Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A lasting symbiosis: how the Hawaiian bobtail squid finds and keeps its bioluminescent bacterial partner

Subjects

Abstract

For more than 30 years, the association between the Hawaiian bobtail squid, Euprymna scolopes, and the bioluminescent bacterium Vibrio fischeri has been studied as a model system for understanding the colonization of animal epithelia by symbiotic bacteria. The squid–vibrio light-organ system provides the exquisite resolution only possible with the study of a binary partnership. The impact of this relationship on the partners’ biology has been broadly characterized, including their ecology and evolutionary biology as well as the underlying molecular mechanisms of symbiotic dynamics. Much has been learned about the factors that foster initial light-organ colonization, and more recently about the maturation and long-term maintenance of the association. This Review synthesizes the results of recent research on the light-organ association and also describes the development of new horizons for E. scolopes as a model organism that promises to inform biology and biomedicine about the basic nature of host–microorganism interactions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The Hawaiian bobtail squid as a model host for studying symbiosis.
Fig. 2: Update to the winnowing model of colonization.
Fig. 3: The diel rhythm of the host–symbiont association highlights major differences between juvenile and adult stages.

References

  1. 1.

    de Bary, A. De la symbiose. Rev. Int. Sci. 3, 301–309 (1879).

    Google Scholar 

  2. 2.

    Casadevall, A. & Pirofski, L. A. Ditch the term pathogen. Nature 516, 165–166 (2014).

    CAS  Google Scholar 

  3. 3.

    McFall-Ngai, M. et al. Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl Acad. Sci. USA 110, 3229–3236 (2013).

    CAS  Google Scholar 

  4. 4.

    Ruby, E. G. Symbiotic conversations are revealed under genetic interrogation. Nat. Rev. Microbiol. 6, 752–762 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Douglas, A. E. Simple animal models for microbiome research. Nat. Rev. Microbiol. 12, 764–775 (2019).

    Google Scholar 

  6. 6.

    McFall-Ngai, M. J. & Ruby, E. G. Symbiont recognition and subsequent morphogenesis as early events in an animal-bacterial mutualism. Science 254, 1491–1494 (1991).

    CAS  Google Scholar 

  7. 7.

    Jones, B. W. & Nishiguchi, M. K. Counterillumination in the Hawaiian bobtail squid, Euprymna scolopes Berry (Mollusca: Cephalopoda). Mar. Biol. 144, 1151–1155 (2004).

    Google Scholar 

  8. 8.

    McFall-Ngai, M. & Montgomery, M. K. The anatomy and morphology of the adult bacterial light organ of Euprymna scolopes Berry (Cephalopoda:Sepiolidae). Biol. Bull. 179, 332–339 (1990).

    CAS  Google Scholar 

  9. 9.

    Montgomery, M. K. & McFall-Ngai, M. Bacterial symbionts induce host organ morphogenesis during early postembryonic development of the squid Euprymna scolopes. Development 120, 1719–1729 (1994).

    CAS  Google Scholar 

  10. 10.

    Montgomery, M. K. & McFall-Ngai, M. J. Embryonic development of the light organ of the sepiolid squid Euprymna scolopes Berry. Biol. Bull. 184, 296–308 (1993).

    CAS  Google Scholar 

  11. 11.

    Lee, K. H. & Ruby, E. G. Detection of the light organ symbiont, Vibrio fischeri, in Hawaiian seawater by using lux gene probes. Appl. Environ. Microbiol. 58, 942–947 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Nyholm, S. V. & McFall-Ngai, M. J. The winnowing: establishing the squid–vibrio symbiosis. Nat. Rev. Microbiol. 2, 632–642 (2004).

    CAS  Google Scholar 

  13. 13.

    Visick, K. L., Stabb, E. V. & Ruby, E. G. A lasting symbiosis: how Vibrio fischeri finds a squid partner and persists within its natural host. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-021-00557-0 (2021).

    Article  Google Scholar 

  14. 14.

    McFall-Ngai, M. J. The importance of microbes in animal development: lessons from the squid-vibrio symbiosis. Annu. Rev. Microbiol. 68, 177–194 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    McFall-Ngai, M. & Bosch, T. C. G. Animal development in the microbial world: the power of experimental model systems. Curr. Top. Dev. Biol. 141, 371–397 (2021).

    Google Scholar 

  16. 16.

    Koch, E. J., Miyashiro, T., McFall-Ngai, M. J. & Ruby, E. G. Features governing symbiont persistence in the squid-vibrio association. Mol. Ecol. 23, 1624–1634 (2014). Ground-breaking study that helped to establish husbandry protocols to study the effects of persistent colonization and bioluminescence in the development of the light organ.

    PubMed  PubMed Central  Google Scholar 

  17. 17.

    Ruby, E. G. & Asato, L. M. Growth and flagellation of Vibrio fischeri during initiation of the sepiolid squid light organ symbiosis. Arch. Microbiol. 159, 160–167 (1993).

    CAS  Google Scholar 

  18. 18.

    Mandel, M. J., Wollenberg, M. S., Stabb, E. V., Visick, K. L. & Ruby, E. G. A single regulatory gene is sufficient to alter bacterial host range. Nature 458, 215–218 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Nyholm, S. V., Deplancke, B., Gaskins, H. R., Apicella, M. A. & McFall-Ngai, M. J. Roles of Vibrio fischeri and nonsymbiotic bacteria in the dynamics of mucus secretion during symbiont colonization of the Euprymna scolopes light organ. Appl. Environ. Microbiol. 68, 5113–5122 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Lamarcq, L. H. & McFall-Ngai, M. J. Induction of a gradual, reversible morphogenesis of its host’s epithelial brush border by Vibrio fischeri. Infect. Immun. 66, 777–785 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Doino, J. A. & McFall-Ngai, M. J. A transient exposure to symbiosis-competent bacteria induces light organ morphogenesis in the host squid. Biol. Bull. 182, 4578–4586 (1995).

    Google Scholar 

  22. 22.

    Nyholm, S. V., Stabb, E. V., Ruby, E. G. & McFall-Ngai, M. J. Establishment of an animal-bacterial association: recruiting symbiotic vibrios from the environment. Proc. Natl Acad. Sci. USA 97, 10231–10235 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Sycuro, L. K., Ruby, E. G. & McFall-Ngai, M. Confocal microscopy of the light organ crypts in juvenile Euprymna scolopes reveals their morphological complexity and dynamic function in symbiosis. J. Morphol. 267, 555–568 (2006).

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    Essock-Burns, T. et al. Interactions of symbiotic partners drive the development of a complex biogeography in the squid-vibrio symbiosis. MBio 11, e00853-20 (2020).

    PubMed  PubMed Central  Google Scholar 

  25. 25.

    Nawroth, J. C. et al. Motile cilia create fluid-mechanical microhabitats for the active recruitment of the host microbiome. Proc. Natl Acad. Sci. USA 114, 9510–9516 (2017). Demonstrates that the ciliated surfaces of the nascent light organ create a fluid-mechanical microhabitat that helps select for V. fischeri during light-organ colonization.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Chen, F. et al. Bactericidal permeability-increasing proteins shape host-microbe interactions. mBio 8, e00040-17 (2017).

    PubMed  PubMed Central  Google Scholar 

  27. 27.

    Rader, B. A., Kremer, N., Apicella, M. A., Goldman, W. E. & McFall-Ngai, M. J. Modulation of symbiont lipid a signaling by host alkaline phosphatases in the squid-vibrio symbiosis. mBio 3, e00093-12 (2012).

    PubMed  PubMed Central  Google Scholar 

  28. 28.

    Troll, J. V. et al. Taming the symbiont for coexistence: a host PGRP neutralizes a bacterial symbiont toxin. Environ. Microbiol. 12, 2190–2203 (2010).

    CAS  Google Scholar 

  29. 29.

    Peyer, S. M., Kremer, N. & McFall-Ngai, M. J. Involvement of a host cathepsin L in symbiont-induced cell death. Microbiologyopen 7, e00632 (2018).

    PubMed  PubMed Central  Google Scholar 

  30. 30.

    Kremer, N. et al. The dual nature of haemocyanin in the establishment and persistence of the squid-vibrio symbiosis. Proc. Biol. Sci. 281, 20140504 (2014).

    PubMed  PubMed Central  Google Scholar 

  31. 31.

    Heath-Heckman, E. A. C. et al. Shaping the microenvironment: evidence for the influence of a host galaxin on symbiont acquisition and maintenance in the squid-vibrio symbiosis. Environ. Microbiol. 16, 3669–3682 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Castillo, M. G., Goodson, M. S. & McFall-Ngai, M. Identification and molecular characterization of a complement C3 molecule in a lophotrochozoan, the Hawaiian bobtail squid Euprymna scolopes. Dev. Comp. Immunol. 33, 69–76 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Davidson, S. K., Koropatnick, T. A., Kossmehl, R., Sycuro, L. & McFall-Ngai, M. J. NO means ‘yes’ in the squid-vibrio symbiosis: nitric oxide (NO) during the initial stages of a beneficial association. Cell. Microbiol. 6, 1139–1151 (2004).

    CAS  Google Scholar 

  34. 34.

    Altura, M. A. et al. The first engagement of partners in the Euprymna scolopes-Vibrio fischeri symbiosis is a two-step process initiated by a few environmental symbiont cells. Environ. Microbiol. 15, 2937–2950 (2013).

    PubMed  PubMed Central  Google Scholar 

  35. 35.

    Kremer, N. et al. Initial symbiont contact orchestrates host-organ-wide transcriptional changes that prime tissue colonization. Cell Host Microbe 14, 183–194 (2013). Demonstrates that initial contact with only a few V. fischeri cells leads to changes in host gene expression that promotes light-organ colonization.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Koehler, S. et al. The model squid–vibrio symbiosis provides a window into the impact of strain- and species-level differences during the initial stages of symbiont engagement. Environ. Microbiol. 21, 3269–3283 (2019).

    CAS  Google Scholar 

  37. 37.

    Mandel, M. J. et al. Squid-derived chitin oligosaccharides are a chemotactic signal during colonization by Vibrio fischeri. Appl. Environ. Microbiol. 78, 4620–4626 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Bongrand, C. et al. A genomic comparison of 13 symbiotic Vibrio fischeri isolates from the perspective of their host source and colonization behavior. ISME J. 10, 2907–2917 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Wollenberg, M. S. & Ruby, E. G. Population structure of Vibrio fischeri within the light organs of Euprymna scolopes squid from two oahu (Hawaii) populations. Appl. Environ. Microbiol. 75, 193–202 (2009).

    CAS  Google Scholar 

  40. 40.

    Boettcher, K. J., Ruby, E. G. & McFall-Ngai, M. J. Bioluminescence in the symbiotic squid Euprymna scolopes is controlled by a daily biological rhythm. J. Comp. Physiol. A 179, 65–73 (1996).

    Google Scholar 

  41. 41.

    Foster, J. S., Apicella, M. A. & McFall-Ngai, M. J. Vibrio fischeri lipopolysaccharide induces developmental apoptosis, but not complete morphogenesis, of the Euprymna scolopes symbiotic light organ. Dev. Biol. 226, 242–254 (2000).

    CAS  Google Scholar 

  42. 42.

    Koropatnick, T. A. et al. Microbial factor-mediated development in a host-bacterial mutualism. Science 306, 1186–1188 (2004). Shows that morphogenesis of the light organ in E. scolopes is caused by MAMPs from V. fischeri, including tracheal cytotoxin.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Koropatnick, T., Goodson, M. S., Heath-Heckman, E. A. C. & McFall-Ngai, M. Identifying the cellular mechanisms of symbiont-induced epithelial morphogenesis in the squid-vibrio association. Biol. Bull. 226, 56–68 (2014).

    PubMed  PubMed Central  Google Scholar 

  44. 44.

    Aschtgen, M. S., Wetzel, K., Goldman, W., Mcfall-Ngai, M. & Ruby, E. Vibrio fischeri-derived outer membrane vesicles trigger host development. Cell. Microbiol. 18, 488–499 (2016).

    CAS  Google Scholar 

  45. 45.

    Koropatnick, T. A., Kimbell, J. R. & McFall-Ngai, M. J. Responses of host hemocytes during the initiation of the squid-vibrio symbiosis. Biol. Bull. 212, 29–39 (2007).

    Google Scholar 

  46. 46.

    Kimbell, J. R. & McFall-Ngai, M. J. Symbiont-induced changes in host actin during the onset of a beneficial animal-bacterial association. Appl. Environ. Microbiol. 70, 1434–1441 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Nikolakakis, K., Lehnert, E., McFall-Ngai, M. J. & Ruby, E. G. Use of hybridization chain reaction-fluorescent in situ hybridization to track gene expression by both partners during initiation of symbiosis. Appl. Environ. Microbiol. 81, 4728–4735 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Heath-Heckman, E. A. C., Foster, J., Apicella, M. A., Goldman, W. E. & McFall-Ngai, M. Environmental cues and symbiont microbe-associated molecular patterns function in concert to drive the daily remodelling of the crypt-cell brush border of the Euprymna scolopes light organ. Cell. Microbiol. 18, 1642–1652 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Cohen, S. K. et al. Tracking the cargo of extracellular symbionts into host tissues with correlated electron microscopy and nanoscale secondary ion mass spectrometry imaging. Cell. Microbiol. 22, e13177 (2020). Using NanoSIMS demonstrates that abundant products of the extracellular symbiont traffic into the host nucleus and associate with the euchromatin and the nucleolus.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Brennan, C. A. et al. A model symbiosis reveals a role for sheathed-flagellum rotation in the release of immunogenic lipopolysaccharide. elife 3, e01579 (2014).

    PubMed  PubMed Central  Google Scholar 

  51. 51.

    Aschtgen, M. S. et al. Rotation of Vibrio fischeri flagella produces outer membrane vesicles that induce host development. J. Bacteriol. 198, 2156–2165 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Moriano-Gutierrez, S. et al. The noncoding small RNA SsrA is released by Vibrio fischeri and modulates critical host responses. PLoS Biol. 18, e3000934 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Heath-Heckman, E. A. C. C. et al. Bacterial bioluminescence regulates expression of a host cryptochrome gene in the squid-vibrio symbiosis. mBio 4, e00167-13 (2013).

    PubMed  PubMed Central  Google Scholar 

  54. 54.

    McFall-Ngai, M., Heath-Heckman, E. A. C., Gillette, A. A., Peyer, S. M. & Harvie, E. A. The secret languages of coevolved symbioses: insights from the Euprymna scolopes-Vibrio fischeri symbiosis. Semin. Immunol. 24, 3–8 (2012).

    Google Scholar 

  55. 55.

    Tong, D. et al. Evidence for light perception in a bioluminescent organ. Proc. Natl Acad. Sci. USA 106, 9836–9841 (2009).

    CAS  Google Scholar 

  56. 56.

    Peyer, S. M., Pankey, M. S., Oakley, T. H. & McFall-Ngai, M. J. Eye-specification genes in the bacterial light organ of the bobtail squid Euprymna scolopes, and their expression in response to symbiont cues. Mech. Dev. 131, 111–126 (2014).

    CAS  Google Scholar 

  57. 57.

    Peyer, S. M., Heath-Heckman, E. A. C. & McFall-Ngai, M. J. Characterization of the cell polarity gene crumbs during the early development and maintenance of the squid–vibrio light organ symbiosis. Dev. Genes Evol. 227, 375–387 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Belcaid, M. et al. Symbiotic organs shaped by distinct modes of genome evolution in cephalopods. Proc. Natl Acad. Sci. USA 116, 3030–3035 (2019). Reports the first sequenced cephalopod squid genome and proposes various mechanisms for the evolution of the light organ and accessory nidamental gland in E. scolopes.

    CAS  Google Scholar 

  59. 59.

    Moriano-Gutierrez, S. et al. Critical symbiont signals drive both local and systemic changes in diel and developmental host gene expression. Proc. Natl Acad. Sci. USA 116, 7990–7999 (2019). Demonstrates that light-organ colonization and light production leads to systemic changes in gene expression in E. scolopes.

    CAS  Google Scholar 

  60. 60.

    Bongrand, C. & Ruby, E. G. Achieving a multi-strain symbiosis: strain behavior and infection dynamics. ISME J. 13, 698–706 (2019).

    Google Scholar 

  61. 61.

    Tognini, P., Thaiss, C. A., Elinav, E. & Sassone-Corsi, P. Circadian coordination of antimicrobial responses. Cell Host Microbe 22, 185–192 (2017).

    CAS  Google Scholar 

  62. 62.

    Bishehsari, F., Voigt, R. M. & Keshavarzian, A. Circadian rhythms and the gut microbiota: from the metabolic syndrome to cancer. Nat. Rev. Endocrinol. 16, 731–739 (2020).

    Google Scholar 

  63. 63.

    Schwartzman, J. A. et al. The chemistry of negotiation: rhythmic, glycan-driven acidification in a symbiotic conversation. Proc. Natl Acad. Sci. USA 112, 566–571 (2015). Provides compelling evidence that haemocytes traffic into the adult light organ at night and deliver chitin to the symbionts, which results in acidification of the microenvironment and promotion of bioluminescence.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Wier, A. M. et al. Transcriptional patterns in both host and bacterium underlie a daily rhythm of anatomical and metabolic change in a beneficial symbiosis. Proc. Natl Acad. Sci. USA 107, 2259–2264 (2010). Demonstrates that host and symbiont gene expression is regulated over a day–night cycle and contributes to a daily remodelling of the light organ and symbiont metabolism.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Graf, J. & Ruby, E. G. Host-derived amino acids support the proliferation of symbiotic bacteria. Proc. Natl Acad. Sci. USA 95, 1818–1822 (1998).

    CAS  Google Scholar 

  66. 66.

    Nyholm, S. V. & McFall-Ngai, M. J. Sampling the light-organ microenvironment of Euprymna scolopes: description of a population of host cells in association with the bacterial symbiont Vibrio fischeri. Biol. Bull. 195, 89–97 (1998).

    CAS  Google Scholar 

  67. 67.

    Lee, K. H. & Ruby, E. G. Effect of the squid host on the abundance and distribution of symbiotic Vibrio fischeri in nature. Appl. Environ. Microbiol. 60, 1565–1571 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Ruby, E. G. & Lee, K. H. The Vibrio fischeri-Euprymna scolopes light organ association: current ecological paradigms. Appl. Environ. Microbiol. 64, 805–812 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Visick, K. L., Foster, J., Doino, J., McFall-Ngai, M. & Ruby, E. G. Vibrio fischeri lux genes play an important role in colonization and development of the host light organ. J. Bacteriol. 182, 4578–4586 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Visick, K. L. & Ruby, E. G. Vibrio fischeri and its host: it takes two to tango. Curr. Opin. Microbiol. 9, 632–638 (2006).

    CAS  Google Scholar 

  71. 71.

    Boettcher, K. J. & Ruby, E. G. Detection and quantification of Vibrio fischeri autoinducer from symbiotic squid light organs. J. Bacteriol. 177, 1053–1058 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Koch, E. J. et al. The cytokine MIF controls daily rhythms of symbiont nutrition in an animal–bacterial association. Proc. Natl Acad. Sci. USA 117, 27578–27586 (2020).

    CAS  Google Scholar 

  73. 73.

    Hanlon, R. T., Claes, M. F., Ashcraft, S. E. & Dunlap, P. V. Laboratory culture of the sepiolid squid Euprymna scolopes: a model system for bacteria-animal symbiosis. Biol. Bull. 192, 364–374 (1997).

    CAS  Google Scholar 

  74. 74.

    Claes, M. F. & Dunlap, P. V. Aposymbiotic culture of the sepiolid squid Euprymna scolopes: role of the symbiotic bacterium Vibrio fischeri in host animal growth, development, and light organ morphogenesis. J. Exp. Zool. 286, 280–296 (2000).

    CAS  Google Scholar 

  75. 75.

    Kremer, N. et al. Persistent interactions with bacterial symbionts direct mature-host cell morphology and gene expression in the squid-vibrio symbiosis. mSystems 3, e00165-18 (2018).

    PubMed  PubMed Central  Google Scholar 

  76. 76.

    Schroeder, B. O. & Bäckhed, F. Signals from the gut microbiota to distant organs in physiology and disease. Nat. Med. 22, 1079–1089 (2016).

    CAS  Google Scholar 

  77. 77.

    Montgomery, M. K. & McFall-Ngai, M. J. The muscle-derived lens of a squid bioluminescent organ is biochemically convergent with the ocular lens. Evidence for recruitment of aldehyde dehydrogenase as a predominant structural protein. J. Biol. Chem. 267, 20999–21003 (1992).

    CAS  Google Scholar 

  78. 78.

    Koch, E. J., Moriano-Gutierrez, S., Ruby, E. G., McFall-Ngai, M. J. & Liebeke, M. The impact of persistent colonization by Vibrio fischeri on the metabolome of the host squid Euprymna scolopes. J. Exp. Biol. 223, jeb212860 (2020).

    PubMed  PubMed Central  Google Scholar 

  79. 79.

    Altura, M. A., Stabb, E., Goldman, W., Apicella, M. & McFall-Ngai, M. J. Attenuation of host NO production by MAMPs potentiates development of the host in the squid-vibrio symbiosis. Cell. Microbiol. 13, 527–537 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Troll, J. V. et al. Peptidoglycan induces loss of a nuclear peptidoglycan recognition protein during host tissue development in a beneficial animal-bacterial symbiosis. Cell. Microbiol. 11, 1114–1127 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Krasity, B. C. et al. Structural and functional features of a developmentally regulated lipopolysaccharide-binding protein. mBio 6, e01193-15 (2015).

    PubMed  PubMed Central  Google Scholar 

  82. 82.

    Castillo, M. G., Salazar, K. A. & Joffe, N. R. The immune response of cephalopods from head to foot. Fish Shellfish Immunol. 46, 145–160 (2015).

    CAS  Google Scholar 

  83. 83.

    McFall-Ngai, M., Nyholm, S. V. & Castillo, M. G. The role of the immune system in the initiation and persistence of the Euprymna scolopesVibrio fischeri symbiosis. Semin. Immunol. 22, 48–53 (2010).

    CAS  Google Scholar 

  84. 84.

    Nyholm, S. V., Stewart, J. J., Ruby, E. G. & McFall-Ngai, M. J. Recognition between symbiotic Vibrio fischeri and the haemocytes of Euprymna scolopes. Environ. Microbiol. 11, 483–493 (2009).

    PubMed  PubMed Central  Google Scholar 

  85. 85.

    Rader, B., McAnulty, S. J. & Nyholm, S. V. Persistent symbiont colonization leads to a maturation of hemocyte response in the Euprymna scolopes/Vibrio fischeri symbiosis. Microbiologyopen 8, e858 (2019). Shows that long-term colonization of the light organ leads to a maturation of the host’s cellular innate immune system that alters haemocyte response to V. fischeri.

    PubMed  PubMed Central  Google Scholar 

  86. 86.

    Collins, A. J., Schleicher, T. R., Rader, B. A. & Nyholm, S. V. Understanding the role of host hemocytes in a squid/vibrio symbiosis using transcriptomics and proteomics. Front. Immunol. 3, 91 (2012).

    PubMed  PubMed Central  Google Scholar 

  87. 87.

    Schleicher, T. R., VerBerkmoes, N. C., Shah, M. & Nyholm, S. V. Colonization state influences the hemocyte proteome in a beneficial squid-vibrio symbiosis. Mol. Cell. Proteom. 13, 2673–2686 (2014).

    CAS  Google Scholar 

  88. 88.

    McAnulty, S. J. & Nyholm, S. V. The role of hemocytes in the hawaiian bobtail squid, Euprymna scolopes: a model organism for studying beneficial host-microbe interactions. Front. Microbiol. 7, 2013 (2016).

    Google Scholar 

  89. 89.

    Salazar, K. A., Joffe, N. R., Dinguirard, N., Houde, P. & Castillo, M. G. Transcriptome analysis of the white body of the squid Euprymna tasmanica with emphasis on immune and hematopoietic gene discovery. PLoS ONE 10, e0119949 (2015).

    PubMed  PubMed Central  Google Scholar 

  90. 90.

    Poole, P., Ramachandran, V. & Terpolilli, J. Rhizobia: from saprophytes to endosymbionts. Nat. Rev. Microbiol. 16, 291–303 (2018).

    CAS  Google Scholar 

  91. 91.

    Hirsch, A. M. & McFall-Ngai, M. J. Fundamental concepts in symbiotic interactions: light and dark, day and night, squid and legume. J. Plant. Growth Regul. 19, 113–130 (2000).

    CAS  Google Scholar 

  92. 92.

    Roy, S. et al. Celebrating 20 years of genetic discoveries in legume nodulation and symbiotic nitrogen fixation. Plant Cell 32, 15–41 (2020).

    CAS  Google Scholar 

  93. 93.

    Proctor, L. M. et al. The integrative human microbiome project. Nature 569, 641–648 (2019).

    Google Scholar 

  94. 94.

    Pearson, J. A., Wong, F. S. & Wen, L. Crosstalk between circadian rhythms and the microbiota. Immunology 161, 278–290 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95.

    Sanchez, G. et al. New bobtail squid (Sepiolidae: Sepiolinae) from the Ryukyu islands revealed by molecular and morphological analysis. Commun. Biol 2, 465 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. 96.

    Lee, P. N., Callaerts, P., De Couet, H. G. & Martindale, M. Q. Cephalopod Hox genes and the origin of morphological novelties. Nature 424, 1061–1065 (2003).

    CAS  Google Scholar 

  97. 97.

    Hartmann, B. et al. Pax6 in the sepiolid squid Euprymna scolopes: evidence for a role in eye, sensory organ and brain development. Mech. Dev. 120, 177–183 (2003).

    CAS  Google Scholar 

  98. 98.

    Farfán, C., Shigeno, S., Nödl, M. T. & De Couet, H. G. Developmental expression of apterous/Lhx2/9 in the sepiolid squid Euprymna scolopes supports an ancestral role in neural development. Evol. Dev. 11, 354–362 (2009).

    Google Scholar 

  99. 99.

    Nödl, M. T., Kerbl, A., Walzl, M. G., Müller, G. B. & de Couet, H. G. The cephalopod arm crown: appendage formation and differentiation in the Hawaiian bobtail squid Euprymna scolopes. Front. Zool. 13, 44 (2016).

    PubMed  PubMed Central  Google Scholar 

  100. 100.

    Crookes, W. J. et al. Reflectins: the unusual proteins of squid reflective tissues. Science 303, 235–238 (2004).

    CAS  Google Scholar 

  101. 101.

    Zepeda, E. A., Veline, R. J. & Crook, R. J. Rapid associative learning and stable long-term memory in the squid Euprymna scolopes. Biol. Bull. 232, 212–218 (2017).

    Google Scholar 

  102. 102.

    Howard, R. B., Lopes, L. N., Lardie, C. R., Perez, P. P. & Crook, R. J. Early-life injury produces lifelong neural hyperexcitability, cognitive deficit and altered defensive behaviour in the squid Euprymna scolopes. Philos. Trans. R. Soc. B 374, 20190281 (2019).

    CAS  Google Scholar 

  103. 103.

    Bazarini, S. N. & Crook, R. J. Environmental estrogen exposure disrupts sensory processing and nociceptive plasticity in the cephalopod Euprymna scolopes. J. Exp. Biol. 223, jeb218008 (2020).

    Google Scholar 

  104. 104.

    Crawford, K. et al. Highly efficient knockout of a squid pigmentation gene. Curr. Biol. 30, 3484–3490.e4 (2020).

    CAS  Google Scholar 

  105. 105.

    Ruby, E. G. et al. Complete genome sequence of Vibrio fischeri: a symbiotic bacterium with pathogenic congeners. Proc. Natl Acad. Sci. USA 102, 3004–3009 (2005).

    CAS  Google Scholar 

  106. 106.

    Gromek, S. M. et al. Leisingera sp. JC1, a bacterial isolate from Hawaiian bobtail squid eggs, produces indigoidine and differentially inhibits vibrios. Front. Microbiol. 7, 1342 (2016).

    PubMed  PubMed Central  Google Scholar 

  107. 107.

    Suria, A. M. et al. Hawaiian bobtail squid symbionts inhibit marine bacteria via production of specialized metabolites, including new bromoalterochromides BAC-D/D′. mSphere 5, e00166-20 (2020).

    PubMed  PubMed Central  Google Scholar 

  108. 108.

    Collins, A. J. & Nyholm, S. V. Draft genome of Phaeobacter gallaeciensis ANG1, a dominant member of the accessory nidamental gland of Euprymna scolopes. J. Bacteriol. 193, 3397–3398 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. 109.

    Collins, A. J., Fullmer, M. S., Gogarten, J. P. & Nyholm, S. V. Comparative genomics of Roseobacter clade bacteria isolated from the accessory nidamental gland of Euprymna scolopes. Front. Microbiol. 6, 123 (2015).

    PubMed  PubMed Central  Google Scholar 

  110. 110.

    Chun, C. K. et al. An annotated cDNA library of juvenile Euprymna scolopes with and without colonization by the symbiont Vibrio fischeri. BMC Genomics 7, 154 (2006).

    PubMed  PubMed Central  Google Scholar 

  111. 111.

    Chun, C. K. et al. Effects of colonization, luminescence, and autoinducer on host transcription during development of the squid-vibrio association. Proc. Natl Acad. Sci. USA 105, 11323–11328 (2008).

    CAS  Google Scholar 

  112. 112.

    Thompson, L. R. et al. Transcriptional characterization of Vibrio fischeri during colonization of juvenile Euprymna scolopes. Environ. Microbiol. 19, 1845–1856 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. 113.

    Schleicher, T. R. & Nyholm, S. V. Characterizing the host and symbiont proteomes in the association between the bobtail squid, Euprymna scolopes, and the bacterium, Vibrio fischeri. PLoS ONE 6, e25649 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. 114.

    Kerwin, A. H. & Nyholm, S. V. Symbiotic bacteria associated with a bobtail squid reproductive system are detectable in the environment, and stable in the host and developing eggs. Environ. Microbiol. 19, 1463–1475 (2017).

    Google Scholar 

  115. 115.

    Collins, A. J. et al. Diversity and partitioning of bacterial populations within the accessory nidamental gland of the squid Euprymna scolopes. Appl. Environ. Microbiol. 78, 4200–4208 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. 116.

    Ii, J. F. B. et al. Global discovery of colonization determinants in the squid symbiont Vibrio fischeri. Proc. Natl Acad. Sci. USA 11, 17284–17289 (2014).

    Google Scholar 

  117. 117.

    Zink, K. E., Tarnowski, D. A., Mandel, M. J. & Sanchez, L. M. Optimization of a minimal sample preparation protocol for imaging mass spectrometry of unsectioned juvenile invertebrates. J. Mass Spectrom. 55, e4458 (2020).

    CAS  Google Scholar 

  118. 118.

    Zink, K. E. et al. A small molecule coordinates symbiotic behaviors in a host organ. mBio 12, e03637-20 (2021).

    PubMed  PubMed Central  Google Scholar 

  119. 119.

    Kerwin, A. H. et al. Shielding the next generation: symbiotic bacteria from a reproductive organ protect bobtail squid eggs from fungal fouling. mBio 10, e02376-19 (2019). Describes for the first time a functional role involving antifungal egg defence for the cephalopod accessory nidamental gland.

    PubMed  PubMed Central  Google Scholar 

  120. 120.

    Pan, S. et al. Model-enabled gene search (MEGS) allows fast and direct discovery of enzymatic and transport gene functions in the marine bacterium Vibrio fischeri. J. Biol. Chem. 292, 10250–10261 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. 121.

    McFall-Ngai, M. & Ruby, E. Sepiolids and vibrios: when first they meet: reciprocal interactions between host and symbiont lead to the creation of a complex light-emitting organ. le. Bioscience 48, 257–265 (1998).

    Google Scholar 

  122. 122.

    Casaburi, G., Goncharenko-Foster, I., Duscher, A. A. & Foster, J. S. Transcriptomic changes in an animal-bacterial symbiosis under modeled microgravity conditions. Sci. Rep. 7, 46318 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. 123.

    Foster, J. S., Khodadad, C. L. M., Ahrendt, S. R., & Parrish, M. L. Impact of simulated microgravity on the normal developmental time line of an animal-bacteria symbiosis. Sci. Rep. 3, 1340 (2013).

    PubMed  PubMed Central  Google Scholar 

  124. 124.

    Phillips, N. J. et al. The lipid a from Vibrio fischeri lipopolysaccharide: a unique structure bearing a phosphoglycerol moiety. J. Biol. Chem. 286, 21203–21219 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. 125.

    Goodson, M. S. et al. Identifying components of the NF-κB pathway in the beneficial Euprymna scolopes-Vibrio fischeri light organ symbiosis. Appl. Environ. Microbiol. 71, 6934–6946 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. 126.

    Kerwin, A. H. & Nyholm, S. V. Reproductive system symbiotic bacteria are conserved between two distinct populations of Euprymna scolopes from Oahu, Hawaii. mSphere 3, e00531-17 (2018).

    PubMed  PubMed Central  Google Scholar 

  127. 127.

    Kaufman, M. R., Ikeda, Y., Patton, C., Van Dykhuizen, G. & Epel, D. Bacterial symbionts colonize the accessory nidamental gland of the squid Loligo opalescens via horizontal transmission. Biol. Bull. 194, 36–43 (1998).

    CAS  Google Scholar 

  128. 128.

    Barbieri, E., Barry, K., Child, A. & Wainwrigth, N. Antimicrobial activity in the microbial community of the accessory-nidamental gland and egg cases of Loligo pealei (Cephalopoda: Loliginidae). in. Biol. Bull. 193, 275–276 (1997).

    CAS  Google Scholar 

  129. 129.

    Nyholm, S. V. In the beginning: egg–microbe interactions and consequences for animal hosts. Philos. Trans. R. Soc. B 375, 20190593 (2020).

    CAS  Google Scholar 

  130. 130.

    Gil-Turnes, M. S., Hay, M. E. & Fenical, W. Symbiotic marine bacteria chemically defend crustacean embryos from a pathogenic fungus. Science 246, 116–118 (1989).

    CAS  Google Scholar 

  131. 131.

    Gil-Turnes, M. S. & Fenical, W. Embryos of Homarus americanus are protected by epibiotic bacteria. Biol. Bull. 182, 105–108 (1992).

    CAS  Google Scholar 

  132. 132.

    Khalturin, K., Hemmrich, G., Fraune, S., Augustin, R. & Bosch, T. C. G. More than just orphans: are taxonomically-restricted genes important in evolution? Trends Genet. 25, 404–413 (2009).

    CAS  Google Scholar 

  133. 133.

    Tautz, D. & Domazet-Lošo, T. The evolutionary origin of orphan genes. Nat. Rev. Genet. 12, 692–702 (2011).

    CAS  Google Scholar 

  134. 134.

    Nyholm, S. V. in Advances in Environmental Microbiology 2: The Mechanistic Benefits of Microbial Symbionts (ed. Hirst, C. J.) 297–315 (Springer, 2016).

Download references

Acknowledgements

The authors thank E. Ruby, K. Visick and E. Stabb for helpful comments about the manuscript. Work in the authors’ laboratories has been supported by the National Science Foundation NSF IOS 1557914 to S.V.N.; National Institutes of Health (NIH), National Institute of Allergy and Infectious Diseases R37 AI50661 to M.J.M.-N.; NIH, Office of the Director, R01 OD11024 and GM135254 (M.J.M.-N.); and National Science Foundation, Integrated NSF Support Promoting Interdisciplinary Research and Education INSPIRE Grant MCB1608744 (to M.J.M.-N.).

Author information

Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Spencer V. Nyholm or Margaret J. McFall-Ngai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Microbiology thanks T. Bosch, who co-reviewed with C. Giez, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Mutualism

The fitness of both symbiotic partners is enhanced by the association.

Parasitism

(Or pathogenesis). The fitness of one partner is enhanced and the other is diminished.

Commensalism

The fitness of one symbiotic partner is enhanced and the other is unaffected.

Microbiota

Often refers to the group of microorganisms found in a specific habitat, such as a host or biofilm.

Microbiome

Often used interchangeably with the term microbiota. However, some researchers use microbiome to refer to the collective genomes of the microbiota.

Multi-omics

Multiple analysis approaches applied to a biological system, for example, genomics, transcriptomics, proteomics and metabolomics.

Holobiont

Also known as metaorganism. Refers to a host and all of its associated partners.

Metabolome

Collective metabolites associated with a given organism or organisms.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nyholm, S.V., McFall-Ngai, M.J. A lasting symbiosis: how the Hawaiian bobtail squid finds and keeps its bioluminescent bacterial partner. Nat Rev Microbiol (2021). https://doi.org/10.1038/s41579-021-00567-y

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing