Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Toxoplasma gondii infection and its implications within the central nervous system

Abstract

Toxoplasma gondii is a parasite that infects a wide range of animals and causes zoonotic infections in humans. Although it normally only results in mild illness in healthy individuals, toxoplasmosis is a common opportunistic infection with high mortality in individuals who are immunocompromised, most commonly due to reactivation of infection in the central nervous system. In the acute phase of infection, interferon-dependent immune responses control rapid parasite expansion and mitigate acute disease symptoms. However, after dissemination the parasite differentiates into semi-dormant cysts that form within muscle cells and neurons, where they persist for life in the infected host. Control of infection in the central nervous system, a compartment of immune privilege, relies on modified immune responses that aim to balance infection control while limiting potential damage due to inflammation. In response to the activation of interferon-mediated pathways, the parasite deploys an array of effector proteins to escape immune clearance and ensure latent survival. Although these pathways are best studied in the laboratory mouse, emerging evidence points to unique mechanisms of control in human toxoplasmosis. In this Review, we explore some of these recent findings that extend our understanding for proliferation, establishment and control of toxoplasmosis in humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Dissemination of acute and establishment of chronic Toxoplasma gondii infection.
Fig. 2: Toxoplasma gondii differentiation and migration into the central nervous system.
Fig. 3: Differences in murine and human cell autonomous control.
Fig. 4: Modulation of host cellular immune pathways by Toxoplasma gondii effectors.

Similar content being viewed by others

References

  1. Dubey, J. P. Toxoplasmosis of animals and humans (CRC, 2010).

  2. Andreani, G., Lodge, R., Richard, D. & Tremblay, M. J. Mechanisms of interaction between protozoan parasites and HIV. Curr. Opin. HIV AIDS 7, 276–282 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Dunay, I. R., Gajurel, K., Dhakal, R., Liesenfeld, O. & Montoya, J. G. Treatment of toxoplasmosis: historical perspective, animal models, and current clinical practice. Clin. Microbiol. Rev. 31, e00057-17 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Platanias, L. C. Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat. Rev. Immunol. 5, 375–386 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Fisch, D., Clough, B. & Frickel, E. M. Human immunity to Toxoplasma gondii. PLoS Pathog. 15, e1008097 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hunter, C. A. & Sibley, L. D. Modulation of innate immunity by Toxoplasma gondii virulence effectors. Nat. Rev. Microbiol. 10, 766–778 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hakimi, M. A., Olias, P. & Sibley, L. D. Toxoplasma effectors targeting host signaling and transcription. Clin. Microbiol. Rev. 30, 615–645 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Behnke, M. S., Dubey, J. P. & Sibley, L. D. Genetic mapping of pathogenesis determinants in Toxoplasma gondii. Annu. Rev. Microbiol. 70, 63–81 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Shwab, E. K. et al. Geographical patterns of Toxoplasma gondii genetic diversity revealed by multilocus PCR-RFLP genotyping. Parasitology 141, 453–461 (2014).

    Article  PubMed  Google Scholar 

  10. Lorenzi, H. et al. Local admixture of amplified and diversified secreted pathogenesis determinants shapes mosaic Toxoplasma gondii genomes. Nat. Commun. 7, 10147 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dupont, C. D., Christian, D. A. & Hunter, C. A. Immune response and immunopathology during toxoplasmosis. Semin. Immunopathol. 34, 793–813 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yarovinsky, F. Innate immunity to Toxoplasma gondii infection. Nat. Rev. Immunol. 14, 109–121 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Mashayekhi, M. et al. CD8α+ dendritic cells are the critical source of interleukin-12 that controls acute infection by Toxoplasma gondii tachyzoites. Immunity 35, 249–259 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Koblansky, A. A. et al. Recognition of profilin by Toll-like receptor 12 is critical for host resistance to Toxoplasma gondii. Immunity 38, 119–130 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Yarovinsky, F. et al. TLR11 activation of dendritic cells by a protozoan profilin-like protein. Science 308, 1626–1629 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Goldszmid, R. S. et al. NK cell-derived interferon-γ orchestrates cellular dynamics and the differentiation of monocytes into dendritic cells at the site of infection. Immunity 36, 1047–1059 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Safronova, A. et al. Alarmin S100A11 initiates a chemokine response to the human pathogen Toxoplasma gondii. Nat. Immunol. 20, 64–72 (2019).

    Article  CAS  PubMed  Google Scholar 

  18. Muller, W. A. & Randolph, G. J. Migration of leukocyytes across endothelium and beyond: molecules involved in the transmigration and fate of monocytes. J. Leukoc. Biol. 66, 698–704 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Dunay, I. R. et al. Gr1+ inflammatory monocytes are required for mucosal resistance to the pathogen Toxoplasma gondii. Immunity 29, 306–317 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tsitsiklis, A., Bangs, D. J. & Robey, E. A. CD8+ T cell responses to Toxoplasma gondii: lessons from a successful parasite. Trends Parasitol. 35, 887–898 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Schreiner, M. & Liesenfeld, O. Small intestinal inflammation following oral infection with Toxoplasma gondii does not occur exclusively in C57BL/6 mice: review of 70 reports from the literature. Mem. Inst. Oswaldo Cruz 104, 221–233 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Egan, C. E., Cohen, S. B. & Denkers, E. Y. Insights into inflammatory bowel disease using Toxoplasma gondii as an infectious trigger. Immunol. Cell Biol. 90, 668–675 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Munoz, M. et al. Interleukin (IL)-23 mediates Toxoplasma gondii-induced immunopathology in the gut via matrixmetalloproteinase-2 and IL-22 but independent of IL-17. J. Exp. Med. 206, 3047–3059 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Raetz, M. et al. Parasite-induced TH1 cells and intestinal dysbiosis cooperate in IFN-γ-dependent elimination of Paneth cells. Nat. Immunol. 14, 136–142 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Heimesaat, M. M. et al. Gram-negative bacteria aggravate murine small intestinal TH1-type immunopathology following oral infection with Toxoplasma gondii. J. Immunol. 177, 8785–8795 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Wang, S. et al. Infection-induced intestinal dysbiosis is mediated by macrophage activation and nitrate production. mBio 10, e00935 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Erridge, C., Duncan, S. H., Bereswill, S. & Heimesaat, M. M. The induction of colitis and ileitis in mice is associated with marked increases in intestinal concentrations of stimulants of TLRs 2, 4, and 5. PLoS ONE 5, e9125 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Forrester, J. V., McMenamin, P. G. & Dando, S. J. CNS infection and immune privilege. Nat. Rev. Neurosci. 19, 655–671 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Schluter, D. & Barragan, A. Advances and challenges in understanding cerebral toxoplasmosis. Front. Immunol. 10, 242 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Courret, N. et al. CD11c and CD11b expressing mouse leukocytes transport single Toxoplasma gondii tachyzoites to the brain. Blood 107, 309–316 (2005). This early study demonstrates that monocytes are the infected cells found in blood following oral infection and that they seed the brain early in infection.

    Article  PubMed  Google Scholar 

  31. Drewry, L. L. et al. The secreted kinase ROP17 promotes Toxoplasma gondii dissemination by hijacking monocyte tissue migration. Nat. Microbiol. 4, 1951–1963 (2019). This paper shows that infection of monocytes by tachyzoites of T. gondii activates migration through interstitial tissues and suppresses trans-epithelial migration, thus questioning the role of the Trojan horse model of barrier transversal.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Konradt, C. et al. Endothelial cells are a replicative niche for entry of Toxoplasma gondii to the central nervous system. Nat. Microbiol. 1, 16001 (2016). This paper shows that growth within endothelial cells lining the BBB leads to dispersal into the parenchyma when the host cell ruptures, providing an alternative entry route into the CNS.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Watts, E. et al. Novel approaches reveal that Toxoplasma gondii bradyzoites within tissue cysts are dynamic and replicating entities in vivo. mBio 6, e01155-15 (2015). This paper shows that bradyzoites are not dormant cells but, rather, replicate sporadically and asynchronously, albeit much slower than tachyzoites.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Cabral, C. M. et al. Neurons are the primary target cell for the brain-tropic intracellular parasite Toxoplasma gondii. PLoS Pathog. 12, e1005447 (2016). This paper shows imaging of infected cells using Cre-reporter mice and parasites that secrete Cre during invasion and reveals that the primary cells infected in the mouse brain are neurons.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Koshy, A. A. et al. Toxoplasma co-opts host cells it does not invade. PLoS Pathog. 8, e1002825 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Boothroyd, J. C. & Dubremetz, J. F. Kiss and spit: the dual roles of Toxoplasma rhoptries. Nat. Rev. Microbiol. 6, 79–88 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Luder, C. G., Giraldo-Velasquez, M., Sendtner, M. & Gross, U. Toxoplasma gondii in primary rat CNS cells: differential contribution of neurons, astrocytes, and microglial cells for the intracerebral development and stage differentiation. Exp. Parasitol. 93, 23–32 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Halonen, S. K., Lyman, W. D. & Chiu, F. C. Growth and development of Toxoplasma gondii in human neurons and astrocytes. J. Neuropathol. Exp. Neurol. 55, 1150–1156 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Jeffers, V., Tampaki, Z., Kim, K. & Sullivan, W. J. Jr. A latent ability to persist: differentiation in Toxoplasma gondii. Cell. Mol. Life Sci. 75, 2355–2373 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Su, C. et al. Recent expansion of Toxoplasma through enhanced oral transmission. Science 299, 414–416 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Hong, D. P., Radke, J. B. & White, M. W. Opposing transcriptional mechanisms regulate Toxoplasma development. mSphere 2, e00347-16 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Walker, R. et al. The Toxoplasma nuclear factor TgAP2XI-4 controls bradyzoite gene expression and cyst formation. Mol. Microbiol. 87, 641–655 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Radke, J. B. et al. ApiAP2 transcription factor restricts development of the Toxoplasma tissue cyst. Proc. Natl Acad. Sci. USA 110, 6871–6876 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Radke, J. B. et al. Transcriptional repression by ApiAP2 factors is central to chronic toxoplasmosis. PLoS Pathog. 14, e1007035 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Waldman, B. S. et al. Identification of a master regulator of differentiation in Toxoplasma. Cell 180, 359–372 e16 (2020). This genome-wide CRISPR screening identifies a Myb-like transcription regulatory that is both necessary and sufficient to drive bradyzoite development in T. gondii.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bougdour, A. et al. Drug inhibition of HDAC3 and epigenetic control of differentiation in Apicomplexa parasites. J. Exp. Med. 206, 953–966 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Farhat, D. C. et al. A MORC-driven transcriptional switch controls Toxoplasma developmental trajectories and sexual commitment. Nat. Microbiol. 5, 570–583 (2020). This paper shows that a MORC orthologue in T. gondii acts as a transcriptional repressor acts together with AP2 transcription factors and HDAC3 to suppress sexual phase development and promote the asexual phases of the life cycle.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Suzuki, Y. The immune system utilizes two distinct effector mechanisms of T cells depending on two different life cycle stages of a single pathogen, Toxoplasma gondii, to control its cerebral infection. Parasitol. Int. 76, 102030 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. Bhandage, A. K., Kanatani, S. & Barragan, A. Toxoplasma-induced hypermigration of primary cortical microglia implicates GABAergic signaling. Front. Cell. Infect. Microbiol. 9, 73 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Batista, S. J. et al. Gasdermin-D-dependent IL-1α release from microglia promotes protective immunity during chronic Toxoplasma gondii infection. Nat. Commun. 11, 3687 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. John, B. et al. Analysis of behavior and trafficking of dendritic cells within the brain during toxoplasmic encephalitis. PLoS Pathog. 7, e1002246 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. John, B. et al. Dynamic imaging of CD8+ T cells and dendritic cells during infection with Toxoplasma gondii. PLoS Pathog 5, e1000505 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Biswas, A. et al. Behavior of neutrophil granulocytes during Toxoplasma gondii infection in the central nervous system. Front. Cell. Infect. Microbiol. 7, 259 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Gazzinelli, R., Xu, Y., Hieny, S., Cheever, A. & Sher, A. Simultaneous depletion of CD4+ and CD8+ T lymphocytes is required to reactivate chronic infection with Toxoplasma gondii. J. Immunol. 149, 175–180 (1992).

    Article  CAS  PubMed  Google Scholar 

  55. Biswas, A. et al. Ly6Chigh monocytes control cerebral toxoplasmosis. J. Immunol. 194, 3223–3235 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Benevides, L., Milanezi, C. M., Yamauchi, L. M., Silva, J. S. & Silva, N. M. CCR2 receptor is essential to activate microbicdal mechanisms to control Toxoplasma gondii infection in the central nervous system. Am. J. Path 173, 741–751 (2008). Together with Biswas et al. (2015), this paper shows that inflammatory monocytes are recruited to the CNS, where they are essential in the control of T. gondii infection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Schneider, C. A. et al. Imaging the dynamic recruitment of monocytes to the blood–brain barrier and specific brain regions during Toxoplasma gondii infection. Proc. Natl Acad. Sci. USA 116, 24796–24807 (2019). This article, using in vivo imaging techniques, demonstrates that monocytes migrate to the brain of infected mice in response to clusters of replicating parasites in a highly regionalized manner.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Fischer, H. G., Bonifas, U. & Reichmann, G. Phenotype and functions of brain dendritic cells emerging during chronic infection of mice with Toxoplasma gondii. J. Immunol. 164, 4826–4834 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Suzuki, Y. et al. Removal of Toxoplasma gondii cysts from the brain by perforin-mediated activity of CD8+ T cells. Am. J. Pathol. 176, 1607–1613 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Salvioni, A. et al. Robust control of a brain-persisting parasite through MHC I presentation by infected neurons. Cell Rep. 27, 3254–3268 e8 (2019). Although neurons are often thought to express low levels of MHC molecules, this study demonstrates an important role for MHC class I in neurons of the CNS in controlling toxoplasmosis in the mouse.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chevalier, G. et al. Neurons are MHC class I-dependent targets for CD8 T cells upon neurotropic viral infection. PLoS Pathog. 7, e1002393 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Suzuki, Y., Conley, F. K. & Remington, J. S. Importance of endogenous IFN-γ for prevention of toxoplasmic encephalitis in mice. J. Immunol. 143, 2045–2050 (1989).

    Article  CAS  PubMed  Google Scholar 

  63. Halonen, S. K., Chiu, F.-C. & Weiss, L. M. Effect of cytokines on growth of Toxoplasma gondii in murine astrocytes. Infect. Immun. 66, 4989–4993 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Däubener, W. & Hadding, U. Cellular immune reactions directed against Toxoplasma gondii with special emphasis on the central nervous system. Med. Microbiol. Immunol. 185, 195–206 (1997).

    Article  PubMed  Google Scholar 

  65. Schluter, D., Deckert, M., Hof, H. & Frei, K. Toxoplasma gondii infection of neurons induces neuronal cytokine and chemokine production, but interferon-γ- and tumor necrosis factor-stimulated neurons fail to inhibit the invasion and growth of T. gondii. Infect. Immun. 69, 7889–7893 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Miller, K. D., Schnell, M. J. & Rall, G. F. Keeping it in check: chronic viral infection and antiviral immunity in the brain. Nat. Rev. Neurosci. 17, 766–776 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Matta, S. K. et al. Toxoplasma gondii effector TgIST blocks type I interferon signaling to promote infection. Proc. Natl Acad. Sci. USA 116, 17480–17491 (2019). This paper shows that type II interferon is the major mediator of resistance to T. gondii in the mouse, yet in the absence of type I interferon, mice are unable to control chronic infection, indicating that control of infection in the CNS relies on both pathways.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Han, S. J. et al. Internalization and TLR-dependent type I interferon production by monocytes in response to Toxoplasma gondii. Immunol. Cell Biol. 92, 872–881 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Schoggins, J. W. Interferon-stimulated genes: what do they all do? Annu. Rev. Virol. 6, 567–584 (2019).

    Article  CAS  PubMed  Google Scholar 

  70. McNab, F., Mayer-Barber, K., Sher, A., Wack, A. & O’Garra, A. Type I interferons in infectious disease. Nat. Rev. Immunol. 15, 87–103 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ivashkiv, L. B. IFNγ: signalling, epigenetics and roles in immunity, metabolism, disease and cancer immunotherapy. Nat. Rev. Immunol. 18, 545–558 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Monteiro, S., Roque, S., Marques, F., Correia-Neves, M. & Cerqueira, J. J. Brain interference: revisiting the role of IFNγ in the central nervous system. Prog. Neurobiol. 156, 149–163 (2017).

    Article  CAS  PubMed  Google Scholar 

  73. Portillo, J. A. et al. CD40 mediates retinal inflammation and neurovascular degeneration. J. Immunol. 181, 8719–8726 (2008). This study indicates an important role for CD40 and activation of autophagy in endothelial cells as a mechanism to limit entry of T. gondii into the CNS.

    Article  CAS  PubMed  Google Scholar 

  74. Cekanaviciute, E. et al. Astrocytic TGF-β signaling limits inflammation and reduces neuronal damage during central nervous system Toxoplasma infection. J. Immunol. 193, 139–149 (2014).

    Article  CAS  PubMed  Google Scholar 

  75. Handel, U. et al. Neuronal gp130 expression is crucial to prevent neuronal loss, hyperinflammation, and lethal course of murine Toxoplasma encephalitis. Am. J. Pathol. 181, 163–173 (2012).

    Article  PubMed  Google Scholar 

  76. Parlog, A., Schluter, D. & Dunay, I. R. Toxoplasma gondii-induced neuronal alterations. Parasite Immunol. 37, 159–170 (2015).

    Article  CAS  PubMed  Google Scholar 

  77. Carrillo, G. L. et al. Toxoplasma infection induces microglia–neuron contact and the loss of perisomatic inhibitory synapses. Glia 68, 1968–1986 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Parlog, A. et al. Chronic murine toxoplasmosis is defined by subtle changes in neuronal connectivity. Dis. Model Mech. 7, 459–469 (2014).

    PubMed  PubMed Central  Google Scholar 

  79. Lang, D. et al. Chronic Toxoplasma infection is associated with distinct alterations in the synaptic protein composition. J. Neuroinflammation 15, 216 (2018). This paper shows that chronic infection with T. gondii results in impaired neuronal function as shown by loss of synaptic protein composition due to neuroinflammation.

    Article  PubMed  PubMed Central  Google Scholar 

  80. David, C. N. et al. GLT-1-dependent disruption of CNS glutamate homeostasis and neuronal function by the protozoan parasite Toxoplasma gondii. PLoS Pathog. 12, e1005643 (2016). This paper shows that disruption of glutamate regulation results in reduction of dendritic spines and compromises neuronal function.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Boillat, M. et al. Neuroinflammation-associated aspecific manipulation of mouse predator fear by Toxoplasma gondii. Cell Rep. 30, 320–334 e6 (2020). This paper shows that the parasite cyst load in the CNS is positively correlated with increased inflammation and altered behaviour, including loss of fear, in chronically infected mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Johnson, H. J. & Koshy, A. A. Latent toxoplasmosis effects on rodents and humans: how much is real and how much is media hype? mBio 11, e02164-19 (2020). This review nicely summarizes the literature on the controversial topic of how T. gondii infection influences neuronal function and behaviour.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Mohle, L. et al. Chronic Toxoplasma gondii infection enhances β-amyloid phagocytosis and clearance by recruited monocytes. Acta Neuropathol. Commun. 4, 25 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Jung, B. K. et al. Toxoplasma gondii infection in the brain inhibits neuronal degeneration and learning and memory impairments in a murine model of Alzheimer’s disease. PLoS ONE 7, e33312 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Cabral, C. M., McGovern, K. E., MacDonald, W. R., Franco, J. & Koshy, A. A. Dissecting amyloid β deposition using distinct strains of the neurotropic parasite Toxoplasma gondii as a novel tool. ASN Neuro 9, 1759091417724915 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Di, L., Rong, H. & Feng, B. Demystifying brain penetration in central nervous system drug discovery. Miniperspective. J. Med. Chem. 56, 2–12 (2013).

    Article  CAS  PubMed  Google Scholar 

  87. Doggett, J. S. et al. Endochin-like quinolones are highly efficacious against acute and latent experimental toxoplasmosis. Proc. Natl Acad. Sci. USA 109, 15936–15941 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Doggett, J. S. et al. Orally bioavailable endochin-like quinolone carbonate ester prodrug reduces Toxoplasma gondii brain cysts. Antimicrob. Agents Chemother. 64, e00535-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  89. McPhillie, M. J. et al. Potent tetrahydroquinolone eliminates apicomplexan parasites. Front. Cell Infect. Microbiol. 10, 203 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Benmerzouga, I. et al. Guanabenz repurposed as an antiparasitic with activity against acute and latent toxoplasmosis. Antimicrob. Agents Chemother. 59, 6939–6945 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Doggett, J. S., Ojo, K. K., Fan, E., Maly, D. J. & Van Voorhis, W. C. Bumped kinase inhibitor 1294 treats established Toxoplasma gondii infection. Antimicrob. Agents Chemother. 58, 3547–3549 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Rutaganira, F. U. et al. Inhibition of calcium dependent protein kinase 1 (CDPK1) by pyrazolopyrimidine analogs decreases establishment and reoccurrence of central nervous system disease by Toxoplasma gondii. J. Med. Chem. 60, 9976–9989 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Janetka, J. W. et al. Optimizing pyrazolopyrimidine inhibitors of calcium dependent protein kinase 1 for treatment of acute and chronic toxoplasmosis. J. Med. Chem. 63, 6144–6163 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Mostafavi, S. et al. Parsing the interferon transcriptional network and its disease associations. Cell 164, 564–578 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Rusinova, I. et al. Interferome v2.0: an updated database of annotated interferon-regulated genes. Nucleic Acids Res. 41, D1040–D1046 (2013).

    Article  CAS  PubMed  Google Scholar 

  96. Gavrilescu, L. C., Butcher, B. A., Del Rio, L., Taylor, G. A. & Denkers, E. Y. STAT1 is essential for antimicrobial effector function but dispensable for γ interferon production during Toxoplasma gondii infection. Infect. Immun. 72, 1257–1264 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lieberman, L. A., Banica, M., Reiner, S. L. & Hunter, C. A. STAT1 plays a critical role in the regulation of antimicrobial effector mechanisms, but not in the development of TH1-type responses during toxoplasmosis. J. Immunol. 172, 457–463 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Hidano, S. et al. STAT1 signaling in astrocytes is essential for control of infection in the central nervous system. mBio 7, e01881-16 (2016). This study shows that STAT1 is required for IFNÎł signalling and demonstrates the importance of this pathway in astrocytes for controlling infection in the brain.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Abrams, M. E. et al. Oxysterols provide innate immunity to bacterial infection by mobilizing cell surface accessible cholesterol. Nat. Microbiol. 5, 929–942 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Perelman, S. S. et al. Cell-based screen identifies human interferon-stimulated regulators of Listeria monocytogenes infection. PLoS Pathog. 12, e1006102 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Helbig, K. J. et al. The interferon stimulated gene viperin, restricts Shigella flexneri in vitro. Sci Rep. 9, 15598 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Napolitano, A. et al. Cysteine-reactive free ISG15 generates IL-1β-producing CD8α+ dendritic cells at the site of infection. J. Immunol. 201, 604–614 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Meira, C. S. et al. Cerebral and ocular toxoplasmosis related with IFN-γ, TNF-α, and IL-10 levels. Front. Microbiol. 5, 492 (2014).

    PubMed  PubMed Central  Google Scholar 

  104. Krishnamurthy, S., Konstantinou, E. K., Young, L. H., Gold, D. A. & Saeij, J. P. The human immune response to Toxoplasma: autophagy versus cell death. PLoS Pathog. 13, e1006176 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Selleck, E. M. et al. A noncanonical autophagy pathway restricts Toxoplasma gondii growth in a strain-specific manner in IFN-γ-activated human cells. mBio 6, e01157–15 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Clough, B. et al. K63-linked ubiquitination targets Toxoplasma gondii for endo-lysosomal destruction in IFNÎł-stimulated human cells. PLoS Pathog. 12, e1006027 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Henry, S. C. et al. Balance of Irgm protein activities determines IFN-γ-induced host defense. J Leukoc. Biol. 85, 877–885 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. MacMicking, J. D. Interferon-inducible effector mechanisms in cell-autonomous immunity. Nat. Rev. Immunol. 12, 367–382 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Andrade, R. M., Wessendarp, M., Gubbels, M. J., Striepen, B. & Subauste, C. S. CD40 induces macrophage anti-Toxoplasma gondii activity by triggering autophagy-dependent fusion of pathogen-containing vacuoles and lysosomes. J. Clin. Invest. 116, 2366–2377 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Van Grol, J., Muniz-Feliciano, L., Portillo, J. A., Bonilha, V. L. & Subauste, C. S. CD40 induces anti-Toxoplasma gondii activity in nonhematopoietic cells dependent on autophagy proteins. Infect. Immun. 81, 2002–2011 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Subauste, C. S., Wessendarp, M., Sorensen, R. U. & Leiva, L. E. CD40–CD40 ligand interaction is central to cell-mediated immunity against Toxoplasma gondii: patients with hyper IgM syndrome have a defective type 1 immune response that can be restored by soluble CD40 ligand trimer. J. Immunol. 162, 6690–6700 (1999).

    Article  CAS  PubMed  Google Scholar 

  112. Clough, B. & Frickel, E. M. The Toxoplasma parasitophorous vacuole: an evolving host–parasite frontier. Trends Parasitol. 33, 473–488 (2017).

    Article  CAS  PubMed  Google Scholar 

  113. Sibley, L. D. Invasion and intracellular survival by protozoan parasites. Immunol. Rev. 240, 72–91 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Muniz-Feliciano, L. et al. Toxoplasma gondii-induced activation of EGFR prevents autophagy protein-mediated killing of the parasite. PLoS Pathog. 9, e1003809 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Bradley, P. J. et al. Proteomic analysis of rhoptry organelles reveals many novel constituents for host–parasite interactions in T. gondii. J. Biol. Chem. 280, 34245–34258 (2005).

    Article  CAS  PubMed  Google Scholar 

  116. Rastogi, S., Cygan, A. M. & Boothroyd, J. C. Translocation of effector proteins into host cells by Toxoplasma gondii. Curr Opin Microbiol 52, 130–138 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lodoen, M. B., Gerke, C. & Boothroyd, J. C. A highly sensitive FRET-based approach reveals secretion of the actin-binding protein toxofilin during Toxoplasma gondii infection. Cell. Microbiol. 12, 55–66 (2010).

    Article  CAS  PubMed  Google Scholar 

  118. Sangare, L. O. et al. In vivo CRISPR screen identifies TgWIP as a toxoplasma modulator of dendritic cell migration. Cell Host Microbe 26, 478–492.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Egea, P. F. Crossing the vacuolar rubicon: structural insights into effector protein trafficking in apicomplexan parasites. Microorganisms 8, 865 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  120. Behnke, M. S. et al. Rhoptry proteins ROP5 and ROP18 are major murine virulence factors in genetically divergent South American strains of Toxoplasma gondii. PLoS Genet. 11, e1005434 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Taylor, S. et al. A secreted serine–threonine kinase determines virulence in the eukaryotic pathogen Toxoplasma gondii. Science 314, 1776–1780 (2006).

    Article  CAS  PubMed  Google Scholar 

  122. Saeij, J. P. J. et al. Polymorphic secreted kinases are key virulence factors in toxoplasmosis. Science 314, 1780–1783 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Reese, M. L., Zeiner, G. M., Saeij, J. P., Boothroyd, J. C. & Boyle, J. P. Polymorphic family of injected pseudokinases is paramount in Toxoplasma virulence. Proc. Natl Acad. Sci. USA 108, 9625–9630 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Steinfeldt, T. et al. Phosphorylation of mouse immunity-related GTPase (IRG) resistance proteins is an evasion strategy for virulent Toxoplasma gondii. PLoS Biol. 8, e1000576 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Fentress, S. J. & Sibley, L. D. An arginine-rich domain of ROP18 is necessary for vacuole targeting and virulence in Toxopalsma gondii. Cell. Microbiol. 14, 1921–1933 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Behnke, M. S. et al. The polymorphic pseudokinase ROP5 controls virulence in Toxoplasma gondii by regulating the active kinase ROP18. PLoS Pathog. 8, e1002992 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Etheridge, R. D., Alagan, A., Tang, K., Turk, B. E. & Sibley, L. D. ROP18 and ROP17 kinase complexes synergize to control acute virulence of Toxoplasma in the mouse. Cell Host Microbe 15, 537–550 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Niedelman, W. et al. The rhoptry proteins ROP18 and ROP5 mediate Toxoplasma gondii evasion of the murine, but not the human, interferon-Îł response. PLoS Pathog. 8, e1002784 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Sanchez, V., de-la-Torre, A. & Gomez-Marin, J. E. Characterization of ROP18 alleles in human toxoplasmosis. Parasitol. Int. 63, 463–469 (2014).

    Article  CAS  PubMed  Google Scholar 

  130. Jensen, K. D. et al. Toxoplasma polymorphic effectors determine macrophage polarization and intestinal inflammation. Cell Host Microbe 9, 472–483 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Saeij, J. P. J. et al. Toxoplasma co-opts host gene expression by injection of a polymorphic kinase homologue. Nature 445, 324–327 (2007).

    Article  CAS  PubMed  Google Scholar 

  132. Butcher, B. A. et al. Toxoplasma gondii rhoptry kinase ROP16 activates STAT3 and STAT6 resulting in cytokine inhibition and arginase-1-dependent growth control. PLoS Pathog. 7, e1002236 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Chen, L. et al. The Toxoplasma gondii virulence factor ROP16 acts in cis and trans, and suppresses T cell responses. J. Exp. Med. 217, e20181757 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Hernandez-de-Los-Rios, A. et al. Influence of two major Toxoplasma gondii virulence factors (ROP16 and ROP18) on the immune response of peripheral blood mononuclear cells to human toxoplasmosis infection. Front. Cell. Infect. Microbiol. 9, 413 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Ma, J. S. et al. Selective and strain-specific NFAT4 activation by the Toxoplasma gondii polymorphic dense granule protein GRA6. J. Exp. Med. 211, 2013–2032 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Rosowski, E. E. et al. Strain-specific activation of the NF-κB pathway by GRA15, a novel Toxoplasma gondii dense granule protein. J. Exp. Med. 208, 195–212 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Gov, L., Karimzadeh, A., Ueno, N. & Lodoen, M. B. Human innate immunity to Toxoplasma gondii is mediated by host caspase-1 and ASC and parasite GRA15. mBio 4, e00255-13 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Pandori, W. J. et al. Toxoplasma gondii activates a Syk–CARD9–NF-κB signaling axis and gasdermin D-independent release of IL-1β during infection of primary human monocytes. PLoS Pathog. 15, e1007923 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Dunker, A. K. et al. The unfoldomics decade: an update on intrinsically disordered proteins. BMC Genomics 9, S1 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Mercer, H. L. et al. Toxoplasma gondii dense granule protein GRA24 drives MyD88-independent p38 MAPK activation, IL-12 production and induction of protective immunity. PLoS Pathog. 16, e1008572 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Mukhopadhyay, D., Arranz-Solis, D. & Saeij, J. P. J. Toxoplasma GRA15 and GRA24 are important activators of the host innate immune response in the absence of TLR11. PLoS Pathog. 16, e1008586 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Bougdour, A. et al. Host cell subversion by Toxoplasma GRA16, an exported dense granule protein that targets the host cell nucleus and alters gene expression. Cell Host Microbe 13, 489–500 (2013).

    Article  CAS  PubMed  Google Scholar 

  143. He, H. et al. Characterization of a Toxoplasma effector uncovers an alternative GSK3/β-catenin-regulatory pathway of inflammation. eLife 7, e39887 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Braun, L. et al. The Toxoplasma effector TEEGR promotes parasite persistence by modulating NF-κB signalling via EZH2. Nat. Microbiol. 4, 1208–1220 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Panas, M. W., Naor, A., Cygan, A. M. & Boothroyd, J. C. Toxoplasma controls host cyclin E expression through the use of a novel MYR1-dependent effector protein, HCE1. mBio 10, e00674-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Lang, C. et al. Impaired chromatin remodelling at STAT1-regulated promoters leads to global unresponsiveness of Toxoplasma gondii-infected macrophages to IFN-Îł. PLoS Pathog. 8, e1002483 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Kim, S. K., Fouts, A. E. & Boothroyd, J. C. Toxoplasma gondii dysregulates IFN-γ inducible gene expression in human fibroblasts: insights from a genome-wide transcriptional profiling. J. Immunol. 178, 5154–5165 (2007).

    Article  CAS  PubMed  Google Scholar 

  148. Gay, G. et al. Toxoplasma gondii TgIST co-opts host chromatin repressors dampening STAT1-dependent gene regulation and IFN-γ-mediated host defenses. J. Exp. Med. 213, 1779–1798 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Olias, P., Etheridge, R. D., Zhang, Y., Holtzman, M. J. & Sibley, L. D. Toxoplasma effector recruits the Mi-2/NuRD complex to repress STAT1 transcription and block IFN-γ-dependent gene expression. Cell Host Microbe 20, 72–82 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Mayoral, J., Shamamian, P. Jr. & Weiss, L. M. In vitro characterization of protein effector export in the bradyzoite stage of Toxoplasma gondii. mBio 11, e00046-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Schoggins, J. W. et al. A diverse range of gene products are effectors of the type I interferon antiviral response. Nature 472, 481–485 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Hulsen, T., de Vlieg, J. & Alkema, W. BioVenn — a web application for the comparison and visualization of biological lists using area-proportional Venn diagrams. BMC Genomics 9, 488 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Fisch, D. et al. Human GBP1 is a microbe-specific gatekeeper of macrophage apoptosis and pyroptosis. EMBO J. 38, e100926 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Zhang, Y. et al. Rapid single-step induction of functional neurons from human pluripotent stem cells. Neuron 78, 785–798 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Pandya, H. et al. Differentiation of human and murine induced pluripotent stem cells to microglia-like cells. Nat. Neurosci. 20, 753–759 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Abud, E. M. et al. iPSC-derived human microglia-like cells to study neurological diseases. Neuron 94, 278–293.e9 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Park, J. et al. A 3D human triculture system modeling neurodegeneration and neuroinflammation in Alzheimer’s disease. Nat. Neurosci. 21, 941–951 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Tanaka, N., Ashour, D., Dratz, E. & Halonen, S. Use of human induced pluripotent stem cell-derived neurons as a model for cerebral toxoplasmosis. Microbes Infect. 18, 496–504 (2016).

    Article  CAS  PubMed  Google Scholar 

  159. Tian, R. et al. CRISPR interference-based platform for multimodal genetic screens in human iPSC-derived neurons. Neuron 104, 239–255.e12 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Levine, B. & Kroemer, G. Autophagy in the pathogenesis of disease. Cell 132, 27–42 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Choi, J. et al. The parasitophorous vacuole membrane of Toxoplasma gondii is targeted for disruption by ubiquitin-like conugation systems of autophagy. Immunity 40, 924–935 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Zhao, Z. et al. Autophagosome-independent essential function for the autophagy protein Atg5 in cellular immunity to intracellular pathogens. Cell Host Microbe 4, 458–469 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Ohshima, J. et al. Role of mouse and human autophagy proteins in IFN-γ-induced cell-autonomous responses against Toxoplasma gondii. J. Immunol. 192, 3328–3335 (2014).

    Article  CAS  PubMed  Google Scholar 

  164. Huang, J. & Brumell, J. H. Bacteria–autophagy interplay: a battle for survival. Nat. Rev. Microbiol. 12, 101–114 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Howard, J. C., Hunn, J. P. & Steinfeldt, T. The IRG protein-based resistance mechanism in mice and its relation to virulence in Toxoplasma gondii. Curr. Opin. Microbiol. 14, 414–421 (2011).

    Article  CAS  PubMed  Google Scholar 

  166. Khaminets, A. et al. Coordinated loading of IRG resistance GTPases on to the Toxoplasma gondii parasitophorous vacuole. Cell. Microbiol. 12, 939–961 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Haldar, A. K. et al. IRG and GBP host resistance factors target aberrant, “non-self” vacuoles characterized by the missing of “self” IRGM proteins. PLoS Pathog. 9, e1003414 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Lilue, J., Muller, U. B., Steinfeldt, T. & Howard, J. C. Reciprocal virulence and resistance polymorphism in the relationship between Toxoplasma gondii and the house mouse. eLife 2, e01298 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Bekpen, C. et al. The interferon-inducible p47 (IRG) GTPases in vertebrates: loss of the cell autonomous resistance mechanism in the human lineage. Genome Biol. 6, R92 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Kim, B. H., Shenoy, A. R., Kumar, P., Bradfield, C. J. & MacMicking, J. D. IFN-inducible GTPases in host cell defense. Cell Host Microbe 12, 432–444 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Yamamoto, M. et al. A cluster of Interferon-γ-inducible p65 GTPases plays a critical role in host defense against Toxoplasma gondii. Immunity 37, 302–313 (2012).

    Article  CAS  PubMed  Google Scholar 

  172. Selleck, E. M. et al. Guanylate-binding protein 1 (Gbp1) contributes to cell-autonomous immunity against Toxoplasma gondii. PLoS Pathog. 9, e1003320 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Degrandi, D. et al. Murine guanylate binding protein 2 (mGBP2) controls Toxoplasma gondii replication. Proc. Natl Acad. Sci. USA 110, 294–299 (2013).

    Article  CAS  PubMed  Google Scholar 

  174. Kravets, E. et al. The GTPase activity of murine guanylate-binding protein 2 (mGBP2) controls the intracellular localization and recruitment to the parasitophorous vacuole of Toxoplasma gondii. J. Biol. Chem. 287, 27452–27466 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Steffens, N. et al. Essential role of mGBP7 for survival of Toxoplasma gondii infection. mBio 11, 02993-19 (2020).

    Article  Google Scholar 

  176. Kravets, E. et al. Guanylate binding proteins directly attack Toxoplasma gondii via supramolecular complexes. eLife 5, e11479 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Matta, S. K. et al. NADPH oxidase and guanylate binding protein 5 restrict survival of avirulent type III strains of Toxoplasma gondii in naive macrophages. mBio 9, e01393-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Qin, A. et al. Guanylate-binding protein 1 (GBP1) contributes to the immunity of human mesenchymal stromal cells against Toxoplasma gondii. Proc. Natl Acad. Sci. USA 114, 1365–1370 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Johnston, A. C. et al. Human GBP1 does not localize to pathogen vacuoles but restricts Toxoplasma gondii. Cell. Microbiol. 18, 1056–1064 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is supported in part by a grant from the National Institutes of Health (NIH) (AI188426).

Author information

Authors and Affiliations

Authors

Contributions

S.K.M, N.R. and I.R.D. researched data for the article. All authors substantially contributed to discussion of content. The authors contributed equally to all other aspects of the article. S.K.M, I.R.D. and L.D.S. wrote the article. L.D.S. reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to L. David Sibley.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Apicomplexan parasite

Protozoa in the phylum Apicomplexa are largely intracellular parasites that utilize distinctive and complex structures at their apical end to invade and replicate within a host cell.

Enterocytes

Cells that line the small and large intestine in vertebrates and are involved in absorption of nutrients.

Ileitis

Inflammation of the ileum that occurs as a common symptom of toxoplasmosis in mice and many other hosts.

Immune privilege

Refers to tissue compartments that show reduced immune responsiveness and inflammation in response to foreign antigens. It is considered an adaptation to maintain the tissue architecture critical for host survival. Examples include the central nervous system, eyes, placenta and fetus.

Parenchyma

The main brain tissue that is composed of neurons and glial cells.

Cre-recombinase

A P1 bacteriophage recombinase that catalyses DNA recombination at sites containing 34-bp LoxP recognition sites.

Dendritic spines

Cellular protrusions along neuronal dendrites that form excitatory synapses.

Phagophore membrane

A double-membrane vacuole synthesized de novo by the autophagy initiation complex. It eventually matures into an autophagosome to execute the process of autophagy in cell.

Xenophagy

A cellular process of engulfing intracellular pathogens in large, double membrane-bound autophagic vacuole.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matta, S.K., Rinkenberger, N., Dunay, I.R. et al. Toxoplasma gondii infection and its implications within the central nervous system. Nat Rev Microbiol 19, 467–480 (2021). https://doi.org/10.1038/s41579-021-00518-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41579-021-00518-7

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology