologie mâle chez les néo-femelles et les intersexués du Crustacé Oniscoïde Armadillidium vulgare Latr., hébergeant un bactéroïde à action féminisante [French]. Int. J. Invertebr. Reprod. 2, 223–225 (1980).

    Article  Google Scholar 

  237. Herran, B. et al. Feminising Wolbachia disrupt Armadillidium vulgare insulin-like signalling pathway. Cell Microbiol. 23, e13381 (2021).

    Article  CAS  PubMed  Google Scholar 

  238. Herran, B. et al. The shutting down of the insulin pathway: a developmental window for Wolbachia load and feminization. Sci. Rep. 10, 10551 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by National Institutes of Health (NIH) and National Science Foundation (NSF) grants (NIGMS-1R35GM139595, NSF 1456535). Due to space considerations, the authors could not include and reference several seminal contributions to the Wolbachia field. The authors thank members of the Sullivan, Cooper, Debec and Serbus laboratories for helpful comments and images. The authors thank C. Lindley and D. States for their editing expertise as well as B. Livingston for lending his artistic eye.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to William Sullivan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Microbiology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Porter, J., Sullivan, W. The cellular lives of Wolbachia. Nat Rev Microbiol 21, 750–766 (2023). https://doi.org/10.1038/s41579-023-00918-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41579-023-00918-x

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology