Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The gut–liver axis and gut microbiota in health and liver disease

Abstract

The trillions of microorganisms in the human intestine are important regulators of health, and disruptions in the gut microbial communities can cause disease. The gut, liver and immune system have a symbiotic relationship with these microorganisms. Environmental factors, such as high-fat diets and alcohol consumption, can disrupt and alter microbial communities. This dysbiosis can lead to dysfunction of the intestinal barrier, translocation of microbial components to the liver and development or progression of liver disease. Changes in metabolites produced by gut microorganisms can also contribute to liver disease. In this Review, we discuss the importance of the gut microbiota in maintenance of health and the alterations in microbial mediators that contribute to liver disease. We present strategies for modulation of the intestinal microbiota and/or their metabolites as potential treatments for liver disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The gut–liver axis.
Fig. 2: Barrier systems against translocation of microorganisms.
Fig. 3: Gut microbiomes differ with aetiology of liver disease.
Fig. 4: Targeted approaches for treatment of liver disease.

Similar content being viewed by others

References

  1. Mazagova, M. et al. Commensal microbiota is hepatoprotective and prevents liver fibrosis in mice. FASEB J. 29, 1043–1055 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Henao-Mejia, J. et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482, 179–185 (2012). To our knowledge, this paper is the first to report transmissibility of experimental steatohepatitis in mice by FMT.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Llopis, M. et al. Intestinal microbiota contributes to individual susceptibility to alcoholic liver disease. Gut 65, 830–839 (2016). To our knowledge, this paper is the first to report transmissibility of ethanol-induced liver disease in gnotobiotic mice.

    Article  CAS  PubMed  Google Scholar 

  4. Philips, C. A., Ahamed, R., Rajesh, S., Abduljaleel, J. K. P. & Augustine, P. Long-term outcomes of stool transplant in alcohol-associated hepatitis-analysis of clinical outcomes, relapse, gut microbiota and comparisons with standard care. J. Clin. Exp. Hepatol. 12, 1124–1132 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Minot, S. et al. The human gut virome: inter-individual variation and dynamic response to diet. Genome Res. 21, 1616–1625 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Suhr, M. J., Banjara, N. & Hallen-Adams, H. E. Sequence-based methods for detecting and evaluating the human gut mycobiome. Lett. Appl. Microbiol. 62, 209–215 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Sender, R., Fuchs, S. & Milo, R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 14, e1002533 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Eckburg, P. B. et al. Diversity of the human intestinal microbial flora. Science 308, 1635–1638 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Arumugam, M. et al. Enterotypes of the human gut microbiome. Nature 473, 174–180 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fan, Y. & Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 19, 55–71 (2021).

    Article  CAS  PubMed  Google Scholar 

  12. Hooper, L. V., Midtvedt, T. & Gordon, J. I. How host–microbial interactions shape the nutrient environment of the mammalian intestine. Annu. Rev. Nutr. 22, 283–307 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Schulthess, J. et al. The short chain fatty acid butyrate imprints an antimicrobial program in macrophages. Immunity 50, 432–445.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Arpaia, N. et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504, 451–455 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Litvak, Y., Byndloss, M. X. & Baumler, A. J. Colonocyte metabolism shapes the gut microbiota. Science 362, eaat9076 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lee, J. Y., Tsolis, R. M. & Baumler, A. J. The microbiome and gut homeostasis. Science 377, eabp9960 (2022).

    Article  CAS  PubMed  Google Scholar 

  17. Jakobsson, H. E. et al. The composition of the gut microbiota shapes the colon mucus barrier. EMBO Rep. 16, 164–177 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Johansson, M. E. et al. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc. Natl Acad. Sci. USA 105, 15064–15069 (2008). This study demonstrates two distinct mucus layers coating the colonic epithelium, both comprised in large part by mucin 2, that separate bacteria from the colon epithelia.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Vaishnava, S. et al. The antibacterial lectin RegIIIγ promotes the spatial segregation of microbiota and host in the intestine. Science 334, 255–258 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bunker, J. J. & Bendelac, A. IgA responses to microbiota. Immunity 49, 211–224 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Turner, J. R. Intestinal mucosal barrier function in health and disease. Nat. Rev. Immunol. 9, 799–809 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Bacher, P. et al. Human anti-fungal TH17 immunity and pathology rely on cross-reactivity against Candida albicans. Cell 176, 1340–1355.e15 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. McDonald, B. et al. Programing of an intravascular immune firewall by the gut microbiota protects against pathogen dissemination during infection. Cell Host Microbe 28, 660–668.e4 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Le, H. H., Lee, M. T., Besler, K. R. & Johnson, E. L. Host hepatic metabolism is modulated by gut microbiota-derived sphingolipids. Cell Host Microbe 30, 798–808.e7 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gola, A. et al. Commensal-driven immune zonation of the liver promotes host defence. Nature 589, 131–136 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Moro-Sibilot, L. et al. Mouse and human liver contain immunoglobulin A-secreting cells originating from Peyer’s patches and directed against intestinal antigens. Gastroenterology 151, 311–323 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Inagaki, T. et al. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proc. Natl Acad. Sci. USA 103, 3920–3925 (2006). This study elucidates the role of FXR in maintaining the intestinal barrier and inducing antimicrobial proteins, which prevents bacterial overgrowth and translocation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mouries, J. et al. Microbiota-driven gut vascular barrier disruption is a prerequisite for non-alcoholic steatohepatitis development. J. Hepatol. 71, 1216–1228 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Clements, W. D. et al. Role of the gut in the pathophysiology of extrahepatic biliary obstruction. Gut 39, 587–593 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Friedman, E. S. et al. FXR-dependent modulation of the human small intestinal microbiome by the bile acid derivative obeticholic acid. Gastroenterology 155, 1741–1752.e5 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Fuchs, C. D. & Trauner, M. Role of bile acids and their receptors in gastrointestinal and hepatic pathophysiology. Nat. Rev. Gastroenterol. Hepatol. 19, 432–450 (2022).

    Article  CAS  PubMed  Google Scholar 

  32. Inagaki, T. et al. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab. 2, 217–225 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Kliewer, S. A. & Mangelsdorf, D. J. Bile acids as hormones: the FXR–FGF15/19 pathway. Dig. Dis. 33, 327–331 (2015).

    Article  PubMed  Google Scholar 

  34. Powell, E. E., Wong, V. W. & Rinella, M. Non-alcoholic fatty liver disease. Lancet 397, 2212–2224 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Lee, G. et al. Distinct signatures of gut microbiome and metabolites associated with significant fibrosis in non-obese NAFLD. Nat. Commun. 11, 4982 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Demir, M. et al. The fecal mycobiome in non-alcoholic fatty liver disease. J. Hepatol. 76, 788–799 (2022).

    Article  CAS  PubMed  Google Scholar 

  37. Loomba, R. et al. Gut microbiome-based metagenomic signature for non-invasive detection of advanced fibrosis in human nonalcoholic fatty liver disease. Cell Metab. 25, 1054–1062.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lang, S. et al. Intestinal virome signature associated with severity of nonalcoholic fatty liver disease. Gastroenterology 159, 1839–1852 (2020). To our knowledge, this study is the first to interrogate the composition of the intestinal virome and its association with severity of NAFLD and fibrosis.

    Article  CAS  PubMed  Google Scholar 

  39. Rahman, K. et al. Loss of junctional adhesion molecule a promotes severe steatohepatitis in mice on a diet high in saturated fat, fructose, and cholesterol. Gastroenterology 151, 733–746.e12 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. Hsu, C. L. et al. Differences in bacterial translocation and liver injury in ethanol versus diet-induced liver disease. Dig. Dis. Sci. https://doi.org/10.1007/s10620-023-07860-1 (2023).

    Article  PubMed  Google Scholar 

  41. Luther, J. et al. Hepatic injury in nonalcoholic steatohepatitis contributes to altered intestinal permeability. Cell Mol. Gastroenterol. Hepatol. 1, 222–232 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Meijnikman, A. S. et al. Microbiome-derived ethanol in nonalcoholic fatty liver disease. Nat. Med. 28, 2100–2106 (2022). To our knowledge, this study is the first to measure portal vein ethanol concentrations in patients with NAFLD and demonstrate higher portal vein ethanol concentrations in patients post-prandially and with more advanced liver disease.

    Article  CAS  PubMed  Google Scholar 

  43. Zhu, L. et al. Characterization of the gut microbiome in non-alcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH. Hepatology 57, 601–609 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Yuan, J. et al. Fatty liver disease caused by high-alcohol-producing Klebsiella pneumoniae. Cell Metab. 30, 675–688.e7 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Hoyles, L. et al. Molecular phenomics and metagenomics of hepatic steatosis in non-diabetic obese women. Nat. Med. 24, 1070–1080 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhao, M. et al. TMAVA, a metabolite of intestinal microbes, is increased in plasma from patients with liver steatosis, inhibits γ-butyrobetaine hydroxylase, and exacerbates fatty liver in mice. Gastroenterology 158, 2266–2281.e27 (2020).

    Article  CAS  PubMed  Google Scholar 

  47. Beaumont, M. et al. The gut microbiota metabolite indole alleviates liver inflammation in mice. FASEB J. 32, fj201800544 (2018).

    Article  PubMed  Google Scholar 

  48. Ma, L. et al. Indole alleviates diet-induced hepatic steatosis and inflammation in a manner involving myeloid cell 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3. Hepatology 72, 1191–1203 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. Teunis, C., Nieuwdorp, M. & Hanssen, N. Interactions between tryptophan metabolism, the gut microbiome and the immune system as potential drivers of non-alcoholic fatty liver disease (NAFLD) and metabolic diseases. Metabolites 12, 514 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jiao, N. et al. Suppressed hepatic bile acid signalling despite elevated production of primary and secondary bile acids in NAFLD. Gut 67, 1881–1891 (2018).

    Article  CAS  PubMed  Google Scholar 

  51. Ferslew, B. C. et al. Altered bile acid metabolome in patients with nonalcoholic steatohepatitis. Dig. Dis. Sci. 60, 3318–3328 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mouzaki, M. et al. Bile acids and dysbiosis in non-alcoholic fatty liver disease. PLoS ONE 11, e0151829 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Fang, S. et al. Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance. Nat. Med. 21, 159–165 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jiang, C. et al. Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease. J. Clin. Invest. 125, 386–402 (2015).

    Article  PubMed  Google Scholar 

  55. Campbell, C. et al. Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells. Nature 581, 475–479 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Song, X. et al. Microbial bile acid metabolites modulate gut RORγ+ regulatory T cell homeostasis. Nature 577, 410–415 (2020).

    Article  CAS  PubMed  Google Scholar 

  57. Hang, S. et al. Bile acid metabolites control TH17 and Treg cell differentiation. Nature 576, 143–148 (2019). This study identifies bile acid metabolites capable of regulating T cell differentiation, reducing TH17 cells and increasing Treg cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Brandl, K. et al. Dysregulation of serum bile acids and FGF19 in alcoholic hepatitis. J. Hepatol. 69, 396–405 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Li, J. & Dawson, P. A. Animal models to study bile acid metabolism. Biochim. Biophys. Acta Mol. Basis Dis. 1865, 895–911 (2019).

    Article  CAS  PubMed  Google Scholar 

  60. Hild, B. et al. Neonatal exposure to a wild-derived microbiome protects mice against diet-induced obesity. Nat. Metab. 3, 1042–1057 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Duan, Y. et al. Bacteriophage targeting of gut bacterium attenuates alcoholic liver disease. Nature 575, 505–511 (2019). To our knowledge, this study is the first to demonstrate that phage-based therapy in a murine model of a non-infectious disease reduces ethanol-induced liver disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Grander, C. et al. Recovery of ethanol-induced Akkermansia muciniphila depletion ameliorates alcoholic liver disease. Gut 67, 891–901 (2018).

    Article  PubMed  Google Scholar 

  63. Chu, H. et al. The Candida albicans exotoxin candidalysin promotes alcohol-associated liver disease. J. Hepatol. 72, 391–400 (2020).

    Article  CAS  PubMed  Google Scholar 

  64. Lang, S. et al. Intestinal fungal dysbiosis and systemic immune response to fungi in patients with alcoholic hepatitis. Hepatology 71, 522–538 (2020). This study describes the faecal mycobiome in patients with alcohol-associated hepatitis.

    Article  CAS  PubMed  Google Scholar 

  65. Hsu, C. L. et al. Intestinal virome in patients with alcohol use disorder and after abstinence. Hepatol. Commun. 6, 2058–2069 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hsu, C. L. et al. Any alcohol use in NAFLD patients is associated with significant changes to the intestinal virome. Hepatology 77, 2073–2083 (2023).

    Article  PubMed  Google Scholar 

  67. Jiang, L. et al. Intestinal virome in patients with alcoholic hepatitis. Hepatology 72, 2182–2196 (2020).

    Article  CAS  PubMed  Google Scholar 

  68. Leclercq, S. et al. Intestinal permeability, gut-bacterial dysbiosis, and behavioral markers of alcohol-dependence severity. Proc. Natl Acad. Sci. USA 111, E4485–E4493 (2014). To our knowledge, this study is the first demonstrating the association of gut permeability and gut-microbiota composition with addiction severity in patients with alcohol use disorder.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lang, S. & Schnabl, B. Microbiota and fatty liver disease — the known, the unknown, and the future. Cell Host Microbe 28, 233–244 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wang, L. et al. Intestinal REG3 lectins protect against alcoholic steatohepatitis by reducing mucosa-associated microbiota and preventing bacterial translocation. Cell Host Microbe 19, 227–239 (2016). This study demonstrates that intestinal antimicrobial molecules such as REG3 lectins protect the host from bacterial translocation to extra-intestinal tissues caused by chronic ethanol exposure.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Couch, R. D. et al. Alcohol induced alterations to the human fecal VOC metabolome. PLoS ONE 10, e0119362 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Cresci, G. A. et al. Prophylactic tributyrin treatment mitigates chronic-binge alcohol-induced intestinal barrier and liver injury. J. Gastroenterol. Hepatol. 32, 1587–1597 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Morrison, D. J. & Preston, T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 7, 189–200 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Hendrikx, T. et al. Bacteria engineered to produce IL-22 in intestine induce expression of REG3G to reduce ethanol-induced liver disease in mice. Gut 68, 1504–1515 (2019).

    Article  CAS  PubMed  Google Scholar 

  75. Hartmann, P. et al. Modulation of the intestinal bile acid/farnesoid X receptor/fibroblast growth factor 15 axis improves alcoholic liver disease in mice. Hepatology 67, 2150–2166 (2018).

    Article  CAS  PubMed  Google Scholar 

  76. Helsley, R. N. et al. Gut microbial trimethylamine is elevated in alcohol-associated hepatitis and contributes to ethanol-induced liver injury in mice. eLife 11, e76554 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Haas, W., Shepard, B. D. & Gilmore, M. S. Two-component regulator of Enterococcus faecalis cytolysin responds to quorum-sensing autoinduction. Nature 415, 84–87 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Lang, S., Demir, M., Duan, Y., Martin, A. & Schnabl, B. Cytolysin-positive Enterococcus faecalis is not increased in patients with non-alcoholic steatohepatitis. Liver Int. 40, 860–865 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yang, Y. et al. Within-host evolution of a gut pathobiont facilitates liver translocation. Nature 607, 563–570 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Richardson, J. P. et al. Candidalysins are a new family of cytolytic fungal peptide toxins. mBio 13, e0351021 (2022).

    Article  PubMed  Google Scholar 

  81. Verma, A. H. et al. Oral epithelial cells orchestrate innate type 17 responses to Candida albicans through the virulence factor candidalysin. Sci. Immunol. 2, eaam8834 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Kasper, L. et al. The fungal peptide toxin Candidalysin activates the NLRP3 inflammasome and causes cytolysis in mononuclear phagocytes. Nat. Commun. 9, 4260 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Chang, C. S., Chen, G. H., Lien, H. C. & Yeh, H. Z. Small intestine dysmotility and bacterial overgrowth in cirrhotic patients with spontaneous bacterial peritonitis. Hepatology 28, 1187–1190 (1998).

    Article  CAS  PubMed  Google Scholar 

  84. Bauer, T. M. et al. Small intestinal bacterial overgrowth in human cirrhosis is associated with systemic endotoxemia. Am. J. Gastroenterol. 97, 2364–2370 (2002).

    Article  PubMed  Google Scholar 

  85. Bajaj, J. S. et al. Interaction of bacterial metagenome and virome in patients with cirrhosis and hepatic encephalopathy. Gut 70, 1162–1173 (2021).

    Article  CAS  PubMed  Google Scholar 

  86. Bajaj, J. S. et al. Fungal dysbiosis in cirrhosis. Gut 67, 1146–1154 (2018).

    Article  CAS  PubMed  Google Scholar 

  87. Hasa, E., Hartmann, P. & Schnabl, B. Liver cirrhosis and immune dysfunction. Int. Immunol. 34, 455–466 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Trebicka, J., Macnaughtan, J., Schnabl, B., Shawcross, D. L. & Bajaj, J. S. The microbiota in cirrhosis and its role in hepatic decompensation. J. Hepatol. 75, S67–S81 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kakiyama, G. et al. Modulation of the fecal bile acid profile by gut microbiota in cirrhosis. J. Hepatol. 58, 949–955 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Sorribas, M. et al. FXR modulates the gut–vascular barrier by regulating the entry sites for bacterial translocation in experimental cirrhosis. J. Hepatol. 71, 1126–1140 (2019).

    Article  CAS  PubMed  Google Scholar 

  91. Kulik, L. & El-Serag, H. B. Epidemiology and management of hepatocellular carcinoma. Gastroenterology 156, 477–491.e1 (2019).

    Article  PubMed  Google Scholar 

  92. Ren, Z. et al. Gut microbiome analysis as a tool towards targeted non-invasive biomarkers for early hepatocellular carcinoma. Gut 68, 1014–1023 (2019).

    Article  CAS  PubMed  Google Scholar 

  93. Ponziani, F. R. et al. Hepatocellular carcinoma is associated with gut microbiota profile and inflammation in nonalcoholic fatty liver disease. Hepatology 69, 107–120 (2019).

    Article  CAS  PubMed  Google Scholar 

  94. Zheng, R. et al. Liver cirrhosis contributes to the disorder of gut microbiota in patients with hepatocellular carcinoma. Cancer Med. 9, 4232–4250 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ma, C. et al. Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells. Science 360, eaan5931 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Yoshimoto, S. et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 499, 97–101 (2013).

    Article  CAS  PubMed  Google Scholar 

  97. Steck, N. et al. Enterococcus faecalis metalloprotease compromises epithelial barrier and contributes to intestinal inflammation. Gastroenterology 141, 959–971 (2011).

    Article  CAS  PubMed  Google Scholar 

  98. Iida, N. et al. Chronic liver disease enables gut Enterococcus faecalis colonization to promote liver carcinogenesis. Nat. Cancer 2, 1039–1054 (2021).

    Article  CAS  PubMed  Google Scholar 

  99. Yu, L. X. et al. Endotoxin accumulation prevents carcinogen-induced apoptosis and promotes liver tumorigenesis in rodents. Hepatology 52, 1322–1333 (2010).

    Article  CAS  PubMed  Google Scholar 

  100. Dapito, D. H. et al. Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell 21, 504–516 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Fedirko, V. et al. Exposure to bacterial products lipopolysaccharide and flagellin and hepatocellular carcinoma: a nested case–control study. BMC Med. 15, 72 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Backhed, F. et al. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl Acad. Sci. USA 101, 15718–15723 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006). To our knowledge, this study is the first to demonstrate that the microbiome of individuals with obesity has an increased capacity for energy harvest from the diet and that obesity was transmissible to germ-free mice with transplantation of this microbiota.

    Article  PubMed  Google Scholar 

  104. Strandwitz, P. Neurotransmitter modulation by the gut microbiota. Brain Res. 1693, 128–133 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Braniste, V. et al. The gut microbiota influences blood–brain barrier permeability in mice. Sci. Transl Med. 6, 263ra158 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Bajaj, J. S. et al. A randomized clinical trial of fecal microbiota transplant for alcohol use disorder. Hepatology 73, 1688–1700 (2021). To our knowledge, this work is the first human study to demonstrate improvement in alcohol craving symptoms in patients with alcohol-associated cirrhosis and alcohol use disorder after FMT.

    Article  CAS  PubMed  Google Scholar 

  107. Bajaj, J. S. et al. Antibiotic-associated disruption of microbiota composition and function in cirrhosis is restored by fecal transplant. Hepatology 68, 1549–1558 (2018).

    Article  CAS  PubMed  Google Scholar 

  108. Gulati, M., Singh, S. K., Corrie, L., Kaur, I. P. & Chandwani, L. Delivery routes for faecal microbiota transplants: available, anticipated and aspired. Pharmacol. Res 159, 104954 (2020).

    Article  PubMed  Google Scholar 

  109. Ng, S. C. et al. Microbiota engraftment after faecal microbiota transplantation in obese subjects with type 2 diabetes: a 24-week, double-blind, randomised controlled trial. Gut 71, 716–723 (2022).

    Article  CAS  PubMed  Google Scholar 

  110. Ianiro, G. et al. Variability of strain engraftment and predictability of microbiome composition after fecal microbiota transplantation across different diseases. Nat. Med. 28, 1913–1923 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Bajaj, J. S. et al. Fecal microbial transplant capsules are safe in hepatic encephalopathy: a phase 1, randomized, placebo-controlled trial. Hepatology 70, 1690–1703 (2019).

    Article  CAS  PubMed  Google Scholar 

  112. DeFilipp, Z. et al. Drug-resistant E. coli bacteremia transmitted by fecal microbiota transplant. N. Engl. J. Med. 381, 2043–2050 (2019).

    Article  PubMed  Google Scholar 

  113. Feuerstadt, P. et al. SER-109, an oral microbiome therapy for recurrent Clostridioides difficile infection. N. Engl. J. Med. 386, 220–229 (2022).

    Article  CAS  PubMed  Google Scholar 

  114. Hsu, C. L., Duan, Y., Fouts, D. E. & Schnabl, B. Intestinal virome and therapeutic potential of bacteriophages in liver disease. J. Hepatol. 75, 1465–1475 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kurtz, C. B. et al. An engineered E. coli Nissle improves hyperammonemia and survival in mice and shows dose-dependent exposure in healthy humans. Sci. Transl Med. 11, eaau7975 (2019).

    Article  CAS  PubMed  Google Scholar 

  116. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03447730 (2021).

  117. Russell, B. J. et al. Intestinal transgene delivery with native E. coli chassis allows persistent physiological changes. Cell 185, 3263–3277.e15 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Salminen, S. et al. The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nat. Rev. Gastroenterol. Hepatol. 18, 649–667 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Yang, Z. et al. Inulin intervention attenuates hepatic steatosis in rats via modulating gut microbiota and maintaining intestinal barrier function. Food Res. Int. 163, 112309 (2023).

    Article  CAS  PubMed  Google Scholar 

  120. Huang, X. et al. Fructooligosaccharides attenuate non-alcoholic fatty liver disease by remodeling gut microbiota and association with lipid metabolism. Biomed. Pharmacother. 159, 114300 (2023).

    Article  CAS  PubMed  Google Scholar 

  121. Wrzosek, L. et al. Microbiota tryptophan metabolism induces aryl hydrocarbon receptor activation and improves alcohol-induced liver injury. Gut 70, 1299–1308 (2021).

    Article  CAS  PubMed  Google Scholar 

  122. Pohl, K., Moodley, P. & Dhanda, A. The effect of increasing intestinal short-chain fatty acid concentration on gut permeability and liver injury in the context of liver disease: a systematic review. J. Gastroenterol. Hepatol. 37, 1498–1506 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Singh, V. et al. Dysregulated microbial fermentation of soluble fiber induces cholestatic liver cancer. Cell 175, 679–694.e22 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Depommier, C. et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat. Med. 25, 1096–1103 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Zhou, Y., Cui, Y. & Qu, X. Exopolysaccharides of lactic acid bacteria: structure, bioactivity and associations: a review. Carbohydr. Polym. 207, 317–332 (2019).

    Article  CAS  PubMed  Google Scholar 

  126. Pan, Z. et al. Postbiotics prepared using Lactobacillus paracasei CCFM1224 prevent nonalcoholic fatty liver disease by modulating the gut microbiota and liver metabolism. Int. J. Mol. Sci. 23, 13522 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Anstee, Q. M., Seth, D. & Day, C. P. Genetic factors that affect risk of alcoholic and nonalcoholic fatty liver disease. Gastroenterology 150, 1728–1744.e7 (2016).

    Article  PubMed  Google Scholar 

  128. Xue, L., Deng, Z., Luo, W., He, X. & Chen, Y. Effect of fecal microbiota transplantation on non-alcoholic fatty liver disease: a randomized clinical trial. Front. Cell Infect. Microbiol. 12, 759306 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Sharma, A. et al. Fecal microbiota transplantation in alcohol-associated acute-on-chronic liver failure: an open-label clinical trial. Hepatol. Int. 16, 433–446 (2022).

    Article  PubMed  Google Scholar 

  130. Craven, L. et al. Allogenic fecal microbiota transplantation in patients with nonalcoholic fatty liver disease improves abnormal small intestinal permeability: a randomized control trial. Am. J. Gastroenterol. 115, 1055–1065 (2020).

    Article  PubMed  Google Scholar 

  131. Witjes, J. J. et al. Donor fecal microbiota transplantation alters gut microbiota and metabolites in obese individuals with steatohepatitis. Hepatol. Commun. 4, 1578–1590 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Bajaj, J. S. et al. Fecal microbiota transplant from a rational stool donor improves hepatic encephalopathy: a randomized clinical trial. Hepatology 66, 1727–1738 (2017). To our knowledge, this study is the first human randomized clinical trial using FMT for the treatment of hepatic encephalopathy in patients with cirrhosis and shows a reduction in hospitalizations due to liver-related complications.

    Article  CAS  PubMed  Google Scholar 

  133. Manzhalii, E. et al. Effect of a specific Escherichia coli Nissle 1917 strain on minimal/mild hepatic encephalopathy treatment. World J. Hepatol. 14, 634–646 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Zhu, W., Yan, M., Cao, H., Zhou, J. & Xu, Z. Effects of Clostridium butyricum capsules combined with rosuvastatin on intestinal flora, lipid metabolism, liver function and inflammation in NAFLD patients. Cell. Mol. Biol. 68, 64–69 (2022).

    Article  PubMed  Google Scholar 

  135. Mohamad Nor, M. H. et al. The effect of probiotics (MCP® BCMC® strains) on hepatic steatosis, small intestinal mucosal immune function, and intestinal barrier in patients with non-alcoholic fatty liver disease. Nutrients 13, 3192 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Chong, P. L., Laight, D., Aspinall, R. J., Higginson, A. & Cummings, M. H. A randomised placebo controlled trial of VSL#3® probiotic on biomarkers of cardiovascular risk and liver injury in non-alcoholic fatty liver disease. BMC Gastroenterol. 21, 144 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Behrouz, V., Aryaeian, N., Zahedi, M. J. & Jazayeri, S. Effects of probiotic and prebiotic supplementation on metabolic parameters, liver aminotransferases, and systemic inflammation in nonalcoholic fatty liver disease: a randomized clinical trial. J. Food Sci. 85, 3611–3617 (2020).

    Article  CAS  PubMed  Google Scholar 

  138. Scorletti, E. et al. Synbiotics alter fecal microbiomes, but not liver fat or fibrosis, in a randomized trial of patients with nonalcoholic fatty liver disease. Gastroenterology 158, 1597–1610.e7 (2020).

    Article  CAS  PubMed  Google Scholar 

  139. Ahn, S. B. et al. Randomized, double-blind, placebo-controlled study of a multispecies probiotic mixture in nonalcoholic fatty liver disease. Sci. Rep. 9, 5688 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Kobyliak, N. et al. A multi-strain probiotic reduces the fatty liver index, cytokines and aminotransferase levels in NAFLD patients: evidence from a randomized clinical trial. J. Gastrointestin. Liver Dis. 27, 41–49 (2018).

    Article  PubMed  Google Scholar 

  141. Manzhalii, E., Virchenko, O., Falalyeyeva, T., Beregova, T. & Stremmel, W. Treatment efficacy of a probiotic preparation for non-alcoholic steatohepatitis: a pilot trial. J. Dig. Dis. 18, 698–703 (2017).

    Article  CAS  PubMed  Google Scholar 

  142. Famouri, F., Shariat, Z., Hashemipour, M., Keikha, M. & Kelishadi, R. Effects of probiotics on nonalcoholic fatty liver disease in obese children and adolescents. J. Pediatr. Gastroenterol. Nutr. 64, 413–417 (2017).

    Article  CAS  PubMed  Google Scholar 

  143. Harrison, S. A. et al. A structurally optimized FXR agonist, MET409, reduced liver fat content over 12 weeks in patients with non-alcoholic steatohepatitis. J. Hepatol. 75, 25–33 (2021).

    Article  CAS  PubMed  Google Scholar 

  144. Harrison, S. A. et al. Efficacy and safety of aldafermin, an engineered FGF19 analog, in a randomized, double-blind, placebo-controlled trial of patients with nonalcoholic steatohepatitis. Gastroenterology 160, 219–231.e1 (2021). To our knowledge, this study is the first randomized clinical trial showing that an engineered FGF19 analogue could improve hepatic steatosis and liver injury in patients with NASH.

    Article  CAS  PubMed  Google Scholar 

  145. Newsome, P. N. et al. Volixibat in adults with non-alcoholic steatohepatitis: 24-week interim analysis from a randomized, phase II study. J. Hepatol. 73, 231–240 (2020).

    Article  CAS  PubMed  Google Scholar 

  146. Chambers, E. S. et al. The effects of dietary supplementation with inulin and inulin-propionate ester on hepatic steatosis in adults with non-alcoholic fatty liver disease. Diabetes Obes. Metab. 21, 372–376 (2019).

    Article  CAS  PubMed  Google Scholar 

  147. Traussnigg, S. et al. Norursodeoxycholic acid versus placebo in the treatment of non-alcoholic fatty liver disease: a double-blind, randomised, placebo-controlled, phase 2 dose-finding trial. Lancet Gastroenterol. Hepatol. 4, 781–793 (2019). To our knowledge, this study is the first randomized clinical trial showing that supplementation of a modified secondary bile acid in patients with NAFLD improved hepatic injury.

    Article  PubMed  Google Scholar 

  148. Harrison, S. A. et al. NGM282 for treatment of non-alcoholic steatohepatitis: a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet 391, 1174–1185 (2018).

    Article  CAS  PubMed  Google Scholar 

  149. Bernard, B. et al. Antibiotic prophylaxis for the prevention of bacterial infections in cirrhotic patients with gastrointestinal bleeding: a meta-analysis. Hepatology 29, 1655–1661 (1999).

    Article  CAS  PubMed  Google Scholar 

  150. Moon, A. M., Dominitz, J. A., Ioannou, G. N., Lowy, E. & Beste, L. A. Use of antibiotics among patients with cirrhosis and upper gastrointestinal bleeding is associated with reduced mortality. Clin. Gastroenterol. Hepatol. 14, 1629–1637.e1 (2016).

    Article  CAS  PubMed  Google Scholar 

  151. Gluud, L. L., Vilstrup, H. & Morgan, M. Y. Non-absorbable disaccharides versus placebo/no intervention and lactulose versus lactitol for the prevention and treatment of hepatic encephalopathy in people with cirrhosis. Cochrane Database Syst. Rev. 2016, CD003044 (2016).

    PubMed  PubMed Central  Google Scholar 

  152. Baxter, N. T. et al. Dynamics of human gut microbiota and short-chain fatty acids in response to dietary interventions with three fermentable fibers. mBio 10, e02566-18 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Wang, Z. et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57–63 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Tang, W. H. & Hazen, S. L. Microbiome, trimethylamine N-oxide, and cardiometabolic disease. Transl. Res. 179, 108–115 (2017).

    Article  CAS  PubMed  Google Scholar 

  155. Witkowski, M., Weeks, T. L. & Hazen, S. L. Gut microbiota and cardiovascular disease. Circ. Res. 127, 553–570 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

C.L.H. is supported by a Pilot and Feasibility Award from the Southern California Research Center for ALPD and Cirrhosis P50 AA011999 and by T32 DK007202. The Review article was supported by services provided by National Institutes of Health (NIH) centre P30 DK120515.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Bernd Schnabl.

Ethics declarations

Competing interests

B.S. has consulted for Ambys Medicines, Ferring Research Institute, Gelesis, HOST Therabiomics, Intercept Pharmaceuticals, Mabwell Therapeutics, Patara Pharmaceuticals and Takeda, and is founder of Nterica Bio. UC San Diego has filed several patents with B.S. as inventor, and UC San Diego has received research support from Axial Biotherapeutics, BiomX, CymaBay Therapeutics, NGM Biopharmaceuticals, Prodigy Biotech and Synlogic Operating Company. C.L.H. declares no competing interests.

Peer review

Peer review information

Nature Reviews Microbiology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsu, C.L., Schnabl, B. The gut–liver axis and gut microbiota in health and liver disease. Nat Rev Microbiol 21, 719–733 (2023). https://doi.org/10.1038/s41579-023-00904-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41579-023-00904-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing