Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Bacterial defences: mechanisms, evolution and antimicrobial resistance

Abstract

Throughout their evolutionary history, bacteria have faced diverse threats from other microorganisms, including competing bacteria, bacteriophages and predators. In response to these threats, they have evolved sophisticated defence mechanisms that today also protect bacteria against antibiotics and other therapies. In this Review, we explore the protective strategies of bacteria, including the mechanisms, evolution and clinical implications of these ancient defences. We also review the countermeasures that attackers have evolved to overcome bacterial defences. We argue that understanding how bacteria defend themselves in nature is important for the development of new therapies and for minimizing resistance evolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Bacteria face diverse threats from competitors, viruses and predators.
Fig. 2: Bacteria have evolved multiple lines of defence against biotic threats.
Fig. 3: Bacteria mount defences in response to diverse cues.
Fig. 4: Bacteria innovate, acquire and accumulate defences.
Fig. 5: Counter-adaptations to bacterial defences by competitors, phages and predators.

Similar content being viewed by others

References

  1. Xavier, J. C. et al. The metabolic network of the last bacterial common ancestor. Commun. Biol. 4, 413 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Foster, K. R. & Bell, T. Competition, not cooperation, dominates interactions among culturable microbial species. Curr. Biol. 22, 1845–1850 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Nadell, C. D., Drescher, K. & Foster, K. R. Spatial structure, cooperation and competition in biofilms. Nat. Rev. Microbiol. 14, 589–600 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Peterson, S. B., Bertolli, S. K. & Mougous, J. D. The central role of interbacterial antagonism in bacterial life. Curr. Biol. 30, R1203–R1214 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Palmer, J. D. & Foster, K. R. Bacterial species rarely work together. Science 376, 581–582 (2022).

    Article  CAS  PubMed  Google Scholar 

  6. Chevallereau, A., Pons, B. J., van Houte, S. & Westra, E. R. Interactions between bacterial and phage communities in natural environments. Nat. Rev. Microbiol. 20, 49–62 (2021).

    Article  PubMed  Google Scholar 

  7. Pérez, J., Moraleda-Muñoz, A., Marcos-Torres, F. J. & Muñoz-Dorado, J. Bacterial predation: 75 years and counting! Environ. Microbiol. 18, 766–779 (2016).

    Article  PubMed  Google Scholar 

  8. Wein, T. & Sorek, R. Bacterial origins of human cell-autonomous innate immune mechanisms. Nat. Rev. Immunol. 22, 629–638 (2022).

    Article  CAS  PubMed  Google Scholar 

  9. Brockhurst, M. A. et al. Assessing evolutionary risks of resistance for new antimicrobial therapies. Nat. Ecol. Evol. 3, 515–517 (2019).

    Article  PubMed  Google Scholar 

  10. Granato, E. T., Meiller-Legrand, T. A. & Foster, K. R. The evolution and ecology of bacterial warfare. Curr. Biol. 29, R521–R537 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Clardy, J., Fischbach, M. A. & Currie, C. R. The natural history of antibiotics. Curr. Biol. 19, R437 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hassan, M., Kjos, M., Nes, I. F., Diep, D. B. & Lotfipour, F. Natural antimicrobial peptides from bacteria: characteristics and potential applications to fight against antibiotic resistance. J. Appl. Microbiol. 113, 723–736 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Riley, M. A. & Wertz, J. E. Bacteriocin diversity: ecological and evolutionary perspectives. Biochimie 84, 357–364 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Vacheron, J., Heiman, C. M. & Keel, C. Live cell dynamics of production, explosive release and killing activity of phage tail-like weapons for Pseudomonas kin exclusion. Commun. Biol. 4, 87 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ho, B. T., Dong, T. G. & Mekalanos, J. J. A view to a kill: the bacterial type VI secretion system. Cell Host Microbe 15, 9–21 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Nakayama, K. et al. The R-type pyocin of Pseudomonas aeruginosa is related to P2 phage, and the F-type is related to lambda phage. Mol. Microbiol. 38, 213–231 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Davies, E. V. et al. Temperate phages both mediate and drive adaptive evolution in pathogen biofilms. Proc. Natl Acad. Sci. USA 113, 8266–8271 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sharp, C., Bray, J., Housden, N. G., Maiden, M. C. J. & Kleanthous, C. Diversity and distribution of nuclease bacteriocins in bacterial genomes revealed using hidden Markov models. PLoS Comput. Biol. 13, e1005652 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Cascales, E. et al. Colicin biology. Microbiol. Mol. Biol. Rev. 71, 158–229 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chikindas, M. L., Weeks, R., Drider, D., Chistyakov, V. A. & Dicks, L. M. Functions and emerging applications of bacteriocins. Curr. Opin. Biotechnol. 49, 23–28 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. LaCourse, K. D. et al. Conditional toxicity and synergy drive diversity among antibacterial effectors. Nat. Microbiol. 3, 440–446 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Smith, W. P. J. et al. The evolution of the type VI secretion system as a disintegration weapon. PLoS Biol. 18, e3000720 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kohanski, M. A., Dwyer, D. J. & Collins, J. J. How antibiotics kill bacteria: from targets to networks. Nat. Rev. Microbiol. 8, 423–435 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Boolchandani, M., D’Souza, A. W. & Dantas, G. Sequencing-based methods and resources to study antimicrobial resistance. Nat. Rev. Genet. 20, 356–370 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Rohwer, F. Global phage diversity. Cell 113, 141 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Suttle, C. A. The significance of viruses to mortality in aquatic microbial communities. Microb. Ecol. 28, 237–243 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Secor, P. R. & Dandekar, A. A. More than simple parasites: the sociobiology of bacteriophages and their bacterial hosts. mBio 11, e00041 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Howard-Varona, C., Hargreaves, K. R., Abedon, S. T. & Sullivan, M. B. Lysogeny in nature: mechanisms, impact and ecology of temperate phages. ISME J. 11, 1511–1520 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Clokie, M. R. J., Millard, A. D., Letarov, A. V. & Heaphy, S. Phages in nature. Bacteriophage 1, 31–45 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Fernandes, S. & São-José, C. Enzymes and mechanisms employed by tailed bacteriophages to breach the bacterial cell barriers. Viruses 10, 396 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sausset, R., Petit, M. A., Gaboriau-Routhiau, V. & De Paepe, M. New insights into intestinal phages. Mucosal Immunol. 13, 205–215 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Muñoz-Dorado, J., Marcos-Torres, F. J., García-Bravo, E., Moraleda-Muñoz, A. & Pérez, J. Myxobacteria: moving, killing, feeding, and surviving together. Front. Microbiol. 7, 781 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Laloux, G. Shedding light on the cell biology of the predatory bacterium Bdellovibrio bacteriovorus. Front. Microbiol. 10, 3136 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bratanis, E., Andersson, T., Lood, R. & Bukowska-Faniband, E. Biotechnological potential of Bdellovibrio and like organisms and their secreted enzymes. Front. Microbiol. 11, 662 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Danczak, R. E. et al. Members of the candidate phyla radiation are functionally differentiated by carbon-and nitrogen-cycling capabilities. Microbiome 5, 112 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bor, B. et al. Rapid evolution of decreased host susceptibility drives a stable relationship between ultrasmall parasite TM7x and its bacterial host. Proc. Natl Acad. Sci. USA 115, 12277–12282 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Blair, J. M. A., Webber, M. A., Baylay, A. J., Ogbolu, D. O. & Piddock, L. J. V. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 13, 42–51 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Wilson, D. N., Hauryliuk, V., Atkinson, G. C. & O’Neill, A. J. Target protection as a key antibiotic resistance mechanism. Nat. Rev. Microbiol. 18, 637–648 (2020).

    Article  CAS  PubMed  Google Scholar 

  39. Larsen, J. et al. Emergence of methicillin resistance predates the clinical use of antibiotics. Nature 602, 135–141 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fan, X. Y. et al. Oxidation of dCTP contributes to antibiotic lethality in stationary-phase mycobacteria. Proc. Natl Acad. Sci. USA 115, 2210–2215 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dong, T. G. et al. Generation of reactive oxygen species by lethal attacks from competing microbes. Proc. Natl Acad. Sci. USA 112, 2181–2186 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wozniak, K. J. & Simmons, L. A. Bacterial DNA excision repair pathways. Nat. Rev. Microbiol. 20, 465–477 (2022).

    Article  CAS  PubMed  Google Scholar 

  43. Kisker, C., Kuper, J. & Van Houten, B. Prokaryotic nucleotide excision repair. Cold Spring Harb. Perspect. Biol. 5, a012591 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Maviza, T. P. et al. RtcB2-PrfH operon protects E. coli ATCC25922 strain from colicin E3 toxin. Int. J. Mol. Sci. 23, 6453 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Joly, N. et al. Managing membrane stress: the phage shock protein (Psp) response, from molecular mechanisms to physiology. FEMS Microbiol. Rev. 34, 797–827 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Hersch, S. J. et al. Envelope stress responses defend against type six secretion system attacks independently of immunity proteins. Nat. Microbiol. 5, 706–714 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Munita, J. M. & Arias, C. A. Mechanisms of antibiotic resistance. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.VMBF-0016-2015.

  48. Yang, X., Long, M. & Shen, X. Effector–immunity pairs provide the T6SS nanomachine its offensive and defensive capabilities. Molecules 23, 1009 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Aoki, S. K. et al. A widespread family of polymorphic contact-dependent toxin delivery systems in bacteria. Nature 468, 439–442 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Coyne, M. J., Zitomersky, N. L., McGuire, A. M., Earl, A. M. & Comstock, L. E. Evidence of extensive DNA transfer between bacteroidales species within the human gut. MBio 5, e01305-14 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ross, B. D. et al. Human gut bacteria contain acquired interbacterial defence systems. Nat 575, 224–228 (2019).

    Article  CAS  Google Scholar 

  52. Bush, K. Past and present perspectives on β-lactamases. Antimicrobial. Agents Chemother. 62, e01076-18 (2018).

    Article  Google Scholar 

  53. Tock, M. R. & Dryden, D. T. F. The biology of restriction and anti-restriction. Curr. Opin. Microbiol. 8, 466–472 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Ofir, G. et al. DISARM is a widespread bacterial defence system with broad anti-phage activities. Nat. Microbiol. 3, 90–98 (2018).

    Article  CAS  PubMed  Google Scholar 

  55. Wang, L., Jiang, S., Deng, Z., Dedon, P. C. & Chen, S. DNA phosphorothioate modification-a new multi-functional epigenetic system in bacteria. FEMS Microbiol. Rev. 43, 109–122 (2019).

    Article  CAS  PubMed  Google Scholar 

  56. Barrangou, R. et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709–1712 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Westra, E. R. & Levin, B. R. It is unclear how important CRISPR-Cas systems are for protecting natural populations of bacteria against infections by mobile genetic elements. Proc. Natl Acad. Sci. USA 117, 27777–27785 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lisitskaya, L., Aravin, A. A. & Kulbachinskiy, A. DNA interference and beyond: structure and functions of prokaryotic Argonaute proteins. Nat. Commun. 9, 5165 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Gupta, R. S. Origin of diderm (Gram-negative) bacteria: antibiotic selection pressure rather than endosymbiosis likely led to the evolution of bacterial cells with two membranes. Antonie van Leeuwenhoek 100, 171–182 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Dy, R. L., Richter, C., Salmond, G. P. C. & Fineran, P. C. Remarkable mechanisms in microbes to resist phage infections. Annu. Rev. Virol. 1, 307–331 (2014).

    Article  PubMed  Google Scholar 

  61. Vidakovic, L., Singh, P. K., Hartmann, R., Nadell, C. D. & Drescher, K. Dynamic biofilm architecture confers individual and collective mechanisms of viral protection. Nat. Microbiol. 3, 26–31 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Toska, J., Ho, B. T. & Mekalanos, J. J. Exopolysaccharide protects Vibrio cholerae from exogenous attacks by the type 6 secretion system. Proc. Natl Acad. Sci. USA 115, 7997–8002 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Flaugnatti, N. et al. Human commensal gut Proteobacteria withstand type VI secretion attacks through immunity protein-independent mechanisms. Nat. Commun. 12, 5751 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bharat, T. A. M. et al. Structure of the hexagonal surface layer on Caulobacter crescentus cells. Nat. Microbiol. 2, 17059 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Koval, S. F. & Hynes, S. H. Effect of paracrystalline protein surface layers on predation by Bdellovibrio bacteriovorus. J. Bacteriol. 173, 2244–2249 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Duncan, M. C. et al. Vibrio cholerae motility exerts drag force to impede attack by the bacterial predator Bdellovibrio bacteriovorus. Nat. Commun. 9, 4757 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Gao, L. & van der Veen, S. Role of outer membrane vesicles in bacterial physiology and host cell interactions. Infect. Microbes Dis. 2, 3–9 (2020).

    Article  CAS  Google Scholar 

  68. Manning, A. J. & Kuehn, M. J. Contribution of bacterial outer membrane vesicles to innate bacterial defense. BMC Microbiol 11, 258 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Webber, M. A. The importance of efflux pumps in bacterial antibiotic resistance. J. Antimicrob. Chemother. 51, 9–11 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Saier, M. H. et al. Evolutionary origins of multidrug and drug-specific efflux pumps in bacteria. FASEB J. 12, 265–274 (1998).

    CAS  PubMed  Google Scholar 

  71. Du, D. et al. Multidrug efflux pumps: structure, function and regulation. Nat. Rev. Microbiol. 16, 523–539 (2018).

    Article  CAS  PubMed  Google Scholar 

  72. Tahlan, K. et al. Initiation of actinorhodin export in Streptomyces coelicolor. Mol. Microbiol. 63, 951–961 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Wadhwa, N. & Berg, H. C. Bacterial motility: machinery and mechanisms. Nat. Rev. Microbiol. 20, 161–173 (2021).

    Article  PubMed  Google Scholar 

  74. Matz, C. & Jürgens, K. High motility reduces grazing mortality of planktonic bacteria. Appl. Environ. Microbiol. 71, 921–929 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lambert, C. et al. Characterizing the flagellar filament and the role of motility in bacterial prey-penetration by Bdellovibrio bacteriovorus. Mol. Microbiol. 60, 274–286 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bertozzi Silva, J., Storms, Z. & Sauvageau, D. Host receptors for bacteriophage adsorption. FEMS Microbiol. Lett. 363, 2 (2016).

    Article  Google Scholar 

  77. Li, X., Gonzalez, F., Esteves, N., Scharf, B. E. & Chen, J. Formation of phage lysis patterns and implications on co-propagation of phages and motile host bacteria. PLoS Comput. Biol. 16, e1007236 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Granato, E. T., Smith, W. P. J. & Foster, K. R. Collective protection against the type VI secretion system in bacteria. Preprint at bioRxiv https://doi.org/10.1101/2022.09.12.507624 (2022).

    Article  Google Scholar 

  79. Cornforth, D. M. & Foster, K. R. Competition sensing: the social side of bacterial stress responses. Nat. Rev. Microbiol. 11, 285–293 (2013).

    Article  CAS  PubMed  Google Scholar 

  80. Oliveira, N. M. et al. Biofilm formation as a response to ecological competition. PLoS Biol. 13, e1002191 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Lories, B. et al. Biofilm bacteria use stress responses to detect and respond to competitors. Curr. Biol. 30, 1231–1244.e4 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sadiq, F. A. et al. Phenotypic and genetic heterogeneity within biofilms with particular emphasis on persistence and antimicrobial tolerance. Future Microbiol. 12, 1087–1107 (2017).

    Article  CAS  PubMed  Google Scholar 

  83. Krishna Kumar, R. et al. Droplet printing reveals the importance of micron-scale structure for bacterial ecology. Nat. Commun. 12, 857 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Bagge, N. et al. Dynamics and spatial distribution of β-lactamase expression in Pseudomonas aeruginosa biofilms. Antimicrob. Agents Chemother. 48, 1168–1174 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Billings, N. et al. The extracellular matrix component psl provides fast-acting antibiotic defense in Pseudomonas aeruginosa biofilms. PLoS Pathog. 9, e1003526 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wucher, B. R., Elsayed, M., Adelman, J. S., Kadouri, D. E. & Nadell, C. D. Bacterial predation transforms the landscape and community assembly of biofilms. Curr. Biol. 31, 2643–2651 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Xavier, J. B. & Foster, K. R. Cooperation and conflict in microbial biofilms. Proc. Natl Acad. Sci. USA 104, 876–881 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Bond, M. C., Vidakovic, L., Singh, P. K., Drescher, K. & Nadell, C. D. Matrix-trapped viruses can prevent invasion of bacterial biofilms by colonizing cells. eLife 10, e65355 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Arnoldini, M. et al. Bistable expression of virulence genes in Salmonella leads to the formation of an antibiotic-tolerant subpopulation. PLoS Biol. 12, e1001928 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Łapińska, U. et al. Fast bacterial growth reduces antibiotic accumulation and efficacy. eLife 11, e74062 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Williamson, K. S. et al. Heterogeneity in Pseudomonas aeruginosa biofilms includes expression of ribosome hibernation factors in the antibiotic-tolerant subpopulation and hypoxia-induced stress response in the metabolically active population. J. Bacteriol. 194, 2062–2073 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Balaban, N. Q., Merrin, J., Chait, R., Kowalik, L. & Leibler, S. Bacterial persistence as a phenotypic switch. Science 305, 1622–1625 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Van Den Bergh, B. et al. Frequency of antibiotic application drives rapid evolutionary adaptation of Escherichia coli persistence. Nat. Microbiol. 1, 16020 (2016).

    Article  PubMed  Google Scholar 

  94. Drebes Dörr, N. C. & Blokesch, M. Interbacterial competition and anti‐predatory behaviour of environmental Vibrio cholerae strains. Environ. Microbiol. 22, 4485–4504 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Basler, M., Ho, B. T. & Mekalanos, J. J. Tit-for-Tat: type VI secretion system counterattack during bacterial cell-cell interactions. Cell 152, 884–894 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kamal, F. et al. Differential cellular response to translocated toxic effectors and physical penetration by the type VI secretion system. Cell Rep. 31, 107766 (2020).

    Article  CAS  PubMed  Google Scholar 

  97. Rendueles, O., Amherd, M. & Velicer, G. J. Positively frequency-dependent interference competition maintains diversity and pervades a natural population of cooperative microbes. Curr. Biol. 25, 1673–1681 (2015).

    Article  CAS  PubMed  Google Scholar 

  98. Gordon, D. M. & Riley, M. A. A theoretical and empirical investigation of the invasion dynamics of colicinogeny. Microbiology 145, 655–661 (1999).

    Article  CAS  PubMed  Google Scholar 

  99. Booth, S. C., Smith, W. P. J. & Foster, K. R. Bows and swords: why bacteria carry short and long-range weapons. Preprint at bioRxiv https://doi.org/10.1101/2022.10.13.512033 (2022).

    Article  Google Scholar 

  100. Mavridou, D. A. I., Gonzalez, D., Kim, W., West, S. A. & Correspondence, K. R. F. Bacteria use collective behavior to generate diverse combat strategies. Curr. Biol. 28, 345–355.e4 (2018).

    Article  CAS  PubMed  Google Scholar 

  101. Gonzalez, D., Sabnis, A., Foster, K. R. & Mavridou, D. A. I. Costs and benefits of provocation in bacterial warfare. Proc. Natl Acad. Sci. USA 115, 7593–7598 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lopatina, A., Tal, N. & Sorek, R. Abortive infection: bacterial suicide as an antiviral immune strategy. Annu. Rev. Virol. 7, 371–384 (2020).

    Article  CAS  PubMed  Google Scholar 

  103. Johnson, A. G. et al. Bacterial gasdermins reveal an ancient mechanism of cell death. Science 375, 221–225 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Cohen, D. et al. Cyclic GMP–AMP signalling protects bacteria against viral infection. Nature 574, 691–695 (2019).

    Article  CAS  PubMed  Google Scholar 

  105. Koga, M., Otsuka, Y., Lemire, S. & Yonesaki, T. Escherichia coli rnlA and rnlB compose a novel toxin–antitoxin system. Genetics 187, 123–130 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Watson, B. N. J. et al. Type I-F CRISPR-Cas resistance against virulent phages results in abortive infection and provides population-level immunity. Nat. Commun. 10, 5526 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Gao, L. et al. Diverse enzymatic activities mediate antiviral immunity in prokaryotes. Science 369, 1077 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ka, D., Oh, H., Park, E., Kim, J. H. & Bae, E. Structural and functional evidence of bacterial antiphage protection by Thoeris defense system via NAD+ degradation. Nat. Commun. 11, 2816 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Doron, S. et al. Systematic discovery of antiphage defense systems in the microbial pangenome. Science 359, eaar4120 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Geller, A. M. et al. The extracellular contractile injection system is enriched in environmental microbes and associates with numerous toxins. Nat. Commun. 12, 3743 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Granato, E. T. & Foster, K. R. The evolution of mass cell suicide in bacterial warfare. Curr. Biol. 30, 2836–2843.e3 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Niehus, R., Oliveira, N. M., Li, A., Fletcher, A. G. & Foster, K. R. The evolution of strategy in bacterial warfare via the regulation of bacteriocins and antibiotics. eLife https://doi.org/10.7554/eLife.69756.

  113. Boor, K. J. Bacterial stress responses: what doesn’t kill them can make them stronger. PLoS Biol. 4, 0018–0020 (2006).

    Article  CAS  Google Scholar 

  114. Shin, J. H., Singh, A. K., Cheon, D. J. & Roe, J. H. Activation of the SoxR regulon in Streptomyces coelicolor by the extracellular form of the pigmented antibiotic actinorhodin. J. Bacteriol. 193, 75–81 (2011).

    Article  CAS  PubMed  Google Scholar 

  115. Smith, W. P. J. et al. The evolution of tit-for-tat in bacteria via the type VI secretion system. Nat. Commun. 11, 5395 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Wang, G. Z. et al. Staphylococcal secreted cytotoxins are competition sensing signals for Pseudomonas aeruginosa. Preprint at bioRxiv https://doi.org/10.1101/2023.01.29.526047 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Flores-Kim, J. & Darwin, A. J. The phage shock protein response. Annu. Rev. Microbiol. 70, 83–101 (2016).

    Article  CAS  PubMed  Google Scholar 

  118. Fallico, V., Ross, R. P., Fitzgerald, G. F. & McAuliffe, O. Genetic response to bacteriophage infection in Lactococcus lactis reveals a four-strand approach involving induction of membrane stress proteins, d-alanylation of the cell wall, maintenance of proton motive force, and energy conservation. J. Virol. 85, 12032–12042 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Song, S. & Wood, T. K. A primary physiological role of toxin/antitoxin systems is phage inhibition. Front. Microbiol. 11, 1895 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Aijaz, I. & Koudelka, G. B. Cheating, facilitation and cooperation regulate the effectiveness of phage-encoded exotoxins as antipredator molecules. Microbiologyopen 8, e00636 (2019).

    Article  PubMed  Google Scholar 

  121. Pacheco, A. R. & Sperandio, V. Shiga toxin in enterohemorrhagic E. coli: regulation and novel anti-virulence strategies. Front. Cell. Infect. Microbiol. 2, 81 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Lambert, C., Ivanov, P. & Sockett, R. E. A transcriptional ‘scream’ early response of E. coli prey to predatory invasion by Bdellovibrio. Curr. Microbiol. 60, 419–427 (2010).

    Article  CAS  PubMed  Google Scholar 

  123. LeRoux, M., Peterson, S. B. & Mougous, J. D. Bacterial danger sensing. J. Mol. Biol. 427, 3744–3753 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Bertsche, U., Mayer, C., Götz, F. & Gust, A. A. Peptidoglycan perception — sensing bacteria by their common envelope structure. Int. J. Med. Microbiol. 305, 217–223 (2015).

    Article  CAS  PubMed  Google Scholar 

  125. Diggle, S. P., Gardner, A., West, S. A. & Griffin, A. S. Evolutionary theory of bacterial quorum sensing: when is a signal not a signal? Philos. Trans. R. Soc. B Biol. Sci. 362, 1241–1249 (2007).

    Article  CAS  Google Scholar 

  126. Pohnert, G., Steinke, M. & Tollrian, R. Chemical cues, defence metabolites and the shaping of pelagic interspecific interactions. Trends Ecol. Evol. 22, 198–204 (2007).

    Article  PubMed  Google Scholar 

  127. Mazzola, M., De Bruijn, I., Cohen, M. F. & Raaijmakers, J. M. Protozoan-induced regulation of cyclic lipopeptide biosynthesis is an effective predation defense mechanism for Pseudomonas fluorescens. Appl. Environ. Microbiol. 75, 6804–6811 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Li, L. et al. Sensor histidine kinase is a β-lactam receptor and induces resistance to β-lactam antibiotics. Proc. Natl Acad. Sci. USA 113, 1648–1653 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Bru, J. L. et al. PQS produced by the Pseudomonas aeruginosa stress response repels swarms away from bacteriophage and antibiotics. J. Bacteriol. 201, e00383-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Tzipilevich, E., Pollak‐Fiyaksel, O., Shraiteh, B. & Ben‐Yehuda, S. Bacteria elicit a phage tolerance response subsequent to infection of their neighbors. EMBO J. 41, e109247 (2022).

    Article  CAS  PubMed  Google Scholar 

  131. LeRoux, M. et al. Kin cell lysis is a danger signal that activates antibacterial pathways of Pseudomonas aeruginosa. eLife 2015, e05701 (2015).

    Article  Google Scholar 

  132. Ting, S. Y. et al. Discovery of coordinately regulated pathways that provide innate protection against interbacterial antagonism. eLife 11, e74658 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Irving, S. E., Choudhury, N. R. & Corrigan, R. M. The stringent response and physiological roles of (pp)pGpp in bacteria. Nat. Rev. Microbiol. 19, 256–271 (2020).

    Article  PubMed  Google Scholar 

  134. Inaoka, T., Takahashi, K., Ohnishi-Kameyama, M., Yoshida, M. & Ochi, K. Guanine nucleotides guanosine 5′-diphosphate 3′-diphosphate and GTP co-operatively regulate the production of an antibiotic bacilysin in Bacillus subtilis. J. Biol. Chem. 278, 2169–2176 (2003).

    Article  CAS  PubMed  Google Scholar 

  135. Kuhar, I. & Žgur-Bertok, D. Transcription regulation of the colicin K cka gene reveals induction of colicin synthesis by differential responses to environmental signals. J. Bacteriol. 181, 7373–7380 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Ochi, K. Occurrence of the stringent response in Streptomyces sp. and its significance for the initiation of morphological and physiological differentiation. J. Gen. Microbiol. 132, 2621–2631 (1986).

    CAS  PubMed  Google Scholar 

  137. Hammer, B. K. & Bassler, B. L. Quorum sensing controls biofilm formation in Vibrio cholerae. Mol. Microbiol. 50, 101–104 (2003).

    Article  CAS  PubMed  Google Scholar 

  138. Rutherford, S. T. & Bassler, B. L. Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb. Perspect. Med. 2, a012427 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Høyland-Kroghsbo, N. M. et al. Quorum sensing controls the Pseudomonas aeruginosa CRISPR-Cas adaptive immune system. Proc. Natl Acad. Sci. USA 114, 131–135 (2017).

    Article  PubMed  Google Scholar 

  140. Zhou, L., Zhang, Y., Ge, Y., Zhu, X. & Pan, J. Regulatory mechanisms and promising applications of quorum sensing-inhibiting agents in control of bacterial biofilm formation. Front. Microbiol. 11, 2558 (2020).

    Article  Google Scholar 

  141. Palmer, J. D. & Foster, K. R. The evolution of spectrum in antibiotics and bacteriocins. Proc. Natl Acad. Sci. USA 119, e2205407119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Fontaine, L. et al. Quorum-sensing regulation of the production of Blp bacteriocins in Streptococcus thermophilus. J. Bacteriol. 189, 7195 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Silverman, J. M., Brunet, Y. R., Cascales, E. & Mougous, J. D. Structure and regulation of the type VI secretion system. Annu. Rev. Microbiol. 66, 453 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Meirelles, L. A., Perry, E. K., Bergkessel, M. & Newman, D. K. Bacterial defenses against a natural antibiotic promote collateral resilience to clinical antibiotics. PLoS Biol. 19, e3001093 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Darwin, C. On the Origin of Species: A Facsimile of the First Edition (Harvard University Press, 2003).

  146. Raeside, C. et al. Large chromosomal rearrangements during a long-term evolution experiment with Escherichia coli. MBio 5, 1377–1391 (2014).

    Article  Google Scholar 

  147. Frazão, N., Sousa, A., Lässig, M. & Gordo, I. Horizontal gene transfer overrides mutation in Escherichia coli colonizing the mammalian gut. Proc. Natl Acad. Sci. USA 116, 17906–17915 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Woodford, N. & Ellington, M. J. The emergence of antibiotic resistance by mutation. Clin. Microbiol. Infect. 13, 5–18 (2007).

    Article  CAS  PubMed  Google Scholar 

  149. Macwana, S. & Muriana, P. M. Spontaneous bacteriocin resistance in Listeria monocytogenes as a susceptibility screen for identifying different mechanisms of resistance and modes of action by bacteriocins of lactic acid bacteria. J. Microbiol. Methods 88, 7–13 (2012).

    Article  CAS  PubMed  Google Scholar 

  150. Riley, M. A. & Gordon, D. M. The ecology and evolution of bacteriocins. J. Ind. Microbiol. Biotechnol. 17, 151–158 (1996).

    Article  CAS  Google Scholar 

  151. Wright, R. C. T., Friman, V.-P., Smith, M. C. M. & Brockhurst, M. A. Cross-resistance is modular in bacteria–phage interactions. PLoS Biol. 16, e2006057 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Abouzeed, Y. M., Baucheron, S. & Cloeckaert, A. ramR mutations involved in efflux-mediated multidrug resistance in Salmonella enterica serovar Typhimurium. Antimicrob. Agents Chemother. 52, 2428–2434 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Cannatelli, A. et al. MgrB inactivation is a common mechanism of colistin resistance in KPC-producing klebsiella pneumoniae of clinical origin. Antimicrob. Agents Chemother. 58, 5696–5703 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Koch, G. et al. Evolution of resistance to a last-resort antibiotic in Staphylococcus aureus via bacterial competition. Cell 158, 1060–1071 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Bjedov, I. et al. Stress-induced mutagenesis in bacteria. Sci 300, 1404–1409 (2003).

    Article  CAS  Google Scholar 

  156. Krašovec, R. et al. Opposing effects of final population density and stress on Escherichia coli mutation rate. ISME J. 12, 2981–2987 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Ram, Y. & Hadany, L. Evolution of stress-induced mutagenesis in the presence of horizontal gene transfer. Am. Nat. 194, 73–89 (2019).

    Article  PubMed  Google Scholar 

  158. MacLean, R. C. & San Millan, A. The evolution of antibiotic resistance. Science 365, 1082–1083 (2019).

    Article  CAS  PubMed  Google Scholar 

  159. Hall, J. P. J., Brockhurst, M. A. & Harrison, E. Sampling the mobile gene pool: innovation via horizontal gene transfer in bacteria. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160424 (2017).

    Article  Google Scholar 

  160. Meaden, S. & Fineran, P. C. Bacterial defense islands limit viral attack. Science 374, 399–400 (2021).

    Article  CAS  PubMed  Google Scholar 

  161. Didelot, X. & Maiden, M. C. J. Impact of recombination on bacterial evolution. Trends Microbiol. 18, 315 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. San Millan, A. Evolution of plasmid-mediated antibiotic resistance in the clinical context. Trends Microbiol. 26, 978–985 (2018).

    Article  CAS  PubMed  Google Scholar 

  163. Botelho, J. & Schulenburg, H. The role of integrative and conjugative elements in antibiotic resistance evolution. Trends Microbiol. 29, 8–18 (2021).

    Article  CAS  PubMed  Google Scholar 

  164. Ruhe, Z. C. et al. CDI systems are stably maintained by a cell-contact mediated surveillance mechanism. PLoS Genet. 12, e1006145 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Makarova, K. S., Wolf, Y. I., Snir, S. & Koonin, E. V. Defense islands in bacterial and archaeal genomes and prediction of novel defense systems. J. Bacteriol. 193, 6039–6056 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Bernheim, A. & Sorek, R. The pan-immune system of bacteria: antiviral defence as a community resource. Nat. Rev. Microbiol. 18, 113–119 (2019).

    Article  PubMed  Google Scholar 

  167. Rocha, E. P. C. & Bikard, D. Microbial defenses against mobile genetic elements and viruses: Who defends whom from what? PLoS Biol. 20, e3001514 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Costa, R., Van Aarle, I. M., Mendes, R. & Van Elsas, J. D. Genomics of pyrrolnitrin biosynthetic loci: evidence for conservation and whole-operon mobility within Gram-negative bacteria. Environ. Microbiol. 11, 159–175 (2009).

    Article  CAS  PubMed  Google Scholar 

  169. Jousset, A., Rochat, L., Scheu, S., Bonkowski, M. & Keel, C. Predator-prey chemical warfare determines the expression of biocontrol genes by rhizosphere-associated Pseudomonas fluorescens. Appl. Environ. Microbiol. 76, 5263–5268 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Alexander, H. K. & MacLean, Craig R. Stochastic bacterial population dynamics restrict the establishment of antibiotic resistance from single cells. Proc. Natl Acad. Sci. USA 117, 19455–19464 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Herron, M. D. et al. De novo origins of multicellularity in response to predation. Sci. Rep. 9, 2328 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Koskella, B. & Brockhurst, M. A. Bacteria–phage coevolution as a driver of ecological and evolutionary processes in microbial communities. FEMS Microbiol. Rev. 38, 916 (2014).

    Article  CAS  PubMed  Google Scholar 

  173. Libberton, B., Horsburgh, M. J. & Brockhurst, M. A. The effects of spatial structure, frequency dependence and resistance evolution on the dynamics of toxin-mediated microbial invasions. Evol. Appl. 8, 738–750 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Butela, K. & Lawrence, J. in Bacterial Population Genetics in Infectious Disease (eds Robinson, D. A., Falush, D. & Feil, E. J.) 287–319 (John Wiley & Sons, Ltd, 2010).

  175. Wildschutte, H., Wolfe, D. M., Tamewitz, A. & Lawrence, J. G. Protozoan predation, diversifying selection, and the evolution of antigenic diversity in Salmonella. Proc. Natl Acad. Sci. USA 101, 10644–10649 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Mostowy, R. J. & Holt, K. E. Diversity-generating machines: genetics of bacterial sugar-coating. Trends Microbiol. 26, 1008–1021 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Burmeister, A. R. et al. Pleiotropy complicates a trade-off between phage resistance and antibiotic resistance. Proc. Natl Acad. Sci. USA 117, 11207–11216 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. German, G. J. & Misra, R. The TolC protein of Escherichia coli serves as a cell-surface receptor for the newly characterized TLS bacteriophage. J. Mol. Biol. 308, 579–585 (2001).

    Article  CAS  PubMed  Google Scholar 

  179. Andersson, D. I. & Hughes, D. Antibiotic resistance and its cost: Is it possible to reverse resistance? Nat. Rev. Microbiol. 8, 260–271 (2010).

    Article  CAS  PubMed  Google Scholar 

  180. Puigbò, P., Makarova, K. S., Kristensen, D. M., Wolf, Y. I. & Koonin, E. V. Reconstruction of the evolution of microbial defense systems. BMC Evol. Biol. 17, 94 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Rowe-Magnus, D. A. & Mazel, D. The role of integrons in antibiotic resistance gene capture. Int. J. Med. Microbiol. 292, 115–125 (2002).

    Article  CAS  PubMed  Google Scholar 

  182. Akrami, F., Rajabnia, M. & Pournajaf, A. Resistance integrons; a mini review. Casp. J. Intern. Med. 10, 370–376 (2019).

    Google Scholar 

  183. Hocquet, D. et al. Evidence for induction of integron-based antibiotic resistance by the SOS response in a clinical setting. PLoS Pathog. 8, 1002778 (2012).

    Article  Google Scholar 

  184. Souque, C., Escudero, J. A. & Maclean, R. C. Integron activity accelerates the evolution of antibiotic resistance. eLife 10, e62474 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Oliveira, P. H., Touchon, M. & Rocha, E. P. C. The interplay of restriction-modification systems with mobile genetic elements and their prokaryotic hosts. Nucleic Acids Res. 42, 10618–10631 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Alcalde-Rico, M., Hernando-Amado, S., Blanco, P. & Martínez, J. Multidrug efflux pumps at the crossroad between antibiotic resistance and bacterial virulence. Front. Microbiol. 7, 1483 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  187. van Houte, S., Buckling, A. & Westra, E. R. Evolutionary ecology of prokaryotic immune mechanisms. Microbiol. Mol. Biol. Rev. 80, 745–763 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Avrani, S., Wurtzel, O., Sharon, I., Sorek, R. & Lindell, D. Genomic island variability facilitates Prochlorococcus–virus coexistence. Nature 474, 604–608 (2011).

    Article  CAS  PubMed  Google Scholar 

  189. Cordero, O. X. et al. Ecological populations of bacteria act as socially cohesive units of antibiotic production and resistance. Science 337, 1228–1231 (2012).

    Article  CAS  PubMed  Google Scholar 

  190. Hussain, F. A. et al. Rapid evolutionary turnover of mobile genetic elements drives bacterial resistance to phages. Science 374, 488–492 (2021).

    Article  CAS  PubMed  Google Scholar 

  191. Hunter, M. & Fusco, D. Superinfection exclusion: a viral strategy with short-term benefits and long-term drawbacks. PLoS Comput. Biol. 18, e1010125 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Van Melderen, L. & De Bast, M. S. Bacterial toxin–antitoxin systems: more than selfish entities? PLoS Genet. 5, e1000437 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Koonin, E. V. & Makarova, K. S. Origins and evolution of CRISPR-Cas systems. Philos. Trans. R. Soc. B 374, 20180087 (2019).

    Article  CAS  Google Scholar 

  194. Dawkins, R. & Krebs, J. R. Arms races between and within species. Proc. R. Soc. Lond. Ser. B. Biol. Sci. 205, 489–511 (1979).

    CAS  Google Scholar 

  195. Kerr, B., Riley, M. A., Feldman, M. W. & Bohannan, B. J. M. Local dispersal promotes biodiversity in a real-life game of rock–paper–scissors. Nature 418, 171–174 (2002).

    Article  CAS  PubMed  Google Scholar 

  196. Longdon, B., Brockhurst, M. A., Russell, C. A., Welch, J. J. & Jiggins, F. M. The evolution and genetics of virus host shifts. PLoS Pathog. 10, e1004395 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Friman, V.-P. & Buckling, A. Effects of predation on real-time host-parasite coevolutionary dynamics. Ecol. Lett. 16, 39–46 (2013).

    Article  PubMed  Google Scholar 

  198. Paterson, S. et al. Antagonistic coevolution accelerates molecular evolution. Nature 464, 275–278 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Czárán, T. L., Hoekstra, R. F. & Pagie, L. Chemical warfare between microbes promotes biodiversity. Proc. Natl Acad. Sci. USA 99, 786 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Riley, M. A. Positive selection for colicin diversity in bacteria. Mol. Biol. Evol. 10, 1048–1059 (1993).

    CAS  PubMed  Google Scholar 

  201. Gordon, D. M. & O’Brien, C. L. Bacteriocin diversity and the frequency of multiple bacteriocin production in Escherichia coli. Microbiology 152, 3239–3244 (2006).

    Article  CAS  PubMed  Google Scholar 

  202. Michel-Briand, Y. & Baysse, C. The pyocins of Pseudomonas aeruginosa. Biochimie 84, 499–510 (2002).

    Article  CAS  PubMed  Google Scholar 

  203. Merker, M. et al. Evolutionary approaches to combat antibiotic resistance: opportunities and challenges for precision medicine. Front. Immunol. 11, 1938 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Paradkar, A. Clavulanic acid production by Streptomyces clavuligerus: biogenesis, regulation and strain improvement. J. Antibiot. 66, 411–420 (2013).

    Article  CAS  Google Scholar 

  205. Lee, M. D. et al. Microbial fermentation-derived inhibitors of efflux-pump-mediated drug resistance. Farmaco 56, 81–85 (2001).

    Article  CAS  PubMed  Google Scholar 

  206. Bambeke, F., Pages, J.-M. & Lee, V. Inhibitors of bacterial efflux pumps as adjuvants in antibiotic treatments and diagnostic tools for detection of resistance by efflux. Recent. Pat. Antiinfect. Drug Discov. 1, 157–175 (2008).

    Article  Google Scholar 

  207. Braun, V., Pramanik, A., Gwinner, T., Köberle, M. & Bohn, E. Sideromycins: tools and antibiotics. BioMetals 22, 3–13 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Tillotson, G. Trojan horse antibiotics — a novel way to circumvent Gram-negative bacterial resistance? Infect. Dis. 9, 45–52 (2016).

    Google Scholar 

  209. Coulthurst, S. The type VI secretion system: a versatile bacterial weapon. Microbiol 165, 503–515 (2019).

    Article  CAS  Google Scholar 

  210. Boles, B. R. & Horswill, A. R. agr-Mediated dispersal of Staphylococcus aureus biofilms. PLoS Pathog. 4, e1000052 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Paluch, E., Rewak-Soroczyńska, J., Jędrusik, I., Mazurkiewicz, E. & Jermakow, K. Prevention of biofilm formation by quorum quenching. Appl. Microbiol. Biotechnol. 104, 1871–1881 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Samson, J. E., Magadán, A. H., Sabri, M. & Moineau, S. Revenge of the phages: defeating bacterial defences. Nat. Rev. Microbiol. 11, 675–687 (2013).

    Article  CAS  PubMed  Google Scholar 

  213. Auer, B. & Schweiger, M. Evidence that Escherichia coli virus T1 induces a DNA methyltransferase. J. Virol. 49, 588–590 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Iida, S., Streiff, M. B., Bickle, T. A. & Arber, W. Two DNA antirestriction systems of bacteriophage P1, darA, and darB: characterization of darA phages. Virology 157, 156–166 (1987).

    Article  CAS  PubMed  Google Scholar 

  215. Pawluk, A., Davidson, A. R. & Maxwell, K. L. Anti-CRISPR: discovery, mechanism and function. Nat. Rev. Microbiol. 16, 12–17 (2018).

    Article  CAS  PubMed  Google Scholar 

  216. Scholl, D., Adhya, S. & Merril, C. Escherichia coli K1’s capsule is a barrier to bacteriophage T7. Appl. Environ. Microbiol. 71, 4872–4874 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Otsuka, Y. & Yonesaki, T. Dmd of bacteriophage T4 functions as an antitoxin against Escherichia coli LsoA and RnlA toxins. Mol. Microbiol. 83, 669–681 (2012).

    Article  CAS  PubMed  Google Scholar 

  218. Erez, Z. et al. Communication between viruses guides lysis–lysogeny decisions. Nature 541, 488–493 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Jousset, A. Ecological and evolutive implications of bacterial defences against predators. Environ. Microbiol. 14, 1830–1843 (2012).

    Article  PubMed  Google Scholar 

  220. Kaplan, F. et al. Bacterial attraction and quorum sensing inhibition in Caenorhabditis elegans exudates. J. Chem. Ecol. 35, 878–892 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Adli, M. The CRISPR tool kit for genome editing and beyond. Nat. Commun. 9, 1911 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Bernheim, A. et al. Prokaryotic viperins produce diverse antiviral molecules. Nature 589, 120–124 (2021).

    Article  CAS  PubMed  Google Scholar 

  223. Raffatellu, M. Learning from bacterial competition in the host to develop antimicrobials. Nat. Med. 24, 1097–1103 (2018).

    Article  CAS  PubMed  Google Scholar 

  224. Ghosh, C., Sarkar, P., Issa, R. & Haldar, J. Alternatives to conventional antibiotics in the era of antimicrobial resistance. Trends Microbiol. 27, 323–338 (2019).

    Article  CAS  PubMed  Google Scholar 

  225. Hiltunen, T., Virta, M. & Anna-Liisa, L. Antibiotic resistance in the wild: an eco-evolutionary perspective. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160039 (2017).

    Article  Google Scholar 

  226. Vassallo, C. N., Doering, C. R., Littlehale, M. L., Teodoro, G. I. C. & Laub, M. T. A functional selection reveals previously undetected anti-phage defence systems in the E. coli pangenome. Nat. Microbiol. 7, 1568–1579 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Millman, A. et al. An expanded arsenal of immune systems that protect bacteria from phages. Cell Host Microbe 30, 1556–1569.e5 (2022).

    Article  CAS  PubMed  Google Scholar 

  228. Coyte, K. Z., Schluter, J. & Foster, K. R. The ecology of the microbiome: networks, competition, and stability. Science 350, 663–666 (2015).

    Article  CAS  PubMed  Google Scholar 

  229. Coyte, K. Z., Rao, C., Rakoff-Nahoum, S. & Foster, K. R. Ecological rules for the assembly of microbiome communities. PLoS Biol. 19, e3001116 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. García-Bayona, L. & Comstock, L. E. Bacterial antagonism in host-associated microbial communities. Science 361, eaat2456 (2018).

    Article  PubMed  Google Scholar 

  231. Ventola, C. The antibiotic resistance crisis: part 1: causes and threats. PT 40, 277–283 (2015).

    Google Scholar 

  232. Aminov, R. I. & Mackie, R. I. Evolution and ecology of antibiotic resistance genes. FEMS Microbiol. Lett. 271, 147–161 (2007).

    Article  CAS  PubMed  Google Scholar 

  233. Abrudan, M. I. et al. Socially mediated induction and suppression of antibiosis during bacterial coexistence. Proc. Natl Acad. Sci. USA 112, 11054–11059 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. González-Bello, C. Antibiotic adjuvants — a strategy to unlock bacterial resistance to antibiotics. Bioorg. Med. Chem. Lett. 27, 4221–4228 (2017).

    Article  PubMed  Google Scholar 

  235. Zhang, Z. et al. Antibiotic production in Streptomyces is organized by a division of labor through terminal genomic differentiation. Sci. Adv. 6, eaay5781 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Batra, A. et al. High potency of sequential therapy with only β-lactam antibiotics. eLife 10, e68876 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Beardmore, R. E., Peña-Miller, R., Gori, F., Iredell, J. & Barlow, M. Antibiotic cycling and antibiotic mixing: which one best mitigates antibiotic resistance? Mol. Biol. Evol. 34, 802–817 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  238. Baym, M., Stone, L. K. & Kishony, R. Multidrug evolutionary strategies to reverse antibiotic resistance. Science 351, aad3292 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  239. Jamet, A. et al. A widespread family of polymorphic toxins encoded by temperate phages. BMC Biol. 15, 1–12 (2017).

    Article  Google Scholar 

  240. Wang, M. et al. Modular design of membrane-active antibiotics: from macromolecular antimicrobials to small scorpionlike peptidomimetics. J. Med. Chem. 64, 9894–9905 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Trejo-Hernández, A., Andrade-Domínguez, A., Hernández, M. & Encarnación, S. Interspecies competition triggers virulence and mutability in Candida albicansPseudomonas aeruginosa mixed biofilms. ISME J. 8, 1974–1988 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  242. Flint, A., Stintzi, A. & Saraiva, L. M. Oxidative and nitrosative stress defences of Helicobacter and Campylobacter species that counteract mammalian immunity. FEMS Microbiol. Rev. 40, 938–960 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Wille, J. & Coenye, T. Biofilm dispersion: the key to biofilm eradication or opening Pandora’s box? Biofilm 2, 100027 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Dieltjens, L. et al. Inhibiting bacterial cooperation is an evolutionarily robust anti-biofilm strategy. Nat. Commun. 11, 1–11 (2020).

    Article  Google Scholar 

  245. Brown, S. P., West, S. A., Diggle, S. P. & Griffin, A. S. Social evolution in micro-organisms and a Trojan horse approach to medical intervention strategies. Philos. Trans. R. Soc. B Biol. Sci. 364, 3157–3168 (2009).

    Article  Google Scholar 

  246. Gurney, J., Simonet, C., Wollein Waldetoft, K. & Brown, S. P. Challenges and opportunities for cheat therapy in the control of bacterial infections. Nat. Prod. Rep. 39, 325–334 (2022).

    Article  CAS  PubMed  Google Scholar 

  247. Lin, D. M., Koskella, B. & Lin, H. C. Phage therapy: an alternative to antibiotics in the age of multi-drug resistance. World J. Gastrointest. Pharmacol. Ther. 8, 162 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  248. Atterbury, R. J. & Tyson, J. Predatory bacteria as living antibiotics — Where are we now? Microbiol 167, 1–8 (2021).

    Article  CAS  Google Scholar 

  249. Torres-Barceló, C. The disparate effects of bacteriophages on antibiotic-resistant bacteria. Emerg. Microbes Infect. https://doi.org/10.1038/s41426-018-0169-z (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  250. Chan, B. K. et al. Phage selection restores antibiotic sensitivity in MDR Pseudomonas aeruginosa. Sci. Rep. 6, 1–8 (2016).

    Article  Google Scholar 

  251. Roemhild, R. & Andersson, D. I. Mechanisms and therapeutic potential of collateral sensitivity to antibiotics. PLoS Pathog. 17, e1009172 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank E. Granato, R. Wheatley, C. Sharp and M. Brockhurst for their helpful comments on the manuscript, and M. Jahn, C. Souque, E. Bakkeren, F. Spragge, J. Palmer, S. Booth, O. Cunrath, C. Maclean and L. Comstock for their literature suggestions. C.D.N. is supported by the Simons Foundation (award number 826672), NSF grant IOS 2017879, and grant RGY0077/2020 from the Human Frontier Science Program. B.R.W. received support from a Gillman Fellowship from the Department of Biological Sciences at Dartmouth. W.P.J.S. and K.R.F. are supported by the NIH (project numbers R01AI093771 and R01AI120633), by European Research Council Grant 787932, and by Wellcome Trust Investigator award 209397/Z/17/Z. W.P.J.S. is also funded by a Sir Henry Wellcome Postdoctoral fellowship award, 222795/Z/21/Z.

Author information

Authors and Affiliations

Authors

Contributions

W.P.J.S. researched data for article. W.P.J.S., K.R.F., B.R.W. and C.D.N. contributed substantially to the discussion of content. W.P.J.S. and K.R.F. wrote the article. W.P.J.S., B.R.W., C.D.N. and K.R.F. reviewed and edited the manuscript before submission.

Corresponding authors

Correspondence to William P. J. Smith or Kevin R. Foster.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Microbiology thanks Jordan Vacheron, who co-reviewed with Clara Heiman, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Agents

Substances (particularly toxins and injected viral DNA) that, through interaction with targets, produce harm to a bacterial cell.

Bacteriophages

(Phages). Viruses that infect bacteria.

Biofilms

Densely packed cell groups that can contain billions or trillions of cells, enveloped by a secreted extracellular matrix.

Biotherapeutic

Medicine that is derived from (and often incorporating) biological entities. Phages are a potential biotherapeutic for treating bacterial infections.

Collective defence

Any defensive behaviour that becomes more effective when many individuals engage in it. Collective defences benefit the social partners of a focal bacterium, but do not always evolve for this reason.

Competition sensing

The bacterial behaviour of discerning and responding to stress cues associated with competitor activity, often via stress responses. This is often used to regulate defences, especially counter-attacks.

Competitor

Another type of bacterium that competes with a focal bacterium for resources. Often this will be a genetically similar but non-identical bacterium (for example, a different strain), as similar bacteria are most likely to have overlapping resource needs. Genetically identical organisms compete in an ecological sense, but not in an evolutionary sense (as they have the same evolutionary interests). In this Review, we use the term in the former sense.

Counter-attacks

Aggressions in response to aggression (apparent or actual).

Danger sensing

Conceptually similar to competition sensing, but pertaining to cues other than those resulting from direct harm to a focal cell.

Defence mechanisms

Traits that evolved, at least in part, to protect an organism against a threat. This term is often used in the context of bacterial defences against viral threats, but in this Review, we expand it to encompass protection against competitors and predators.

Exploitative competition

Mutually harmful interactions between bacteria, stemming from competition for contested resources (for example, space or nutrients). Contrasts with interference competition, in which harm is inflicted more directly via weaponry or other means.

Horizontal gene transfer

(HGT). The flow of genetic information between two organisms, other than that which occurs via reproduction (vertical gene transfer).

Mutualism

A mutually beneficial evolutionary relationship between two organisms — that is, one in which the fitness of each party is improved by the presence of the other.

Parasitism

An evolutionary relationship between two organisms in which one benefits at the expense of the other. In contrast to predators, parasites are generally smaller than and physically associated with the organisms they exploit.

Plastic responses

Regulated changes to bacterial phenotypes in response to environmental change. Plasticity does not result from genetic change (though it may be genetically encoded).

Pleiotropy

Phenomenon whereby one gene simultaneously affects multiple traits. Through pleiotropy, a defensive adaptation may affect the phenotype of a bacterium in unexpected ways (for example, by reducing its fitness in the absence of a threat).

Preadaptations

Evolutionary adaptations that serve different purposes from the purpose for which they first evolved. For instance, many modern efflux pumps function to remove antibiotics from bacterial cells, but homologous structures probably served different functions (for example, metabolite export) in ancestral strains.

Predators

Organisms that consume others for food, killing them in the process.

Quorum sensing

A widespread density-sensing mechanism found in bacteria and other microbes. Bacteria probe their effective density by secreting small molecules (autoinducers), which stimulate their own production. High autoinducer concentrations then become a proxy for high cell density or for restrictive spatial constraints that limit autoinducer diffusion. Quorum sensing is often used to regulate costly traits the benefits of which depend on collective action.

Stress responses

A set of regulatory pathways found in bacteria that alter gene expression and cell physiology in response to harmful environmental changes and help the bacteria to survive stress.

Stressors

Changes in environmental or physiological conditions that perturb cell homeostasis.

Weaponry

Cellular systems that evolved, at least in part, to harm other organisms.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, W.P.J., Wucher, B.R., Nadell, C.D. et al. Bacterial defences: mechanisms, evolution and antimicrobial resistance. Nat Rev Microbiol 21, 519–534 (2023). https://doi.org/10.1038/s41579-023-00877-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41579-023-00877-3

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology