Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Roles of the gut microbiome in weight management

Abstract

Overweight, obesity, undernutrition and their respective sequelae have devastating tolls on personal and public health worldwide. Traditional approaches for treating these conditions with diet, exercise, drugs and/or surgery have shown varying degrees of success, creating an urgent need for new solutions with long-term efficacy. Owing to transformative advances in sequencing, bioinformatics and gnotobiotic experimentation, we now understand that the gut microbiome profoundly impacts energy balance through diverse mechanisms affecting both sides of the energy balance equation. Our growing knowledge of microbial contributions to energy metabolism highlights new opportunities for weight management, including the microbiome-aware improvement of existing tools and novel microbiome-targeted therapies. In this Review, we synthesize current knowledge concerning the bidirectional influences between the gut microbiome and existing weight management strategies, including behaviour-based and clinical approaches, and incorporate a subject-level meta-analysis contrasting the effects of weight management strategies on microbiota composition. We consider how emerging understanding of the gut microbiome alters our prospects for weight management and the challenges that must be overcome for microbiome-focused solutions to achieve success.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Reciprocal influences between the gut microbiome and key lifestyle and clinical approaches for weight management.
Fig. 2: Gut microbiome enhances dietary energy harvest.
Fig. 3: Gut microbiome modulates energy utilization.
Fig. 4: Mechanisms of gut microbial influence on host energy status.
Fig. 5: Meta-analysis of the effects of weight management interventions on gut microbiome composition.

Similar content being viewed by others

References

  1. WHO. Malnutrition. WHO https://www.who.int/news-room/fact-sheets/detail/malnutrition (2021).

  2. WHO. Obesity and overweight. WHO https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (2021).

  3. Popkin, B. M., Corvalan, C. & Grummer-Strawn, L. M. Dynamics of the double burden of malnutrition and the changing nutrition reality. Lancet 395, 65–74 (2020).

    Article  PubMed  Google Scholar 

  4. Anastasiou, C. A., Karfopoulou, E. & Yannakoulia, M. Weight regaining: from statistics and behaviors to physiology and metabolism. Metabolism 64, 1395–1407 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Johannsen, D. L. et al. Metabolic slowing with massive weight loss despite preservation of fat-free mass. J. Clin. Endocrinol. Metab. 97, 2489–2496 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fothergill, E. et al. Persistent metabolic adaptation 6 years after ‘The Biggest Loser’ competition. Obesity 24, 1612–1619 (2016).

    Article  PubMed  Google Scholar 

  7. Guerrant, R. L., DeBoer, M. D., Moore, S. R., Scharf, R. J. & Lima, A. A. M. The impoverished gut — a triple burden of diarrhoea, stunting and chronic disease. Nat. Rev. Gastroenterol. Hepatol. 10, 220–229 (2013).

    Article  PubMed  Google Scholar 

  8. Veenendaal, M. V. E. et al. Transgenerational effects of prenatal exposure to the 1944–45 Dutch famine. Br. J. Obstet. Gynaecol. 120, 548–554 (2013).

    Article  CAS  Google Scholar 

  9. Bäckhed, F. et al. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl Acad. Sci. USA 101, 15718–15723 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Turnbaugh, P. J. et al. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci. Transl Med. 1, 6ra14 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Cox, L. M. & Blaser, M. J. Antibiotics in early life and obesity. Nat. Rev. Endocrinol. 11, 182–190 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Cani, P. D. et al. Microbial regulation of organismal energy homeostasis. Nat. Metab. 1, 34–46 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. Gilbert, J. A. et al. Current understanding of the human microbiome. Nat. Med. 24, 392–400 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Al-Asmakh, M. & Zadjali, F. Use of germ-free animal models in microbiota-related research. J. Microbiol. Biotechnol. 25, 1583–1588 (2015).

    Article  PubMed  Google Scholar 

  15. Gheorghe, C. E. et al. Investigating causality with fecal microbiota transplantation in rodents: applications, recommendations and pitfalls. Gut Microbes 13, 1941711 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hayes, C. L. et al. Commensal microbiota induces colonic barrier structure and functions that contribute to homeostasis. Sci. Rep. 8, 14184 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kawai, Y. & Morotomi, M. Intestinal enzyme activities in germfree, conventional, and gnotobiotic rats associated with indigenous microorganisms. Infect. Immun. 19, 771–778 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Slezak, K. et al. Association of germ-free mice with a simplified human intestinal microbiota results in a shortened intestine. Gut Microbes 5, 176–182 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Fouladi, F. et al. Sequence variant analysis reveals poor correlations in microbial taxonomic abundance between humans and mice after gnotobiotic transfer. ISME J. 14, 1809–1820 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Walter, J., Armet, A. M., Finlay, B. B. & Shanahan, F. Establishing or exaggerating causality for the gut microbiome: lessons from human microbiota-associated rodents. Cell 180, 221–232 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006). This study establishes that the gut microbiome differs between individuals who are lean and obese and that obese phenotypes are transmissible to gnotobiotic mice.

    Article  PubMed  Google Scholar 

  22. Li, M. et al. Gut microbiota-bile acid crosstalk contributes to the rebound weight gain after calorie restriction in mice. Nat. Commun. 13, 2060 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Thaiss, C. A. et al. Persistent microbiome alterations modulate the rate of post-dieting weight regain. Nature 540, 544–551 (2016). This study implicates microbiome contributions to weight regain after weight loss.

    Article  CAS  PubMed  Google Scholar 

  24. Koren, O. et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell 150, 470–480 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Smith, M. I. et al. Gut microbiomes of Malawian twin pairs discordant for kwashiorkor. Science 339, 548–554 (2013). This study finds an immature gut microbiome configuration in a severe form of undernutrition.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Subramanian, S. et al. Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature 510, 417–421 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liou, A. P. et al. Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Sci. Transl Med. 5, 178ra41 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  28. von Schwartzenberg, R. J. et al. Caloric restriction disrupts the microbiota and colonization resistance. Nature 595, 272–277 (2021).

    Article  Google Scholar 

  29. Carmody, R. N. et al. Cooking shapes the structure and function of the gut microbiome. Nat. Microbiol. 4, 2052–2063 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Cox, L. M. et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell 158, 705–721 (2014). This study shows that gut microbiome perturbations in early life can have long-term consequences even when signatures recover.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. McGuire, M. K. & McGuire, M. A. Microbiomes and childhood malnutrition: what is the evidence? Ann. Nutr. Metab. 77, 36–48 (2021).

    Article  CAS  Google Scholar 

  32. Vonaesch, P. et al. Stunted childhood growth is associated with decompartmentalization of the gastrointestinal tract and overgrowth of oropharyngeal taxa. Proc. Natl Acad. Sci. USA 115, E8489–E8498 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kimura, I. et al. Maternal gut microbiota in pregnancy influences offspring metabolic phenotype in mice. Science 367, eaaw8429 (2020). This study demonstrates that exposure to SCFAs in utero alters development in a manner that protects against the adult metabolic consequences of a high-fat diet.

    Article  CAS  PubMed  Google Scholar 

  34. Mishra, A. et al. Microbial exposure during early human development primes fetal immune cells. Cell 184, 3394–3409 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Schulfer, A. F. et al. Intergenerational transfer of antibiotic-perturbed microbiota enhances colitis in susceptible mice. Nat. Microbiol. 3, 234–242 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. Falony, G. et al. Population-level analysis of gut microbiome variation. Science 352, 560–564 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. Zhernakova, A. et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 352, 565–569 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cotillard, A. et al. A posteriori dietary patterns better explain variations of the gut microbiome than individual markers in the American Gut Project. Am. J. Clin. Nutr. 115, 432–443 (2022).

    Article  PubMed  Google Scholar 

  39. Asnicar, F. et al. Microbiome connections with host metabolism and habitual diet from 1,098 deeply phenotyped individuals. Nat. Med. 27, 321–332 (2021). This study correlates microbiome composition with dietary records and metabolic panels, finding connections between specific microorganisms and health.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014). This human study demonstrates that gut microbiome composition and function respond to diet within days of administration.

    Article  CAS  PubMed  Google Scholar 

  41. Wu, G. D. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 105–108 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Oliver, A. et al. High-fiber, whole-food dietary intervention alters the human gut microbiome but not fecal short-chain fatty acids. mSystems 6, e00115–e00121 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Grembi, J. A. et al. Gut microbiota plasticity is correlated with sustained weight loss on a low-carb or low-fat dietary intervention. Sci. Rep. 10, 1405 (2020). This study demonstrates that weight loss success was correlated with the extent of microbiome response to diet.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bisanz, J. E., Upadhyay, V., Turnbaugh, J. A., Ly, K. & Turnbaugh, P. J. Meta-analysis reveals reproducible gut microbiome alterations in response to a high-fat diet. Cell Host Microbe 26, 265–272 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dalby, M. J., Ross, A. W., Walker, A. W. & Morgan, P. J. Dietary uncoupling of gut microbiota and energy harvesting from obesity and glucose tolerance in mice. Cell Rep. 21, 1521–1533 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ang, Q. Y. et al. Ketogenic diets alter the gut microbiome resulting in decreased intestinal Th17 cells. Cell 181, 1263–1275 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ge, L. et al. Comparison of dietary macronutrient patterns of 14 popular named dietary programmes for weight and cardiovascular risk factor reduction in adults: systematic review and network meta-analysis of randomised trials. Br. Med. J. 369, m696 (2020).

    Article  Google Scholar 

  48. Koh, A., De Vadder, F., Kovatcheva-Datchary, P. & Bäckhed, F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165, 1332–1345 (2016). This review summarizes the origin and physiological functions of SCFAs.

    Article  CAS  PubMed  Google Scholar 

  49. Sonnenburg, E. D. et al. Diet-induced extinctions in the gut microbiota compound over generations. Nature 529, 212–215 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wastyk, H. C. et al. Gut-microbiota-targeted diets modulate human immune status. Cell 184, 4137–4153 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhao, L. et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science 359, 1151–1156 (2018).

    Article  CAS  PubMed  Google Scholar 

  52. Lancaster, S. M. et al. Global, distinctive, and personal changes in molecular and microbial profiles by specific fibers in humans. Cell Host Microbe 30, 848–862 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gibson, G. R. et al. Expert consensus document: the International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 14, 491–502 (2017).

    Article  PubMed  Google Scholar 

  54. Baxter, N. T. et al. Dynamics of human gut microbiota and short-chain fatty acids in response to dietary interventions with three fermentable fibers. mBio 10, e02566-18 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Deehan, E. C. et al. Precision microbiome modulation with discrete dietary fiber structures directs short-chain fatty acid production. Cell Host Microbe 27, 389–404 (2020).

    Article  CAS  PubMed  Google Scholar 

  56. Chassaing, B. et al. Randomized controlled-feeding study of dietary emulsifier carboxymethylcellulose reveals detrimental impacts on the gut microbiota and metabolome. Gastroenterology 162, 743–756 (2022).

    Article  CAS  PubMed  Google Scholar 

  57. Suez, J. et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature 514, 181–186 (2014). This study demonstrates that non-nutritive artificial sweeteners impacted microbiome composition with negative consequences for metabolic health.

    Article  CAS  PubMed  Google Scholar 

  58. Chassaing, B. et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature 519, 92–96 (2015). This study demonstrates that dietary emulsifiers compromise metabolic health via disruption of the gut microbiota and mucosal barrier.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bian, X. et al. Saccharin induced liver inflammation in mice by altering the gut microbiota and its metabolic functions. Food Chem. Toxicol. 107, 530–539 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Rodriguez-Palacios, A. et al. The artificial sweetener Splenda promotes gut Proteobacteria, dysbiosis, and myeloperoxidase reactivity in Crohn’s disease-like ileitis. Inflamm. Bowel Dis. 24, 1005–1020 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Suez, J. et al. Personalized microbiome-driven effects of non-nutritive sweeteners on human glucose tolerance. Cell 185, 3307–3328 (2022).

    Article  CAS  PubMed  Google Scholar 

  62. Serrano, J. et al. High-dose saccharin supplementation does not induce gut microbiota changes or glucose intolerance in healthy humans and mice. Microbiome 9, 11 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Thomson, P., Santibañez, R., Aguirre, C., Galgani, J. E. & Garrido, D. Short-term impact of sucralose consumption on the metabolic response and gut microbiome of healthy adults. Br. J. Nutr. 122, 856–862 (2019).

    Article  CAS  PubMed  Google Scholar 

  64. Cristofori, F. et al. Anti-inflammatory and immunomodulatory effects of probiotics in gut inflammation: a door to the body. Front. Immunol. 12, 578386 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tao, Y.-W., Gu, Y.-L., Mao, X.-Q., Zhang, L. & Pei, Y.-F. Effects of probiotics on type II diabetes mellitus: a meta-analysis. J. Transl Med. 18, 30 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kocsis, T. et al. Probiotics have beneficial metabolic effects in patients with type 2 diabetes mellitus: a meta-analysis of randomized clinical trials. Sci. Rep. 10, 11787 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Álvarez-Arraño, V. & Martín-Peláez, S. Effects of probiotics and synbiotics on weight loss in subjects with overweight or obesity: a systematic review. Nutrients 13, 3627 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Park, S. & Bae, J.-H. Probiotics for weight loss: a systematic review and meta-analysis. Nutr. Res. 35, 566–575 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Eales, J. et al. Is consuming yoghurt associated with weight management outcomes? Results from a systematic review. Int. J. Obes. 40, 731–746 (2016).

    Article  CAS  Google Scholar 

  70. Lim, S., Moon, J. H., Shin, C. M., Jeong, D. & Kim, B. Effect of Lactobacillus sakei, a probiotic derived from kimchi, on body fat in Koreans with obesity: a randomized controlled study. Endocrinol. Metab. 35, 425–434 (2020).

    Article  CAS  Google Scholar 

  71. Kapp, J. M. & Sumner, W. Kombucha: a systematic review of the empirical evidence of human health benefit. Ann. Epidemiol. 30, 66–70 (2019).

    Article  PubMed  Google Scholar 

  72. Carmody, R. N. et al. Diet dominates host genotype in shaping the murine gut microbiota. Cell Host Microbe 17, 72–84 (2015).

    Article  CAS  PubMed  Google Scholar 

  73. Christensen, L. et al. Prevotella abundance predicts weight loss success in healthy, overweight adults consuming a whole-grain diet ad libitum: a post hoc analysis of a 6-wk randomized controlled trial. J. Nutr. 149, 2174–2181 (2019).

    Article  PubMed  Google Scholar 

  74. Menni, C. et al. Gut microbiome diversity and high-fibre intake are related to lower long-term weight gain. Int. J. Obes. 41, 1099–1105 (2017).

    Article  CAS  Google Scholar 

  75. Jian, C. et al. Gut microbiota predicts body fat change following a low-energy diet: a PREVIEW intervention study. Genome Med. 14, 54 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Foster, K. R., Schluter, J., Coyte, K. Z. & Rakoff-Nahoum, S. The evolution of the host microbiome as an ecosystem on a leash. Nature 548, 43–51 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Carmody, R. N., Sarkar, A. & Reese, A. T. Gut microbiota through an evolutionary lens. Science 372, 462–463 (2021).

    Article  CAS  PubMed  Google Scholar 

  78. Zeevi, D. et al. Personalized nutrition by prediction of glycemic responses. Cell 163, 1079–1094 (2015). This study shows that models incorporating the gut microbiome improved prediction of postprandial glycaemic response.

    Article  CAS  PubMed  Google Scholar 

  79. Johnson, A. J. et al. Daily sampling reveals personalized diet–microbiome associations in humans. Cell Host Microbe 25, 789–802 (2019).

    Article  CAS  PubMed  Google Scholar 

  80. Lai, Z.-L. et al. Fecal microbiota transplantation confers beneficial metabolic effects of diet and exercise on diet-induced obese mice. Sci. Rep. 8, 15625 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Cronin, O. et al. A prospective metagenomic and metabolomic analysis of the impact of exercise and/or whey protein supplementation on the gut microbiome of sedentary adults. mSystems 3, e00044-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Kang, S. S. et al. Diet and exercise orthogonally alter the gut microbiome and reveal independent associations with anxiety and cognition. Mol. Neurodegener. 9, 36 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Mohr, A. E. et al. The athletic gut microbiota. J. Int. Soc. Sports Nutr. 17, 24 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Allen, J. M. et al. Voluntary and forced exercise differentially alters the gut microbiome in C57BL/6J mice. J. Appl. Physiol. 118, 1059–1066 (2015).

    Article  CAS  PubMed  Google Scholar 

  85. Matsumoto, M. et al. Voluntary running exercise alters microbiota composition and increases n-butyrate concentration in the rat cecum. Biosci. Biotechnol. Biochem. 72, 572–576 (2008).

    Article  CAS  PubMed  Google Scholar 

  86. Allen, J. M. et al. Exercise alters gut microbiota composition and function in lean and obese humans. Med. Sci. Sports Exerc. 50, 747–757 (2018).

    Article  PubMed  Google Scholar 

  87. Scheiman, J. et al. Meta-omics analysis of elite athletes identifies a performance-enhancing microbe that functions via lactate metabolism. Nat. Med. 25, 1104–1109 (2019). This study suggests that lactate-consuming, propionate-producing microorganisms positively influence exercise performance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhao, X. et al. Response of gut microbiota to metabolite changes induced by endurance exercise. Front. Microbiol. 9, 765 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Clarke, S. F. et al. Exercise and associated dietary extremes impact on gut microbial diversity. Gut 63, 1913–1920 (2014).

    Article  CAS  PubMed  Google Scholar 

  90. Barton, W. et al. The microbiome of professional athletes differs from that of more sedentary subjects in composition and particularly at the functional metabolic level. Gut 67, 625–633 (2018).

    CAS  PubMed  Google Scholar 

  91. Petersen, L. M. et al. Community characteristics of the gut microbiomes of competitive cyclists. Microbiome 5, 98 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Durk, R. P. et al. Gut microbiota composition is related to cardiorespiratory fitness in healthy young adults. Int. J. Sport. Nutr. Exerc. Metab. 29, 249–253 (2019).

    Article  CAS  PubMed  Google Scholar 

  93. Estaki, M. et al. Cardiorespiratory fitness as a predictor of intestinal microbial diversity and distinct metagenomic functions. Microbiome 4, 42 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Morita, H. et al. Bacteroides uniformis and its preferred substrate, α-cyclodextrin, enhance endurance exercise performance in mice and human males. Sci. Adv. 9, eadd2120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Liu, Y. et al. Gut microbiome fermentation determines the efficacy of exercise for diabetes prevention. Cell Metab. 31, 77–91 (2020).

    Article  CAS  PubMed  Google Scholar 

  96. Bressa, C. et al. Differences in gut microbiota profile between women with active lifestyle and sedentary women. PLoS ONE 12, e0171352 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Munukka, E. et al. Six-week endurance exercise alters gut metagenome that is not reflected in systemic metabolism in over-weight women. Front. Microbiol. 9, 2323 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Carmody, R. N. & Baggish, A. L. Working out the bugs: microbial modulation of athletic performance. Nat. Metab. 1, 658–659 (2019).

    Article  PubMed  Google Scholar 

  99. Hoffman-Goetz, L., Pervaiz, N., Packer, N. & Guan, J. Freewheel training decreases pro- and increases anti-inflammatory cytokine expression in mouse intestinal lymphocytes. Brain Behav. Immun. 24, 1105–1115 (2010).

    Article  CAS  PubMed  Google Scholar 

  100. Ismail, A. S. et al. γδ Intraepithelial lymphocytes are essential mediators of host–microbial homeostasis at the intestinal mucosal surface. Proc. Natl Acad. Sci. USA 108, 8743–8748 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Jeukendrup, A. E. et al. Relationship between gastro-intestinal complaints and endotoxaemia, cytokine release and the acute-phase reaction during and after a long-distance triathlon in highly trained men. Clin. Sci. 98, 47–55 (2000).

    Article  CAS  Google Scholar 

  102. Lira, F. S. et al. Endotoxin levels correlate positively with a sedentary lifestyle and negatively with highly trained subjects. Lipids Health Dis. 9, 82 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Meissner, M. et al. Voluntary wheel running increases bile acid as well as cholesterol excretion and decreases atherosclerosis in hypercholesterolemic mice. Atherosclerosis 218, 323–329 (2011).

    Article  CAS  PubMed  Google Scholar 

  104. Yardeni, T. et al. Host mitochondria influence gut microbiome diversity: a role for ROS. Sci. Signal. 12, eeaw3159 (2019).

    Article  Google Scholar 

  105. Song, B. K., Cho, K. O., Jo, Y., Oh, J. W. & Kim, Y. S. Colon transit time according to physical activity level in adults. J. Neurogastroenterol. Motil. 18, 64–69 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Asnicar, F. et al. Blue poo: impact of gut transit time on the gut microbiome using a novel marker. Gut 70, 1665–1674 (2021).

    Article  CAS  PubMed  Google Scholar 

  107. van Wijck, K. et al. Exercise-induced splanchnic hypoperfusion results in gut dysfunction in healthy men. PLoS ONE 6, e22366 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Murphy, R. M., Watt, M. J. & Febbraio, M. A. Metabolic communication during exercise. Nat. Metab. 2, 805–816 (2020).

    Article  PubMed  Google Scholar 

  109. O’Brien, P. E. et al. Long-term outcomes after bariatric surgery: a systematic review and meta-analysis of weight loss at 10 or more years for all bariatric procedures and a single-centre review of 20-year outcomes after adjustable gastric banding. Obes. Surg. 29, 3–14 (2019).

    Article  PubMed  Google Scholar 

  110. Kong, L.-C. et al. Gut microbiota after gastric bypass in human obesity: increased richness and associations of bacterial genera with adipose tissue genes. Am. J. Clin. Nutr. 98, 16–24 (2013).

    Article  CAS  PubMed  Google Scholar 

  111. Paganelli, F. L. et al. Roux-Y gastric bypass and sleeve gastrectomy directly change gut microbiota composition independent of surgery type. Sci. Rep. 9, 10979 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Li, J. V. et al. Roux-en-Y gastric bypass-induced bacterial perturbation contributes to altered host-bacterial co-metabolic phenotype. Microbiome 9, 139 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Tremaroli, V. et al. Roux-en-Y gastric bypass and vertical banded gastroplasty induce long-term changes on the human gut microbiome contributing to fat mass regulation. Cell Metab. 22, 228–238 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Shen, N. et al. Longitudinal changes of microbiome composition and microbial metabolomics after surgical weight loss in individuals with obesity. Surg. Obes. Relat. Dis. 15, 1367–1373 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Shantavasinkul, P. C., Omotosho, P., Corsino, L., Portenier, D. & Torquati, A. Predictors of weight regain in patients who underwent Roux-en-Y gastric bypass surgery. Surg. Obes. Relat. Dis. 12, 1640–1645 (2016).

    Article  PubMed  Google Scholar 

  116. Gutiérrez-Repiso, C. et al. Gut microbiota specific signatures are related to the successful rate of bariatric surgery. Am. J. Transl Res. 11, 942–952 (2019).

    PubMed  PubMed Central  Google Scholar 

  117. Fouladi, F. et al. The role of the gut microbiota in sustained weight loss following Roux-en-Y gastric bypass surgery. Obes. Surg. 29, 1259–1267 (2019).

    Article  PubMed  Google Scholar 

  118. Spanogiannopoulos, P., Bess, E. N., Carmody, R. N. & Turnbaugh, P. J. The microbial pharmacists within us: a metagenomic view of xenobiotic metabolism. Nat. Rev. Microbiol. 14, 273–287 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Maier, L. et al. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature 555, 623–628 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Wu, H. et al. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat. Med. 23, 850–858 (2017). This study establishes that interactions between metformin and the gut microbiome impact efficacy for diabetes treatment.

    Article  CAS  PubMed  Google Scholar 

  121. Forslund, K. et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528, 262–266 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Zhang, X. et al. Effects of acarbose on the gut microbiota of prediabetic patients: a randomized, double-blind, controlled crossover trial. Diabetes Ther. 8, 293–307 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Balaich, J. et al. The human microbiome encodes resistance to the antidiabetic drug acarbose. Nature 600, 110–115 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Vieira-Silva, S. et al. Statin therapy is associated with lower prevalence of gut microbiota dysbiosis. Nature 581, 310–315 (2020).

    Article  CAS  PubMed  Google Scholar 

  125. Wilmanski, T. et al. Heterogeneity in statin responses explained by variation in the human gut microbiome. Med 3, 388–405 (2022).

    Article  CAS  PubMed  Google Scholar 

  126. Baunwall, S. M. D. et al. Faecal microbiota transplantation for recurrent Clostridioides difficile infection: an updated systematic review and meta-analysis. eClinicalMedicine 29–30, 100642 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Imdad, A. et al. Fecal transplantation for treatment of inflammatory bowel disease. Cochrane Database Syst. Rev. 11, CD012774 (2018).

    PubMed  Google Scholar 

  128. Yu, E. W. et al. Fecal microbiota transplantation for the improvement of metabolism in obesity: the FMT-TRIM double-blind placebo-controlled pilot trial. PLoS Med. 17, e1003051 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Leong, K. S. W. et al. Effects of fecal microbiome transfer in adolescents with obesity: the gut bugs randomized controlled trial. JAMA Netw. Open 3, e2030415 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Mocanu, V. et al. Fecal microbial transplantation and fiber supplementation in patients with severe obesity and metabolic syndrome: a randomized double-blind, placebo-controlled phase 2 trial. Nat. Med. 27, 1272–1279 (2021).

    Article  CAS  PubMed  Google Scholar 

  131. Rinott, E. et al. Effects of diet-modulated autologous fecal microbiota transplantation on weight regain. Gastroenterology 160, 158–173 (2021). This study demonstrates the potential for self-faecal transplant combined with diet to improve the maintenance of weight loss.

    Article  CAS  PubMed  Google Scholar 

  132. Rinott, E. et al. Autologous fecal microbiota transplantation can retain the metabolic achievements of dietary interventions. Eur. J. Intern. Med. 92, 17–23 (2021).

    Article  CAS  PubMed  Google Scholar 

  133. Plovier, H. et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat. Med. 23, 107–113 (2017).

    Article  CAS  PubMed  Google Scholar 

  134. Depommier, C. et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat. Med. 25, 1096–1103 (2019). This human intervention study shows that daily A. muciniphila supplementation had beneficial effects on metabolic health.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Yoon, H. S. et al. Akkermansia muciniphila secretes a glucagon-like peptide-1-inducing protein that improves glucose homeostasis and ameliorates metabolic disease in mice. Nat. Microbiol. 6, 563–573 (2021).

    Article  CAS  PubMed  Google Scholar 

  136. Bae, M. et al. Akkermansia muciniphila phospholipid induces homeostatic immune responses. Nature 608, 168–173 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Beresford-Jones, B. S. et al. The mouse gastrointestinal bacteria catalogue enables translation between the mouse and human gut microbiotas via functional mapping. Cell Host Microbe 30, 124–138 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K. & Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 489, 220–230 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. David, L. A. et al. Host lifestyle affects human microbiota on daily timescales. Genome Biol. 15, R89 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Arnold, J. W., Roach, J. & Azcarate-Peril, M. A. Emerging technologies for gut microbiome research. Trends Microbiol. 24, 887–901 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Yu, H. et al. The contributions of human mini-intestines to the study of intestinal physiology and pathophysiology. Annu. Rev. Physiol. 79, 291–312 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Karcher, N. et al. Genomic diversity and ecology of human-associated Akkermansia species in the gut microbiome revealed by extensive metagenomic assembly. Genome Biol. 22, 209 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Liu, Q. et al. Akkermansia muciniphila exerts strain-specific effects on DSS-induced ulcerative colitis in mice. Front. Cell. Infect. Microbiol. 11, 698914 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Zimmermann, M., Zimmermann-Kogadeeva, M., Wegmann, R. & Goodman, A. L. Mapping human microbiome drug metabolism by gut bacteria and their genes. Nature 570, 462–467 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Haiser, H. J. et al. Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta. Science 341, 295–298 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Wallace, B. D. et al. Alleviating cancer drug toxicity by inhibiting a bacterial enzyme. Science 330, 831–835 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Maini Rekdal, V., Bess, E. N., Bisanz, J. E., Turnbaugh, P. J. & Balskus, E. P. Discovery and inhibition of an interspecies gut bacterial pathway for Levodopa metabolism. Science 364, eaau6323 (2019).

    Article  PubMed  Google Scholar 

  148. Gough, E. K. et al. Linear growth faltering in infants is associated with Acidaminococcus sp. and community-level changes in the gut microbiota. Microbiome 3, 24 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Raman, A. S. et al. A sparse covarying unit that describes healthy and impaired human gut microbiota development. Science 365, eaau4735 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Gehrig, J. L. et al. Effects of microbiota-directed foods in gnotobiotic animals and undernourished children. Science 365, eaau4732 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Chen, R. Y. et al. A microbiota-directed food intervention for undernourished children. N. Engl. J. Med. 384, 1517–1528 (2021). This trial shows that a microbiota-targeted dietary intervention could improve health in undernourished children.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Semova, I. et al. Microbiota regulate intestinal absorption and metabolism of fatty acids in the zebrafish. Cell Host Microbe 12, 277–288 (2012).

    Article  CAS  PubMed  Google Scholar 

  153. Martinez-Guryn, K. et al. Small intestine microbiota regulate host digestive and absorptive adaptive responses to dietary lipids. Cell Host Microbe 23, 458–469 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Chadaideh, K. S. & Carmody, R. N. Host–microbial interactions in the metabolism of different dietary fats. Cell Metab. 33, 857–872 (2021).

    Article  CAS  PubMed  Google Scholar 

  155. Carmody, R. N. & Wrangham, R. W. The energetic significance of cooking. J. Hum. Evol. 57, 379–391 (2009).

    Article  PubMed  Google Scholar 

  156. Carmody, R. N., Weintraub, G. S. & Wrangham, R. W. Energetic consequences of thermal and nonthermal food processing. Proc. Natl Acad. Sci. USA 108, 19199–19203 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Cummings, J. H. & Macfarlane, G. T. Role of intestinal bacteria in nutrient metabolism. Clin. Nutr. 16, 3–11 (1997).

    Article  Google Scholar 

  158. McNeil, N. I. The contribution of the large intestine to energy supplies in man. Am. J. Clin. Nutr. 39, 338–342 (1984).

    Article  CAS  PubMed  Google Scholar 

  159. den Besten, G. et al. Short-chain fatty acids protect against high-fat diet-induced obesity via a PPARγ-dependent switch from lipogenesis to fat oxidation. Diabetes 64, 2398–2408 (2015).

    Article  Google Scholar 

  160. Lu, Y. et al. Short chain fatty acids prevent high-fat-diet-induced obesity in mice by regulating G protein-coupled receptors and gut microbiota. Sci. Rep. 6, 37589 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. van der Hee, B. & Wells, J. M. Microbial regulation of host physiology by short-chain fatty acids. Trends Microbiol. 29, 700–712 (2021).

    Article  PubMed  Google Scholar 

  162. Hong, Y.-H. et al. Acetate and propionate short chain fatty acids stimulate adipogenesis via GPCR43. Endocrinology 146, 5092–5099 (2005).

    Article  CAS  PubMed  Google Scholar 

  163. Jocken, J. W. E. et al. Short-chain fatty acids differentially affect intracellular lipolysis in a human white adipocyte model. Front. Endocrinol. 8, 372 (2017).

    Article  Google Scholar 

  164. Jia, Y. et al. Butyrate stimulates adipose lipolysis and mitochondrial oxidative phosphorylation through histone hyperacetylation-associated β3-adrenergic receptor activation in high-fat diet-induced obese mice. Exp. Physiol. 102, 273–281 (2017).

    Article  PubMed  Google Scholar 

  165. Gao, Z. et al. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 58, 1509–1517 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Cummings, J. H. & Macfarlane, G. T. The control and consequences of bacterial fermentation in the human colon. J. Appl. Bacteriol. 70, 443–459 (1991).

    Article  CAS  PubMed  Google Scholar 

  167. De Vadder, F. et al. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 156, 84–96 (2014).

    Article  PubMed  Google Scholar 

  168. Kondo, T., Kishi, M., Fushimi, T. & Kaga, T. Acetic acid upregulates the expression of genes for fatty acid oxidation enzymes in liver to suppress body fat accumulation. J. Agric. Food Chem. 57, 5982–5986 (2009).

    Article  CAS  PubMed  Google Scholar 

  169. Sahuri-Arisoylu, M. et al. Reprogramming of hepatic fat accumulation and ‘browning’ of adipose tissue by the short-chain fatty acid acetate. Int. J. Obes. 40, 955–963 (2016).

    Article  CAS  Google Scholar 

  170. Sinal, C. J. et al. Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis. Cell 102, 731–744 (2000).

    Article  CAS  PubMed  Google Scholar 

  171. Ridlon, J. M., Kang, D. J., Hylemon, P. B. & Bajaj, J. S. Bile acids and the gut microbiome. Curr. Opin. Gastroenterol. 30, 332–338 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Pathak, P. et al. Intestine farnesoid X receptor agonist and the gut microbiota activate G-protein bile acid receptor-1 signaling to improve metabolism. Hepatology 68, 1574–1588 (2018).

    Article  CAS  PubMed  Google Scholar 

  173. Chambers, E. S. et al. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut 64, 1744–1754 (2015).

    Article  CAS  PubMed  Google Scholar 

  174. Goswami, C., Iwasaki, Y. & Yada, T. Short-chain fatty acids suppress food intake by activating vagal afferent neurons. J. Nutr. Biochem. 57, 130–135 (2018).

    Article  CAS  PubMed  Google Scholar 

  175. Tolhurst, G. et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 61, 364–371 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Psichas, A. et al. The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents. Int. J. Obes. 39, 424–429 (2015).

    Article  CAS  Google Scholar 

  177. Frost, G. et al. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat. Commun. 5, 3611 (2014).

    Article  CAS  PubMed  Google Scholar 

  178. Hsiao, W. W. L., Metz, C., Singh, D. P. & Roth, J. The microbes of the intestine: an introduction to their metabolic and signaling capabilities. Endocrinol. Metab. Clin. North. Am. 37, 857–871 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Strandwitz, P. Neurotransmitter modulation by the gut microbiota. Brain Res. 1693, 128–133 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Yano, J. M. et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161, 264–276 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Heijtz, R. D. et al. Normal gut microbiota modulates brain development and behavior. Proc. Natl Acad. Sci. USA 108, 3047–3052 (2011).

    Article  CAS  PubMed Central  Google Scholar 

  182. Swartz, T. D., Duca, F. A., de Wouters, T., Sakar, Y. & Covasa, M. Up-regulation of intestinal type 1 taste receptor 3 and sodium glucose luminal transporter-1 expression and increased sucrose intake in mice lacking gut microbiota. Br. J. Nutr. 107, 621–630 (2012).

    Article  CAS  PubMed  Google Scholar 

  183. Duca, F. A., Swartz, T. D., Sakar, Y. & Covasa, M. Increased oral detection, but decreased intestinal signaling for fats in mice lacking gut microbiota. PLoS ONE 7, e39748 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. de Wouters d’Oplinter, A. et al. Gut microbes participate in food preference alterations during obesity. Gut Microbes 13, 1959242 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Trevelline, B. K. & Kohl, K. D. The gut microbiome influences host diet selection behavior. Proc. Natl Acad. Sci. USA 119, e2117537119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Alcock, J., Maley, C. C. & Aktipis, C. A. Is eating behavior manipulated by the gastrointestinal microbiota? Evolutionary pressures and potential mechanisms. Bioessays 36, 940–949 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Leitão-Gonçalves, R. et al. Commensal bacteria and essential amino acids control food choice behavior and reproduction. PLoS Biol. 15, e2000862 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Hotamisligil, G. S. Inflammation and metabolic disorders. Nature 444, 860–867 (2006).

    Article  CAS  PubMed  Google Scholar 

  189. Renz, H. & Skevaki, C. Early life microbial exposures and allergy risks: opportunities for prevention. Nat. Rev. Immunol. 21, 177–191 (2021).

    Article  CAS  PubMed  Google Scholar 

  190. Pronovost, G. N. & Hsiao, E. Y. Perinatal interactions between the microbiome, immunity, and neurodevelopment. Immunity 50, 18–36 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Cani, P. D. et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56, 1761–1772 (2007).

    Article  CAS  PubMed  Google Scholar 

  192. Vijay-Kumar, M. et al. Metabolic syndrome and altered gut microbiota in mice lacking toll-like receptor 5. Science 328, 228–231 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Camilleri, M. Leaky gut: mechanisms, measurement and clinical implications in humans. Gut 68, 1516–1526 (2019).

    Article  CAS  PubMed  Google Scholar 

  194. Rohr, M. W., Narasimhulu, C. A., Rudeski-Rohr, T. A. & Parthasarathy, S. Negative effects of a high-fat diet on intestinal permeability: a review. Adv. Nutr. 11, 77–91 (2020).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Science Foundation (BCS-1919892 and BCS-2142073) and William F. Milton Fund to R.N.C. and from the National Institute of Allergy and Infectious Disease (R00AI47165) to J.E.B.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Rachel N. Carmody or Jordan E. Bisanz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Microbiology thanks Andrew Gewirtz, Emanuel Canfora and Yolanda Sanz for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

α-Diversity

Diversity of microbial taxa within a given sample; distinct from β-diversity, which indexes differences in microbiome composition between samples.

Energy balance

The balance between energy intake and expenditure crucial in weight maintenance.

Faecal microbiota transplantation

(FMT). The experimental or therapeutic administration of preparations of faecal material intended to transfer microbiota-mediated effects to a recipient.

Germ-free animals

Animals lacking resident microorganisms, which may be derived through sterile surgical birth followed by rearing and propagation under strictly sterile conditions.

Gnotobiotic mice

Animals born without microorganisms (that is, germ-free) that may be colonized to study effects of microbial colonization on host physiology.

Gut barrier

Multilayered structure (consisting of mucus with embedded antimicrobial peptides and secretory IgA, epithelial cells and their cell-to-cell junctions, and the immune element-rich lamina propria) that simultaneously allows for nutrient absorption while restricting contact with the gut microbiota and its products.

Ketogenic diet

A protein-adequate diet marked by high-fat and very-low (<10% kcal) carbohydrate intake that forces the metabolism of stored fat into ketones.

Low-grade inflammation

Immunometabolic state, marked by the chronic production of low-level inflammatory factors, that bidirectionally potentiates metabolic disease.

Mediterranean diet

A diet emphasizing plant-based ingredients and unsaturated fats (mainly olive oil), moderate amounts of seafood and poultry and minimal amounts of refined carbohydrates and red meat.

Meta-analysis

Analysis using the data derived from multiple studies to achieve greater sample size and uncover reproducible findings.

Metabolic syndrome

A cluster of physiological conditions — including excess visceral fat, high fasting glucose, high triglycerides, low HDL cholesterol and/or high blood pressure — that can together increase the risk of diabetes, heart disease and stroke.

Microbiome

The genetic content and products of a community of microorganisms.

Microbiome diversity

Measurements of the number of microorganisms/genes present within an individual and/or how evenly they are distributed.

Microbiome-wide association studies

Studies employing a statistical approach that mines microbiome and host phenotype datasets to identify specific microbial taxa or microbial genes that are associated with specific host traits; also known as metagenome-wide association studies.

Microbiota

A community of microorganisms inclusive of bacteria, fungi, viruses, archaea and protists.

Roux-en-Y gastric bypass

(RYGB). Bariatric surgery promoting weight loss, in which a small pouch of stomach is connected to the jejunum, thereby restricting food intake and bypassing digestion in the duodenum.

Short-chain fatty acid

(SCFA). Microbial metabolite resulting from fermentation with wide-ranging effects on host physiology.

Undernutrition

A state of deficient energy intake characterized by stunting (low height-for-age), wasting (low weight-for-height) and/or underweight (low weight-for-age) that increases the risk of morbidity and mortality, especially in children.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carmody, R.N., Bisanz, J.E. Roles of the gut microbiome in weight management. Nat Rev Microbiol 21, 535–550 (2023). https://doi.org/10.1038/s41579-023-00888-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41579-023-00888-0

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research