Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Gradients and consequences of heterogeneity in biofilms

Abstract

Historically, appreciation for the roles of resource gradients in biology has fluctuated inversely to the popularity of genetic mechanisms. Nevertheless, in microbiology specifically, widespread recognition of the multicellular lifestyle has recently brought new emphasis to the importance of resource gradients. Most microorganisms grow in assemblages such as biofilms or spatially constrained communities with gradients that influence, and are influenced by, metabolism. In this Review, we discuss examples of gradient formation and physiological differentiation in microbial assemblages growing in diverse settings. We highlight consequences of physiological heterogeneity in microbial assemblages, including division of labour and increased resistance to stress. Our impressions of microbial behaviour in various ecosystems are not complete without complementary maps of the chemical and physical geographies that influence cellular activities. A holistic view, incorporating these geographies and the genetically encoded functions that operate within them, will be essential for understanding microbial assemblages in their many roles and potential applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: O2 gradients influence metabolic differentiation and morphogenesis in multicellular systems.
Fig. 2: Physiological stratification of microbial assemblages along chemical gradients.
Fig. 3: Redox balancing strategies in Pseudomonas aeruginosa biofilms.
Fig. 4: Interplay between resource gradients and biofilm architecture in Pseudomonas aeruginosa and Escherichia coli.
Fig. 5: Gradient formation and examples of metabolite exchange in cyanobacterial mats.
Fig. 6: Physiological heterogeneity enhances overall robustness of microbial assemblages.

Similar content being viewed by others

References

  1. Lyons, N. A. & Kolter, R. On the evolution of bacterial multicellularity. Curr. Opin. Microbiol. 24, 21–28 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Caldwell, D. E. & Hirsch, P. Growth of microorganisms in two-dimensional steady-state diffusion gradients. Can. J. Microbiol. 19, 53–58 (1973).

    Article  CAS  PubMed  Google Scholar 

  3. Lappin-Scott, H. M. in Microbial biosystems: new frontiers: proceedings of the 8th International Symposium on Microbial Ecology Vol. 1 (eds Bell, C., Brylinski, M. & Johnson-Green, P. C.) 1–6 (Atlantic Canada Society for Microbial Ecology, 1999).

  4. Babcsányi, I., Meite, F. & Imfeld, G. Biogeochemical gradients and microbial communities in Winogradsky columns established with polluted wetland sediments. FEMS Microbiol. Ecol. 93, fix089 (2017).

  5. Child, C. M. Patterns and Problems of Development [by] C.M. Child Vol. 820 (Univ. of Chicago Press, 1941).

  6. Blackstone, N. W. Charles Manning Child (1869–1954): the past, present, and future of metabolic signaling. J. Exp. Zool. B Mol. Dev. Evol. 306, 1–7 (2006).

    Article  PubMed  Google Scholar 

  7. Gurdon, J. B. & Bourillot, P. Y. Morphogen gradient interpretation. Nature 413, 797–803 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Fankhauser, C. & Christie, J. M. Plant phototropic growth. Curr. Biol. 25, R384–R389 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Moor, A. E. & Itzkovitz, S. Spatial transcriptomics: paving the way for tissue-level systems biology. Curr. Opin. Biotechnol. 46, 126–133 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Niethammer, P. Wound redox gradients revisited. Semin. Cell Dev. Biol. 80, 13–16 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Krejci, A. & Tennessen, J. M. Metabolism in time and space — exploring the frontier of developmental biology. Development 144, 3193–3198 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. Flemming, H.-C. et al. Biofilms: an emergent form of bacterial life. Nat. Rev. Microbiol. 14, 563–575 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Flemming, H.-C. et al. Who put the film in biofilm? The migration of a term from wastewater engineering to medicine and beyond. NPJ Biofilms Microbiomes 7, 10 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Dragoš, A. & Kovács, Á. T. The peculiar functions of the bacterial extracellular matrix. Trends Microbiol. 25, 257–266 (2017).

    Article  PubMed  Google Scholar 

  15. Flemming, H.-C. & Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 8, 623–633 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Rasmussen, K. & Lewandowski, Z. Microelectrode measurements of local mass transport rates in heterogeneous biofilms. Biotechnol. Bioeng. 59, 302–309 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Costerton, J. W., Stewart, P. S. & Greenberg, E. P. Bacterial biofilms: a common cause of persistent infections. Science 284, 1318–1322 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Stewart, P. S. Diffusion in biofilms. J. Bacteriol. 185, 1485–1491 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stewart, P. S. & Franklin, M. J. Physiological heterogeneity in biofilms. Nat. Rev. Microbiol. 6, 199–210 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Nealson, K. H. & Conrad, P. G. Life: past, present and future. Philos. Trans. R. Soc. Lond. B Biol. Sci. 354, 1923–1939 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Giri, S., Waschina, S., Kaleta, C. & Kost, C. Defining division of labor in microbial communities. J. Mol. Biol. 431, 4712–4731 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. Evans, C. R., Kempes, C. P., Price-Whelan, A. & Dietrich, L. E. P. Metabolic heterogeneity and cross-feeding in bacterial multicellular systems. Trends Microbiol. 28, 732–743 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Douglas, A. E. The microbial exometabolome: ecological resource and architect of microbial communities. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20190250 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fritts, R. K., McCully, A. L. & McKinlay, J. B. Extracellular metabolism sets the table for microbial cross-feeding. Microbiol. Mol. Biol. Rev. 85, e00135-20 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Chen, J. & Strous, M. Denitrification and aerobic respiration, hybrid electron transport chains and co-evolution. Biochim. Biophys. Acta 1827, 136–144 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Konhauser, K. O. Introduction to Geomicrobiology (Wiley, 2009).

  27. Fenchel, T. & Finlay, B. Oxygen and the spatial structure of microbial communities. Biol. Rev. Camb. Philos. Soc. 83, 553–569 (2008).

    PubMed  Google Scholar 

  28. Bishop, P. L. & Yu, T. A microelectrode study of redox potential change in biofilms. Water Sci. Technol. 39, 179–185 (1999).

    Article  CAS  Google Scholar 

  29. Jo, J., Cortez, K. L., Cornell, W. C., Price-Whelan, A. & Dietrich, L. E. An orphan cbb3-type cytochrome oxidase subunit supports Pseudomonas aeruginosa biofilm growth and virulence. eLife 6, e30205 (2017). This paper shows that phenazine production affects the redox gradient within P. aeruginosa biofilms and that mutations that alter ETC composition affect this gradient, implicating specific ETC complexes in phenazine reduction.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Dal, Co,A., van Vliet, S. & Ackermann, M. Emergent microscale gradients give rise to metabolic cross-feeding and antibiotic tolerance in clonal bacterial populations. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20190080 (2019).

    Article  Google Scholar 

  31. Cole, J. A., Kohler, L., Hedhli, J. & Luthey-Schulten, Z. Spatially-resolved metabolic cooperativity within dense bacterial colonies. BMC Syst. Biol. 9, 15 (2015). This paper describes a model in which acetate exchange supports metabolic cross-feeding in E. coli biofilms.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wolfsberg, E., Long, C. P. & Antoniewicz, M. R. Metabolism in dense microbial colonies: 13C metabolic flux analysis of E. coli grown on agar identifies two distinct cell populations with acetate cross-feeding. Metab. Eng. 49, 242–247 (2018). Together with Cole et al. (2015), this study tests the model of acetate exchange supporting metabolic cross-feeding in E. coli biofilms.

    Article  CAS  PubMed  Google Scholar 

  33. Díaz-Pascual, F. et al. Spatial alanine metabolism determines local growth dynamics of Escherichia coli colonies. eLife 10, e70794 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Decho, A. W., Norman, R. S. & Visscher, P. T. Quorum sensing in natural environments: emerging views from microbial mats. Trends Microbiol. 18, 73–80 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Wolpert, L. in Current Topics in Developmental Biology Vol. 117 (ed. Wassarman, P. M.) 597–608 (Academic, 2016).

  36. Redfield, R. J. Is quorum sensing a side effect of diffusion sensing? Trends Microbiol. 10, 365–370 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Hense, B. A. et al. Does efficiency sensing unify diffusion and quorum sensing? Nat. Rev. Microbiol. 5, 230–239 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. West, S. A., Winzer, K., Gardner, A. & Diggle, S. P. Quorum sensing and the confusion about diffusion. Trends Microbiol. 20, 586–594 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Lee, J.-H., Wood, T. K. & Lee, J. Roles of indole as an interspecies and interkingdom signaling molecule. Trends Microbiol. 23, 707–718 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Zarkan, A., Liu, J., Matuszewska, M., Gaimster, H. & Summers, D. K. Local and universal action: the paradoxes of indole signalling in bacteria. Trends Microbiol. 28, 566–577 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Kumar, A. & Sperandio, V. Indole signaling at the host–microbiota–pathogen interface. mBio 10, e01031-19 (2019). This study uses measurements of indole concentrations in the gut lumen and gut epithelial cells to infer the presence of an indole gradient and shows that the indole concentration influences virulence in gut-colonizing bacteria.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Comolli, J. C. & Donohue, T. J. Differences in two Pseudomonas aeruginosa cbb3 cytochrome oxidases. Mol. Microbiol. 51, 1193–1203 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Kawakami, T., Kuroki, M., Ishii, M., Igarashi, Y. & Arai, H. Differential expression of multiple terminal oxidases for aerobic respiration in Pseudomonas aeruginosa. Environ. Microbiol. 12, 1399–1412 (2010).

    CAS  PubMed  Google Scholar 

  44. Arai, H. et al. Enzymatic characterization and in vivo function of five terminal oxidases in Pseudomonas aeruginosa. J. Bacteriol. 196, 4206–4215 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Dietrich, L. E. P. et al. Bacterial community morphogenesis is intimately linked to the intracellular redox state. J. Bacteriol. 195, 1371–1380 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Eschbach, M. et al. Long-term anaerobic survival of the opportunistic pathogen Pseudomonas aeruginosa via pyruvate fermentation. J. Bacteriol. 186, 4596–4604 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Glasser, N. R., Kern, S. E. & Newman, D. K. Phenazine redox cycling enhances anaerobic survival in Pseudomonas aeruginosa by facilitating generation of ATP and a proton-motive force. Mol. Microbiol. 92, 399–412 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jo, J., Price-Whelan, A., Cornell, W. C. & Dietrich, L. E. P. Interdependency of respiratory metabolism and phenazine-associated physiology in Pseudomonas aeruginosa PA14. J. Bacteriol. 202, e00700-19 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lin, Y.-C. et al. Phenazines regulate Nap-dependent denitrification in Pseudomonas aeruginosa biofilms. J. Bacteriol. 200, e00031-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Schiessl, K. T. et al. Phenazine production promotes antibiotic tolerance and metabolic heterogeneity in Pseudomonas aeruginosa biofilms. Nat. Commun. 10, 762 (2019). This paper describes the effects of phenazine production on metabolic heterogeneity across depth and provides evidence for cross-feeding between fermentative and respiratory subpopulations in P. aeruginosa biofilms, and also shows that phenazines differentially influence the responses of biofilm subpopulations to antibiotic exposure.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Greenhagen, B. T. et al. Crystal structure of the pyocyanin biosynthetic protein PhzS. Biochemistry 47, 5281–5289 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Sakhtah, H. et al. The Pseudomonas aeruginosa efflux pump MexGHI-OpmD transports a natural phenazine that controls gene expression and biofilm development. Proc. Natl Acad. Sci. USA 113, E3538–E3547 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bellin, D. L. et al. Electrochemical camera chip for simultaneous imaging of multiple metabolites in biofilms. Nat. Commun. 7, 10535 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lambden, P. R. & Guest, J. R. Mutants of Escherichia coli K12 unable to use fumarate as an anaerobic electron acceptor. Microbiology 97, 145–160 (1976).

    CAS  Google Scholar 

  55. Kiley, P. J. & Beinert, H. Oxygen sensing by the global regulator, FNR: the role of the iron–sulfur cluster. FEMS Microbiol. Rev. 22, 341–352 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Myers, K. S. et al. Genome-scale analysis of Escherichia coli FNR reveals complex features of transcription factor binding. PLoS Genet. 9, e1003565 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Crofts, A. A. et al. Enterotoxigenic E. coli virulence gene regulation in human infections. Proc. Natl Acad. Sci. USA 115, E8968–E8976 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lin, Y.-C., Cornell, W. C., Jo, J., Price-Whelan, A. & Dietrich, L. E. P. The Pseudomonas aeruginosa complement of lactate dehydrogenases enables use of d- and l-lactate and metabolic cross-feeding. mBio 9, e00961-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Okegbe, C. et al. Electron-shuttling antibiotics structure bacterial communities by modulating cellular levels of c-di-GMP. Proc. Natl Acad. Sci. USA 114, E5236–E5245 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Fong, G.-H. & Takeda, K. Role and regulation of prolyl hydroxylase domain proteins. Cell Death Differ. 15, 635–641 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Beebout, C. J. et al. Respiratory heterogeneity shapes biofilm formation and host colonization in uropathogenic Escherichia coli. mBio 10, e02400-18 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Arnaouteli, S. et al. Bifunctionality of a biofilm matrix protein controlled by redox state. Proc. Natl Acad. Sci. USA 114, E6184–E6191 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Worlitzsch, D. et al. Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. J. Clin. Invest. 109, 317–325 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kolpen, M. et al. Nitrous oxide production in sputum from cystic fibrosis patients with chronic Pseudomonas aeruginosa lung infection. PLoS ONE 9, e84353 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Cowley, E. S., Kopf, S. H., LaRiviere, A., Ziebis, W. & Newman, D. K. Pediatric cystic fibrosis sputum can be chemically dynamic, anoxic, and extremely reduced due to hydrogen sulfide formation. mBio 6, e00767 (2015). This study shows that sputum from persons with cystic fibrosis contains steep chemical gradients, describes models for the distribution of O2 in the cystic fibrosis airway and provides a comprehensive overview of metabolisms that could support microbial growth and survival in this setting.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Quinn, R. A. et al. Biogeochemical forces shape the composition and physiology of polymicrobial communities in the cystic fibrosis lung. mBio 5, e00956–13 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Cendra, M. D. M., Blanco-Cabra, N., Pedraz, L. & Torrents, E. Optimal environmental and culture conditions allow the in vitro coexistence of Pseudomonas aeruginosa and Staphylococcus aureus in stable biofilms. Sci. Rep. 9, 16284 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  68. DePas, W. H. et al. Exposing the three-dimensional biogeography and metabolic states of pathogens in cystic fibrosis sputum via hydrogel embedding, clearing, and rRNA labeling. mBio 7, e00796-16 (2016). This study reveals the extreme structural heterogeneity in sputum from persons with cystic fibrosis, and applies an in situ hybridization chain reaction in combination with standard fluorescence in situ hybridization to obtain insight into the growth rates of microorganisms present in sputum samples.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Flynn, J. M., Niccum, D., Dunitz, J. M. & Hunter, R. C. Evidence and role for bacterial mucin degradation in cystic fibrosis airway disease. PLoS Pathog. 12, e1005846 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Ley, R. E. et al. Unexpected diversity and complexity of the Guerrero Negro hypersaline microbial mat. Appl. Environ. Microbiol. 72, 3685–3695 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Prieto-Barajas, C. M., Valencia-Cantero, E. & Santoyo, G. Microbial mat ecosystems: structure types, functional diversity, and biotechnological application. Electron. J. Biotechnol. 31, 48–56 (2018).

    Article  Google Scholar 

  72. Dupraz, C. et al. Processes of carbonate precipitation in modern microbial mats. Earth-Sci. Rev. 96, 141–162 (2009).

    Article  CAS  Google Scholar 

  73. Hoehler, T. M., Bebout, B. M. & Des Marais, D. J. The role of microbial mats in the production of reduced gases on the early Earth. Nature 412, 324–327 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Bosak, T., Knoll, A. H. & Petroff, A. P. The meaning of stromatolites. Annu. Rev. Earth Planet. Sci. 41, 21–44 (2013).

    Article  CAS  Google Scholar 

  75. Wagner, K., Besemer, K., Burns, N. R., Battin, T. J. & Bengtsson, M. M. Light availability affects stream biofilm bacterial community composition and function, but not diversity. Environ. Microbiol. 17, 5036–5047 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Mobberley, J. M. et al. Organismal and spatial partitioning of energy and macronutrient transformations within a hypersaline mat. FEMS Microbiol. Ecol. 93, fix028 (2017). This study comprehensively describes physicochemical and biological features of a highly stratified cyanobacterial mat.

    Article  PubMed Central  Google Scholar 

  77. Airs, R. L. & Keely, B. J. A high resolution study of the chlorophyll and bacteriochlorophyll pigment distributions in a calcite/gypsum microbial mat. Org. Geochem. 34, 539–551 (2003).

    Article  CAS  Google Scholar 

  78. Ohkubo, S. & Miyashita, H. A niche for cyanobacteria producing chlorophyll f within a microbial mat. ISME J. 11, 2368–2378 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Abed, R. M. M., Kohls, K., Leloup, J. & de Beer, D. Abundance and diversity of aerobic heterotrophic microorganisms and their interaction with cyanobacteria in the oxic layer of an intertidal hypersaline cyanobacterial mat. FEMS Microbiol. Ecol. 94, fix183 (2018).

    Article  Google Scholar 

  80. Cypionka, H., Widdel, F. & Pfennig, N. Survival of sulfate-reducing bacteria after oxygen stress, and growth in sulfate-free oxygen-sulfide gradients. FEMS Microbiol. Lett. 31, 39–45 (1985).

    Article  CAS  Google Scholar 

  81. Canfield, D. E. & Des Marais, D. J. Aerobic sulfate reduction in microbial mats. Science 251, 1471–1473 (1991).

    Article  CAS  PubMed  Google Scholar 

  82. Santegoeds, C. M., Ferdelman, T. G., Muyzer, G. & de Beer, D. Structural and functional dynamics of sulfate-reducing populations in bacterial biofilms. Appl. Environ. Microbiol. 64, 3731–3739 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Fike, D. A., Gammon, C. L., Ziebis, W. & Orphan, V. J. Micron-scale mapping of sulfur cycling across the oxycline of a cyanobacterial mat: a paired nanoSIMS and CARD-FISH approach. ISME J. 2, 749–759 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Lee, J. Z. et al. Fermentation couples Chloroflexi and sulfate-reducing bacteria to Cyanobacteria in hypersaline microbial mats. Front. Microbiol. 5, 61 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Harris, J. K. et al. Phylogenetic stratigraphy in the Guerrero Negro hypersaline microbial mat. ISME J. 7, 50–60 (2013).

    Article  PubMed  Google Scholar 

  86. Ruff, S. E. et al. Global dispersion and local diversification of the methane seep microbiome. Proc. Natl Acad. Sci. USA 112, 4015–4020 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Drewniak, L. et al. Physiological and metagenomic analyses of microbial mats involved in self-purification of mine waters contaminated with heavy metals. Front. Microbiol. 7, 1252 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Lin, S. et al. Biological sulfur oxidation in wastewater treatment: a review of emerging opportunities. Water Res. 143, 399–415 (2018).

    Article  CAS  PubMed  Google Scholar 

  89. Dworkin, M. Sergei Winogradsky: a founder of modern microbiology and the first microbial ecologist. FEMS Microbiol. Rev. 36, 364–379 (2012).

    Article  CAS  PubMed  Google Scholar 

  90. Jørgensen, B. B. & Revsbech, N. P. Colorless sulfur bacteria, Beggiatoa spp. and Thiovulum spp., in O2 and H2S microgradients. Appl. Environ. Microbiol. 45, 1261–1270 (1983).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Nelson, D. C., Wirsen, C. O. & Jannasch, H. W. Characterization of large, autotrophic Beggiatoa spp. abundant at hydrothermal vents of the guaymas basin. Appl. Environ. Microbiol. 55, 2909–2917 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kreutzmann, A.-C. & Schulz-Vogt, H. N. Oxidation of molecular hydrogen by a chemolithoautotrophic Beggiatoa strain. Appl. Environ. Microbiol. 82, 2527–2536 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Pasulka, A. et al. SSU-rRNA gene sequencing survey of benthic microbial eukaryotes from Guaymas Basin hydrothermal vent. J. Eukaryot. Microbiol. 66, 637–653 (2019).

    Article  CAS  PubMed  Google Scholar 

  94. Treude, T. et al. Consumption of methane and CO2 by methanotrophic microbial mats from gas seeps of the anoxic Black Sea. Appl. Environ. Microbiol. 73, 2271–2283 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Vlamakis, H., Aguilar, C., Losick, R. & Kolter, R. Control of cell fate by the formation of an architecturally complex bacterial community. Genes Dev. 22, 945–953 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kolodkin-Gal, I. et al. Respiration control of multicellularity in Bacillus subtilis by a complex of the cytochrome chain with a membrane-embedded histidine kinase. Genes Dev. 27, 887–899 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Serra, D. O. & Hengge, R. Stress responses go three dimensional — the spatial order of physiological differentiation in bacterial macrocolony biofilms. Environ. Microbiol. 16, 1455–1471 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Okegbe, C., Price-Whelan, A. & Dietrich, L. E. P. Redox-driven regulation of microbial community morphogenesis. Curr. Opin. Microbiol. 18, 39–45 (2014).

    Article  CAS  PubMed  Google Scholar 

  99. Zacharia, V. M. et al. Genetic network architecture and environmental cues drive spatial organization of phenotypic division of labor in Streptomyces coelicolor. mBio 12, e00794-21 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Váchová, L. & Palková, Z. How structured yeast multicellular communities live, age and die? FEMS Yeast Res. 18, 1–9 (2018).

    Article  Google Scholar 

  101. Hengge, R. Linking bacterial growth, survival, and multicellularity — small signaling molecules as triggers and drivers. Curr. Opin. Microbiol. 55, 57–66 (2020).

    Article  CAS  PubMed  Google Scholar 

  102. Klauck, G., Serra, D. O., Possling, A. & Hengge, R. Spatial organization of different sigma factor activities and c-di-GMP signalling within the three-dimensional landscape of a bacterial biofilm. Open. Biol. 8, 180066 (2018). This study uses fluorescent reporters of gene expression to characterize the growth states of subpopulations in E. coli biofilms, revealing an unexpectedly complex pattern across depth.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Serra, D. O., Klauck, G. & Hengge, R. Vertical stratification of matrix production is essential for physical integrity and architecture of macrocolony biofilms of Escherichia coli. Environ. Microbiol. 17, 5073–5088 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Serra, D. O., Richter, A. M. & Hengge, R. Cellulose as an architectural element in spatially structured Escherichia coli biofilms. J. Bacteriol. 195, 5540–5554 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Pérez-Osorio, A. C., Williamson, K. S. & Franklin, M. J. Heterogeneous rpoS and rhlR mRNA levels and 16S rRNA/rDNA (rRNA gene) ratios within Pseudomonas aeruginosa biofilms, sampled by laser capture microdissection. J. Bacteriol. 192, 2991–3000 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Williamson, K. S. et al. Heterogeneity in Pseudomonas aeruginosa biofilms includes expression of ribosome hibernation factors in the antibiotic-tolerant subpopulation and hypoxia-induced stress response in the metabolically active population. J. Bacteriol. 194, 2062–2073 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Santoro, C., Arbizzani, C., Erable, B. & Ieropoulos, I. Microbial fuel cells: from fundamentals to applications. A review. J. Power Sources 356, 225–244 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Walter, X. A. et al. From the lab to the field: self-stratifying microbial fuel cells stacks directly powering lights. Appl. Energy 277, 115514 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Chadwick, G. L., Jiménez Otero, F., Gralnick, J. A., Bond, D. R. & Orphan, V. J. NanoSIMS imaging reveals metabolic stratification within current-producing biofilms. Proc. Natl Acad. Sci. USA 116, 20716–20724 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lebedev, N., Strycharz-Glaven, S. M. & Tender, L. M. Spatially resolved confocal resonant Raman microscopic analysis of anode-grown Geobacter sulfurreducens biofilms. ChemPhysChem 15, 320–327 (2014).

    Article  CAS  PubMed  Google Scholar 

  111. Renslow, R. et al. Metabolic spatial variability in electrode-respiring Geobacter sulfurreducens biofilms. Energy Environ. Sci. 6, 1827–1836 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Beauregard, P. B., Chai, Y., Vlamakis, H., Losick, R. & Kolter, R. Bacillus subtilis biofilm induction by plant polysaccharides. Proc. Natl Acad. Sci. USA 110, E1621–E1630 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Pereira, F. C. & Berry, D. Microbial nutrient niches in the gut. Environ. Microbiol. 19, 1366–1378 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Rudrappa, T., Biedrzycki, M. L. & Bais, H. P. Causes and consequences of plant-associated biofilms. FEMS Microbiol. Ecol. 64, 153–166 (2008).

    Article  CAS  PubMed  Google Scholar 

  115. Stacy, A., Fleming, D., Lamont, R. J., Rumbaugh, K. P. & Whiteley, M. A commensal bacterium promotes virulence of an opportunistic pathogen via cross-respiration. mBio 7, e00782-16 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Davis, K. M., Mohammadi, S. & Isberg, R. R. Community behavior and spatial regulation within a bacterial microcolony in deep tissue sites serves to protect against host attack. Cell Host Microbe 17, 21–31 (2015). In this study, the authors use gene expression as a read-out for NO and detect a gradient in Y. tuberculosis microcolonies growing within the spleens of a murine host; they use mutants in both the mouse host background and the background of the bacterial pathogen to show that NO produced by host cells is consumed by bacteria at the periphery of the microcolony, thereby creating the gradient.

    Article  CAS  PubMed  Google Scholar 

  117. von Ohle, C. et al. Real-time microsensor measurement of local metabolic activities in ex vivo dental biofilms exposed to sucrose and treated with chlorhexidine. Appl. Environ. Microbiol. 76, 2326–2334 (2010).

    Article  Google Scholar 

  118. Mark Welch, J. L., Dewhirst, F. E. & Borisy, G. G. Biogeography of the oral microbiome: the site-specialist hypothesis. Annu. Rev. Microbiol. 73, 335–358 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Xiao, J. et al. Biofilm three-dimensional architecture influences in situ pH distribution pattern on the human enamel surface. Int. J. Oral. Sci. 9, 74–79 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Bowen, W. H., Burne, R. A., Wu, H. & Koo, H. Oral biofilms: pathogens, matrix, and polymicrobial interactions in microenvironments. Trends Microbiol. 26, 229–242 (2018).

    Article  CAS  PubMed  Google Scholar 

  121. Kim, D. et al. Spatial mapping of polymicrobial communities reveals a precise biogeography associated with human dental caries. Proc. Natl Acad. Sci. USA 117, 12375–12386 (2020). This paper reports several findings important for understanding how biofilm communities can promote development of dental caries (tooth decay), and identifies a specific type of biofilm architecture in which community stratification supports pH gradient formation and contributes to the robustness of the pathogenic population.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Donaldson, G. P., Lee, S. M. & Mazmanian, S. K. Gut biogeography of the bacterial microbiota. Nat. Rev. Microbiol. 14, 20–32 (2016).

    Article  CAS  PubMed  Google Scholar 

  123. Zheng, L., Kelly, C. J. & Colgan, S. P. Physiologic hypoxia and oxygen homeostasis in the healthy intestine. A Review in the Theme: Cellular Responses to Hypoxia. Am. J. Physiol. Cell Physiol. 309, C350–C360 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. De Weirdt, R. & Van de Wiele, T. Micromanagement in the gut: microenvironmental factors govern colon mucosal biofilm structure and functionality. NPJ Biofilms Microbiomes 1, 15026 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Rivera-Chávez, F., Lopez, C. A. & Bäumler, A. J. Oxygen as a driver of gut dysbiosis. Free Radic. Biol. Med. 105, 93–101 (2017).

    Article  PubMed  Google Scholar 

  126. Brauner, A., Fridman, O., Gefen, O. & Balaban, N. Q. Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nat. Rev. Microbiol. 14, 320–330 (2016).

    Article  CAS  PubMed  Google Scholar 

  127. Anderson, G. G. & O’Toole, G. A. Innate and induced resistance mechanisms of bacterial biofilms. Curr. Top. Microbiol. Immunol. 322, 85–105 (2008).

    CAS  PubMed  Google Scholar 

  128. Høiby, N. et al. The clinical impact of bacterial biofilms. Int. J. Oral. Sci. 3, 55–65 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Rocha-Granados, M. C., Zenick, B., Englander, H. E. & Mok, W. W. K. The social network: impact of host and microbial interactions on bacterial antibiotic tolerance and persistence. Cell. Signal. 75, 109750 (2020).

    Article  CAS  PubMed  Google Scholar 

  130. Königs, A. M., Flemming, H.-C. & Wingender, J. Nanosilver induces a non-culturable but metabolically active state in Pseudomonas aeruginosa. Front. Microbiol. 6, 395 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Borriello, G. et al. Oxygen limitation contributes to antibiotic tolerance of Pseudomonas aeruginosa in biofilms. Antimicrob. Agents Chemother. 48, 2659–2664 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Balaban, N. Q. et al. Definitions and guidelines for research on antibiotic persistence. Nat. Rev. Microbiol. 17, 441–448 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Yan, J. & Bassler, B. L. Surviving as a community: antibiotic tolerance and persistence in bacterial biofilms. Cell Host Microbe 26, 15–21 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Jennings, L. K. et al. Pseudomonas aeruginosa aggregates in cystic fibrosis sputum produce exopolysaccharides that likely impede current therapies. Cell Rep. 34, 108782 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Koo, H., Allan, R. N., Howlin, R. P., Stoodley, P. & Hall-Stoodley, L. Targeting microbial biofilms: current and prospective therapeutic strategies. Nat. Rev. Microbiol. 15, 740–755 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Hall, C. W. & Mah, T.-F. Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol. Rev. 41, 276–301 (2017).

    Article  CAS  PubMed  Google Scholar 

  137. Andersson, D. I. & Hughes, D. Microbiological effects of sublethal levels of antibiotics. Nat. Rev. Microbiol. 12, 465–478 (2014).

    Article  CAS  PubMed  Google Scholar 

  138. Høiby, N., Bjarnsholt, T., Givskov, M., Molin, S. & Ciofu, O. Antibiotic resistance of bacterial biofilms. Int. J. Antimicrob. Agents 35, 322–332 (2010).

    Article  PubMed  Google Scholar 

  139. Hermsen, R., Deris, J. B. & Hwa, T. On the rapidity of antibiotic resistance evolution facilitated by a concentration gradient. Proc. Natl Acad. Sci. USA 109, 10775–10780 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Zhang, Q. et al. Acceleration of emergence of bacterial antibiotic resistance in connected microenvironments. Science 333, 1764–1767 (2011).

    Article  CAS  PubMed  Google Scholar 

  141. Kowalski, C. H., Morelli, K. A., Schultz, D., Nadell, C. D. & Cramer, R. A. Fungal biofilm architecture produces hypoxic microenvironments that drive antifungal resistance. Proc. Natl Acad. Sci. USA 117, 22473–22483 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Quinn, R. A. et al. Niche partitioning of a pathogenic microbiome driven by chemical gradients. Sci. Adv. 4, eaau1908 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Cantor, M. D., van den Tempel, T., Hansen, T. K. & Ardö, Y. in Cheese 4th edn Ch. 37 (eds McSweeney, P. L. H., Fox, P. F., Cotter, P. D. & Everett, D. W.) 929–954 (Academic, 2017).

  144. Ong, L. et al. in Cheese 4th edn Ch. 33 (eds McSweeney, P. L. H., Fox, P. F., Cotter, P. D. & Everett, D. W.) 829–863 (Academic, 2017).

  145. Abraham, S., Cachon, R., Colas, B., Feron, G. & De Coninck, J. Eh and pH gradients in Camembert cheese during ripening: measurements using microelectrodes and correlations with texture. Int. Dairy. J. 17, 954–960 (2007).

    Article  CAS  Google Scholar 

  146. Monds, R. D. & O’Toole, G. A. The developmental model of microbial biofilms: ten years of a paradigm up for review. Trends Microbiol. 17, 73–87 (2009).

    Article  CAS  PubMed  Google Scholar 

  147. Jorth, P., Spero, M. A., Livingston, J. & Newman, D. K. Quantitative visualization of gene expression in mucoid and nonmucoid Pseudomonas aeruginosa aggregates reveals localized peak expression of alginate in the hypoxic zone. mBio 10, e02622-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Serra, D. O. & Hengge, R. A c-di-GMP-based switch controls local heterogeneity of extracellular matrix synthesis which is crucial for integrity and morphogenesis of Escherichia coli macrocolony biofilms. J. Mol. Biol. 431, 4775–4793 (2019).

    Article  CAS  PubMed  Google Scholar 

  149. Hansen, J. M., Jones, D. P. & Harris, C. The redox theory of development. Antioxid. Redox Signal. 32, 715–740 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Vander Heiden, M. G. & DeBerardinis, R. J. Understanding the intersections between metabolism and cancer biology. Cell 168, 657–669 (2017).

    Article  PubMed Central  Google Scholar 

  151. Miyazawa, H. & Aulehla, A. Revisiting the role of metabolism during development. Development 145, dev131110 (2018).

    Article  PubMed  Google Scholar 

  152. Carmeliet, P. et al. Role of HIF-1α in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 394, 485–490 (1998).

    Article  CAS  PubMed  Google Scholar 

  153. Stamatelos, S. K., Bhargava, A., Kim, E., Popel, A. S. & Pathak, A. P. Tumor ensemble-based modeling and visualization of emergent angiogenic heterogeneity in breast cancer. Sci. Rep. 9, 5276 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Hobson-Gutierrez, S. A. & Carmona-Fontaine, C. The metabolic axis of macrophage and immune cell polarization. Dis. Model. Mech. 11, dmm034462 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Lyssiotis, C. A. & Kimmelman, A. C. Metabolic interactions in the tumor microenvironment. Trends Cell Biol. 27, 863–875 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Gifford, R. M. & Evans, L. T. Photosynthesis, carbon partitioning, and yield. Annu. Rev. Plant. Physiol. 32, 485–509 (1981).

    Article  CAS  Google Scholar 

  157. Weits, D. A., van Dongen, J. T. & Licausi, F. Molecular oxygen as a signaling component in plant development. N. Phytol. 229, 24–35 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Work in the Dietrich laboratory is supported by National Institutes of Health (NIH)/National Institute of Allergy and Infectious Diseases (NIAID) grant R01AI103369.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Lars E. P. Dietrich.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Microbiology thanks Tom Battin, Hans-Curt Flemming and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Communities

Interacting assemblages of multiple species in a common location.

Biofilms

Assemblages of microbial cells encased in a self-produced matrix.

Matrix

An adhesive, extracellular material composed of polysaccharides, DNA and/or proteins produced by microbial cells in biofilms.

Cross-feeding

The exchange of metabolites between cells.

Oxygenic phototrophs

Organisms that use light as a source of energy and water as an electron donor, thereby producing molecular O2.

Morphogen

A signalling molecule that forms a concentration gradient across a developing organism and elicits concentration-dependent responses.

Denitrification

The stepwise reduction of nitrate to nitrogen gas, carried out by integral membrane and membrane-associated proteins. Some steps in denitrification pathways contribute to the proton motive force, and thereby the synthesis of ATP.

Phenazines

Redox-active compounds produced by Pseudomonas aeruginosa and other bacteria that can shuttle electrons between cells and distant oxidants.

Chemotrophic

Using an organic or inorganic chemical (as opposed to light) as a source of energy for metabolism.

Heterotrophs

Organisms that use an organic carbon source in metabolism.

Intertidal mats

Biofilm communities dominated by cyanobacteria that form within the tidal range on seashores.

Autotrophic

Using an inorganic carbon source in metabolism.

Resistance

A (usually heritable) trait conferred, for example, by dedicated proteins that efflux or degrade an antimicrobial compound, allowing the producing organism to grow at antimicrobial concentrations that would otherwise inhibit growth.

Tolerance

A (heritable or non-heritable) trait exhibited by the majority of cells in a population that confers survival during transient exposure to an antimicrobial.

Persistence

A non-heritable property exhibited by a minority of cells in a population that survives exposure to an antimicrobial; that is, tolerance that is restricted to a subpopulation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jo, J., Price-Whelan, A. & Dietrich, L.E.P. Gradients and consequences of heterogeneity in biofilms. Nat Rev Microbiol 20, 593–607 (2022). https://doi.org/10.1038/s41579-022-00692-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41579-022-00692-2

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology