Biofilm dispersion


The formation of microbial biofilms enables single planktonic cells to assume a multicellular mode of growth. During dispersion, the final step of the biofilm life cycle, single cells egress from the biofilm to resume a planktonic lifestyle. As the planktonic state is considered to be more vulnerable to antimicrobial agents and immune responses, dispersion is being considered a promising avenue for biofilm control. In this Review, we discuss conditions that lead to dispersion and the mechanisms by which native and environmental cues contribute to dispersion. We also explore recent findings on the role of matrix degradation in the dispersion process, and the distinct phenotype of dispersed cells. Last, we discuss the translational and therapeutic potential of dispersing bacteria during infection.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Biofilm formation and dispersion.
Fig. 2: Environmental conditions initiating dispersion.
Fig. 3: Sensing of dispersion cues.
Fig. 4: Mechanisms resulting in biofilm dispersal.
Fig. 5: Bacterial dissemination triggered by glycoside hydrolase treatment of Pseudomonas aeruginosa biofilms.


  1. 1.

    Costerton, J. W., Stewart, P. S. & Greenberg, E. P. Bacterial biofilms: a common cause of persistent infections. Science 284, 1318–1322 (1999).

    CAS  PubMed  Google Scholar 

  2. 2.

    Flemming, H.-C. et al. Biofilms: an emergent form of bacterial life. Nat. Rev. Microbiol. 14, 563 (2016).

    CAS  PubMed  Google Scholar 

  3. 3.

    Geesey, G. G., Richardson, W. T., Yeomans, H. G., Irvin, R. T. & Costerton, J. W. Microscopic examination of natural sessile bacterial populations from an alpine stream. Can. J. Microbiol. 23, 1733–1736 (1977).

    CAS  PubMed  Google Scholar 

  4. 4.

    Costerton, J. W. et al. Bacterial biofilms in nature and disease. Annu. Rev. Microbiol. 41, 435–464 (1987).

    CAS  PubMed  Google Scholar 

  5. 5.

    Stoodley, P., Sauer, K., Davies, D. G. & Costerton, J. W. Biofilms as complex differentiated communities. Annu. Rev. Microbiol. 56, 187–209 (2002).

    CAS  PubMed  Google Scholar 

  6. 6.

    Petrova, O. E. & Sauer, K. A novel signaling network essential for regulating Pseudomonas aeruginosa biofilm development. PLoS Pathog. 5, e1000668 (2009).

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    Petrova, O. E., Gupta, K., Liao, J., Goodwine, J. S. & Sauer, K. Divide and conquer: the Pseudomonas aeruginosa two-component hybrid SagS enables biofilm formation and recalcitrance of biofilm cells to antimicrobial agents via distinct regulatory circuits. Environ. Microbiol. 19, 2005–2024 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    O’Toole, G. A. & Kolter, R. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol. Microbiol. 28, 449–461 (1998).

    PubMed  Google Scholar 

  9. 9.

    Davey, M. E. & O’Toole, G. A. Microbial biofilms: from ecology to molecular genetics. Microbiol. Mol. Biol. Rev. 64, 847–867 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Heacock-Kang, Y. et al. Spatial transcriptomes within the Pseudomonas aeruginosa biofilm architecture. Mol. Microbiol. 106, 976–985 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Williamson, K. S. et al. Heterogeneity in Pseudomonas aeruginosa biofilms includes expression of ribosome hibernation factors in the antibiotic-tolerant subpopulation and hypoxia-induced stress response in the metabolically active population. J. Bacteriol. 194, 2062–2073 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Liao, J., Schurr, M. J. & Sauer, K. The MerR-like regulator BrlR confers biofilm tolerance by activating multidrug-efflux pumps in Pseudomonas aeruginosa biofilms. J. Bacteriol. 195, 3352–3363 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Davies, D. Understanding biofilm resistance to antibacterial agents. Nat. Rev. Drug Discov. 2, 114 (2003).

    CAS  PubMed  Google Scholar 

  14. 14.

    de Carvalho, C. C. C. R. Marine biofilms: a successful microbial strategy with economic implications. Front. Mar. Sci. 5, 126 (2018).

    Google Scholar 

  15. 15.

    Fitridge, I., Dempster, T., Guenther, J. & de Nys, R. The impact and control of biofouling in marine aquaculture: a review. Biofouling 28, 649–669 (2012).

    PubMed  Google Scholar 

  16. 16.

    Hauser, A. R., Jain, M., Bar-Meir, M. & McColley, S. A. Clinical significance of microbial infection and adaptation in cystic fibrosis. Clin. Microbiol. Rev. 24, 29–70 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Kerr, K. G. & Snelling, A. M. Pseudomonas aeruginosa: a formidable and ever-present adversary. J. Hosp. Infect. 73, 338–344 (2009).

    CAS  PubMed  Google Scholar 

  18. 18.

    Lyczak, J. B., Cannon, C. L. & Pier, G. B. Lung infections associated with cystic fibrosis. Clin. Microbiol. Rev. 15, 194–222 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Pirnay, J. P. et al. Pseudomonas aeruginosa population structure revisited. PLoS ONE 4, e7740 (2009).

    PubMed  PubMed Central  Google Scholar 

  20. 20.

    Rosenberg, A. L. et al. The importance of bacterial sepsis in intensive care unit patients with acquired immunodeficiency syndrome: implications for future care in the age of increasing antiretroviral resistance. Crit. Care Med. 29, 548–556 (2001).

    CAS  PubMed  Google Scholar 

  21. 21.

    Rabello, L. S. et al. Clinical outcomes and microbiological characteristics of severe pneumonia in cancer patients: a prospective cohort study. PLoS ONE 10, e0120544 (2015).

    PubMed  PubMed Central  Google Scholar 

  22. 22.

    Hassett, D. J., Borchers, M. T. & Panos, R. J. Chronic obstructive pulmonary disease (COPD): evaluation from clinical, immunological and bacterial pathogenesis perspectives. J. Microbiol. 52, 211–226 (2014).

    PubMed  Google Scholar 

  23. 23.

    Omar, A., Wright, J. B., Schultz, G., Burrell, R. & Nadworny, P. Microbial biofilms and chronic wounds. Microorganisms 5, 9 (2017).

    PubMed Central  Google Scholar 

  24. 24.

    van Loosdrecht, M. C. M., Picioreanu, C. & Heijnen, J. J. A more unifying hypothesis for the structure of microbial biofilms. FEMS Microb. Ecol. 24, 181–183 (1997).

    Google Scholar 

  25. 25.

    Breyers, J. D. in Physiology Models in Microbiology Vol. 2 (eds Bazin, M. J. & Prosser, J. I.) 109–144 (CRC, 1988).

  26. 26.

    Sauer, K., Camper, A. K., Ehrlich, G. D., Costerton, J. W. & Davies, D. G. Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J. Bacteriol. 184, 1140–1154 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Petrova, O. E. & Sauer, K. Escaping the biofilm in more than one way: desorption, detachment or dispersion. Curr. Opin. Microbiol. 30, 67–78 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Davies, D. G. in Biofilm Highlights (eds Flemming, H.-C., Wingender, J. & Szewzyk, U.) 1–28 (Springer, 2011).

  29. 29.

    Purevdorj-Gage, B., Costerton, W. J. & Stoodley, P. Phenotypic differentiation and seeding dispersal in non-mucoid and mucoid Pseudomonas aeruginosa biofilms. Microbiology 151, 1569–1576 (2005).

    CAS  PubMed  Google Scholar 

  30. 30.

    Otto, M. Staphylococcal biofilms. Curr. Top. Microbiol. Immunol. 322, 207–228 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Kostakioti, M., Hadjifrangiskou, M. & Hultgren, S. J. Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harb. Perspect. Med. 3, a010306–a010306 (2013).

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Webb, J. S. in The Biofilm Mode of Life: Mechanisms and Adaptations (eds Kjelleberg, S. & and Givskov, M.) 165–174 (Horizon Bioscience, 2007).

  33. 33.

    Bjarnsholt, T. et al. The in vivo biofilm. Trends Microbiol. 21, 466–474 (2013).

    CAS  PubMed  Google Scholar 

  34. 34.

    Serra, D. O. & Hengge, R. Stress responses go three dimensional–the spatial order of physiological differentiation in bacterial macrocolony biofilms. Environ. Microbiol. 16, 1455–1471 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Costerton, J. W., Lewandowski, Z., Caldwell, D. E., Korber, D. R. & Lappin-Scott, H. M. Microbial biofilms. Annu. Rev. Microbiol. 49, 711–745 (1995).

    CAS  PubMed  Google Scholar 

  36. 36.

    Sternberg, C. et al. Distribution of bacterial growth activity in flow-chamber biofilms. Appl. Environ. Microbiol. 65, 4108–4117 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Anwar, H., Strap, J. L., Chen, K. & Costerton, J. W. Dynamic interactions of biofilms of mucoid Pseudomonas aeruginosa with tobramycin and piperacillin. Antimicrob. Agents Chemother. 36, 1208–1214 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Anderl, J. N., Zahller, J., Roe, F. & Stewart, P. S. Role of nutrient limitation and stationary-phase existence in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob. Agents Chemother. 47, 1251–1256 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Fux, C. A., Wilson, S. & Stoodley, P. Detachment characteristics and oxacillin resistance of Staphyloccocus aureus biofilm emboli in an in vitro catheter infection model. J. Bacteriol. 186, 4486–4491 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Nguyen, D. et al. Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria. Science 334, 982–986 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Spoering, A. L. & Lewis, K. Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials. J. Bacteriol. 183, 6746–6751 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Keren, I., Kaldalu, N., Spoering, A., Wang, Y. & Lewis, K. Persister cells and tolerance to antimicrobials. FEMS Microbiol. Lett. 230, 13–18 (2004).

    CAS  PubMed  Google Scholar 

  43. 43.

    Brooun, A., Liu, S. & Lewis, K. A dose-response study of antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrob. Agents Chemother. 44, 640–646 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Keren, I., Shah, D., Spoering, A., Kaldalu, N. & Lewis, K. Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli. J. Bacteriol. 186, 8172–8180 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Shah, D. et al. Persisters: a distinct physiological state of E. coli. BMC Microbiol. 6, 53 (2006).

    PubMed  PubMed Central  Google Scholar 

  46. 46.

    Campanac, C., Pineau, L., Payard, A., Baziard-Mouysset, G. & Roques, C. Interactions between biocide cationic agents and bacterial biofilms. Antimicrob. Agents Chemother. 46, 1469–1474 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Picioreanu, C., van Loosdrecht, M. C. M. & Heijnen, J. J. Two-dimensional model of biofilm detachment caused by internal stress from liquid flow. Biotechnol. Bioeng. 72, 205–218 (2001).

    CAS  PubMed  Google Scholar 

  48. 48.

    Thormann, K. M. et al. Control of formation and cellular detachment from Shewanella oneidensis MR-1 biofilms by cyclic di-GMP. J. Bacteriol. 188, 2681–2691 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Anderl, J. N., Franklin, M. J. & Stewart, P. S. Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob. Agents Chemother. 44, 1818–1824 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Lewis, K. Riddle of biofilm resistance. Antimicrob. Agents Chemother. 45, 999–1007 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Stewart, P. S. & Costerton, J. W. Antibiotic resistance of bacteria in biofilms. Lancet 358, 135–138 (2001).

    CAS  PubMed  Google Scholar 

  52. 52.

    Stewart, P. S. Theoretical aspects of antibiotic diffusion into microbial biofilms. Antimicrob. Agents Chemother. 40, 2517–2522 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Drenkard, E. Antimicrobial resistance of Pseudomonas aeruginosa biofilms. Microbes Infect. 5, 1213–1219 (2003).

    CAS  PubMed  Google Scholar 

  54. 54.

    Reichhardt, C. & Parsek, M. R. Confocal laser scanning microscopy for analysis of Pseudomonas aeruginosa biofilm architecture and matrix localization. Front. Microbiol. 10, 677 (2019).

    PubMed  PubMed Central  Google Scholar 

  55. 55.

    Doroshenko, N. et al. Extracellular DNA impedes the transport of vancomycin in Staphylococcus epidermidis biofilms preexposed to subinhibitory concentrations of vancomycin. Antimicrob. Agents Chemother. 58, 7273–7282 (2014).

    PubMed  PubMed Central  Google Scholar 

  56. 56.

    Tseng, B. S. et al. The extracellular matrix protects Pseudomonas aeruginosa biofilms by limiting the penetration of tobramycin. Environ. Microbiol. 15, 2865–2878 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Chua, S. L. et al. Dispersed cells represent a distinct stage in the transition from bacterial biofilm to planktonic lifestyle. Nat. Commun. 5, 4462 (2014). This study shows that P. aeruginosa dispersed cells displayed an altered transcriptome and physiology, and increased virulence, in comparison with planktonic and biofilm cells, but were highly sensitive to iron stress.

    CAS  PubMed  Google Scholar 

  58. 58.

    Chambers, J. R., Cherny, K. E. & Sauer, K. Susceptibility of Pseudomonas aeruginosa dispersed cells to antimicrobial agents is dependent on the dispersion cue and class of the antimicrobial agent used. Antimicrob. Agents Chemother. 61, e00846-17 (2017).

    PubMed  PubMed Central  Google Scholar 

  59. 59.

    Davies, D. G. & Marques, C. N. H. A fatty acid messenger is responsible for inducing dispersion in microbial biofilms. J. Bacteriol. 191, 1393–1403 (2009).

    CAS  PubMed  Google Scholar 

  60. 60.

    Costerton, J. Introduction to biofilm. Int. J. Antimicrob. Agents 11, 217–221 (1999).

    CAS  PubMed  Google Scholar 

  61. 61.

    Stewart, P. S. & Franklin, M. J. Physiological heterogeneity in biofilms. Nat. Rev. Microbiol. 6, 199 (2008).

    CAS  PubMed  Google Scholar 

  62. 62.

    Haussler, S. & Fuqua, C. Biofilms 2012: new discoveries and significant wrinkles in a dynamic field. J. Bacteriol. 195, 2947–2958 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Marques, C. N., Davies, D. G. & Sauer, K. Control of biofilms with the fatty acid signaling molecule cis-2-decenoic acid. Pharmaceuticals 8, 816–835 (2015). This study shows that the fatty acid molecule cis-DA functions as a native dispersion inducer that is capable of inducing dispersion of biofilms formed by Gram-negative, Gram-positive and fungal species.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Dow, J. M. et al. Biofilm dispersal in Xanthomonas campestris is controlled by cell-cell signaling and is required for full virulence to plants. Proc. Natl Acad. Sci. USA 100, 10995–11000 (2003).

    CAS  PubMed  Google Scholar 

  65. 65.

    Dean, S. N., Chung, M.-C. & van Hoek, M. L. Burkholderia diffusible signal factor signals to Francisella novicida to disperse biofilm and increase siderophore production. Appl. Environ. Microbiol. 81, 7057–7066 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Gjermansen, M., Ragas, P., Sternberg, C., Molin, S. & Tolker-Nielsen, T. Characterization of starvation-induced dispersion in Pseudomonas putida biofilms. Environ. Microbiol. 7, 894–904 (2005).

    CAS  PubMed  Google Scholar 

  67. 67.

    Delille, A., Quiles, F. & Humbert, F. In situ monitoring of the nascent Pseudomonas fluorescens biofilm response to variations in the dissolved organic carbon level in low-nutrient water by attenuated total reflectance-Fourier transform infrared spectroscopy. Appl. Environ. Microbiol. 73, 5782–5788 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Schleheck, D. et al. Pseudomonas aeruginosa PAO1 preferentially grows as aggregates in liquid batch cultures and disperses upon starvation. PloS ONE 4, e5513 (2009).

    PubMed  PubMed Central  Google Scholar 

  69. 69.

    Hunt, S. M., Werner, E. M., Huang, B., Hamilton, M. A. & Stewart, P. S. Hypothesis for the role of nutrient starvation in biofilm detachment. Appl. Environ. Microbiol. 70, 7418–7425 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Stoodley, P., deBeer, D. & Lewandowski, Z. Liquid flow in biofilm systems. Appl. Environ. Microbiol. 60, 2711–2716 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Rasmussen, K. & Lewandowski, Z. Microelectrode measurements of local mass transport rates in heterogeneous biofilms. Biotechnol. Bioeng. 59, 302–309 (1998).

    CAS  PubMed  Google Scholar 

  72. 72.

    Petrova, O. E., Schurr, J. R., Schurr, M. J. & Sauer, K. Microcolony formation by the opportunistic pathogen Pseudomonas aeruginosa requires pyruvate and pyruvate fermentation. Mol. Microbiol. 86, 819–835 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Goodwine, J. et al. Pyruvate-depleting conditions induce biofilm dispersion and enhance the efficacy of antibiotics in killing biofilms in vitro and in vivo. Sci. Rep. 9, 3763 (2019).

    PubMed  PubMed Central  Google Scholar 

  74. 74.

    Eschbach, M. et al. Long-term anaerobic survival of the opportunistic pathogen Pseudomonas aeruginosa via pyruvate fermentation. J. Bacteriol. 186, 4596–4604 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Schreiber, K. et al. Anaerobic survival of Pseudomonas aeruginosa by pyruvate fermentation requires an Usp-type stress protein. J. Bacteriol. 188, 659–668 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Price-Whelan, A., Dietrich, L. E. P. & Newman, D. K. Pyocyanin alters redox homeostasis and carbon flux through central metabolic pathways in Pseudomonas aeruginosa PA14. J. Bacteriol. 189, 6372–6381 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Leibig, M. et al. Pyruvate formate lyase acts as a formate supplier for metabolic processes during anaerobiosis in Staphylococcus aureus. J. Bacteriol. 193, 952–962 (2011).

    CAS  PubMed  Google Scholar 

  78. 78.

    Yang, L. et al. Effects of iron on DNA release and biofilm development by Pseudomonas aeruginosa. Microbiology 153, 1318–1328 (2007).

    CAS  PubMed  Google Scholar 

  79. 79.

    Lanter, B. B., Sauer, K. & Davies, D. G. Bacteria present in carotid arterial plaques are found as biofilm deposits which may contribute to enhanced risk of plaque rupture. mBio 5, 01206–01214 (2014).

    Google Scholar 

  80. 80.

    Thomas, V. C. & Hancock, L. E. Suicide and fratricide in bacterial biofilms. Int. J. Artif. Organs 32, 537–544 (2009).

    CAS  PubMed  Google Scholar 

  81. 81.

    Hentzer, M., Eberl, L. & Givskov, M. Transcriptome analysis of Pseudomonas aeruginosa biofilm development: anaerobic respiration and iron limitation. Biofilms 2, 37–61 (2005).

    Google Scholar 

  82. 82.

    Sriramulu, D. D., Lünsdorf, H., Lam, J. S. & Römling, U. Microcolony formation: a novel biofilm model of Pseudomonas aeruginosa for the cystic fibrosis lung. J. Med. Microbiol. 54, 667–676 (2005).

    PubMed  Google Scholar 

  83. 83.

    Webb, J. S. et al. Cell death in Pseudomonas aeruginosa biofilm development. J. Bacteriol. 185, 4585–4592 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Rice, S. A. et al. The biofilm life cycle and virulence of Pseudomonas aeruginosa are dependent on a filamentous prophage. ISME J. 3, 271–282 (2009).

    CAS  PubMed  Google Scholar 

  85. 85.

    Sutherland, I. W., Hughes, K. A., Skillman, L. C. & Tait, K. The interaction of phage and biofilms. FEMS Microbiol. Lett. 232, 1–6 (2004).

    CAS  PubMed  Google Scholar 

  86. 86.

    Secor, P. R. et al. Biofilm assembly becomes crystal clear–filamentous bacteriophage organize the Pseudomonas aeruginosa biofilm matrix into a liquid crystal. Microb. Cell 3, 49 (2016).

    CAS  Google Scholar 

  87. 87.

    Sauer, K. et al. Characterization of nutrient-induced dispersion in Pseudomonas aeruginosa PAO1 biofilm. J. Bacteriol. 186, 7312–7326 (2004). This seminal study shows that dispersal of P. aeruginosa from biofilms can be induced by the addition of simple carbon sources, and that dispersed cells adopt a specific phenotype.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Barraud, N. et al. Nitric oxide-mediated dispersal in single- and multi-species biofilms of clinically and industrially relevant microorganisms. Microb. Biotechnol. 2, 370–378 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Purcell, E. B. & Tamayo, R. Cyclic diguanylate signaling in Gram-positive bacteria. FEMS Microbiol. Rev. 40, 753–773 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Hengge, R. Principles of c-di-GMP signalling in bacteria. Nat. Rev. Microbiol. 7, 263–273 (2009).

    CAS  PubMed  Google Scholar 

  91. 91.

    Rybtke, M. T. et al. Fluorescence-based reporter for gauging cyclic di-GMP levels in Pseudomonas aeruginosa. Appl. Environ. Microbiol. 78, 5060–5069 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. 92.

    Nair, H. A., Periasamy, S., Yang, L., Kjelleberg, S. & Rice, S. A. Real time, spatial, and temporal mapping of the distribution of c-di-GMP during biofilm development. J. Biol. Chem. 292, 477–487 (2017).

    CAS  PubMed  Google Scholar 

  93. 93.

    Basu Roy, A., Petrova, O. E. & Sauer, K. The phosphodiesterase DipA (PA5017) is essential for Pseudomonas aeruginosa biofilm dispersion. J. Bacteriol. 194, 2904–2915 (2012).

    Google Scholar 

  94. 94.

    Gjermansen, M., Nilsson, M., Yang, L. & Tolker-Nielsen, T. Characterization of starvation-induced dispersion in Pseudomonas putida biofilms: genetic elements and molecular mechanisms. Mol. Microbiol. 75, 815–826 (2010).

    CAS  PubMed  Google Scholar 

  95. 95.

    Morgan, R., Kohn, S., Hwang, S.-H., Hassett, D. J. & Sauer, K. BdlA, a chemotaxis regulator essential for biofilm dispersion in Pseudomonas aeruginosa. J. Bacteriol. 188, 7335–7343 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. 96.

    Li, Y. et al. BdlA, DipA and induced dispersion contribute to acute virulence and chronic persistence of Pseudomonas aeruginosa. PLoS Pathog. 10, e1004168 (2014).

    PubMed  PubMed Central  Google Scholar 

  97. 97.

    Li, Y., Heine, S., Entian, M., Sauer, K. & Frankenberg-Dinkel, N. NO-induced biofilm dispersion in Pseudomonas aeruginosa is mediated by a MHYT-domain coupled phosphodiesterase. J. Bacteriol. 195, 3531–3542 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. 98.

    Barraud, N. et al. Nitric oxide signaling in Pseudomonas aeruginosa biofilms mediates phosphodiesterase activity, decreased cyclic di-GMP levels, and enhanced dispersal. J. Bacteriol. 191, 7333–7342 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99.

    Christensen, L. D. et al. Clearance of Pseudomonas aeruginosa foreign-body biofilm infections through reduction of the cyclic di-GMP level in the bacteria. Infect. Immun. 81, 2705–2713 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100.

    Baraquet, C., Harwood, C. S. & FleQ, D. N. A. Binding consensus sequence revealed by studies of FleQ-dependent regulation of biofilm gene expression in Pseudomonas aeruginosa. J. Bacteriol. 198, 178–186 (2016).

    CAS  PubMed  Google Scholar 

  101. 101.

    Häußler, S., Tümmler, B., Weißbrodt, H., Rohde, M. & Steinmetz, I. Small-colony variants of Pseudomonas aeruginosa in cystic fibrosis. Clin. Infect. Dis. 29, 621–625 (1999).

    PubMed  Google Scholar 

  102. 102.

    Häußler, S. et al. Highly adherent small-colony variants of Pseudomonas aeruginosa in cystic fibrosis lung infection. J. Med. Microbiol. 52, 295–301 (2003).

    PubMed  Google Scholar 

  103. 103.

    Proctor, R. A. et al. Small colony variants: a pathogenic form of bacteria that facilitates persistent and recurrent infections. Nat. Rev. Microbiol. 4, 295–305 (2006).

    CAS  PubMed  Google Scholar 

  104. 104.

    Proctor, R. A., van Langevelde, P., Kristjansson, M., Maslow, J. N. & Arbeit, R. D. Persistent and relapsing infections associated with small-colony variants of Staphylococcus aureus. Clin. Infect. Dis. 20, 95–102 (1995).

    CAS  PubMed  Google Scholar 

  105. 105.

    Drenkard, E. & Ausubel, F. M. Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature 416, 740–743 (2002).

    CAS  PubMed  Google Scholar 

  106. 106.

    Chua, S. L. et al. Bis-(3′-5′)-cyclic dimeric GMP regulates antimicrobial peptide resistance in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 57, 2066–2075 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. 107.

    Basu Roy, A. & Sauer, K. Diguanylate cyclase NicD-based signalling mechanism of nutrient-induced dispersion by Pseudomonas aeruginosa. Mol. Microbiol. 94, 771–793 (2014).

    CAS  PubMed  Google Scholar 

  108. 108.

    Cutruzzolà, F. & Frankenberg-Dinkel, N. Origin and impact of nitric oxide in Pseudomonas aeruginosa Biofilms. J. Bacteriol. 198, 55–65 (2016).

    PubMed  Google Scholar 

  109. 109.

    Zhou, L., Zhang, L.-H., Cámara, M. & He, Y.-W. The DSF family of quorum sensing signals: diversity, biosynthesis, and turnover. Trends Microbiol. 25, 293–303 (2017).

    CAS  PubMed  Google Scholar 

  110. 110.

    Andrade, M. O. et al. The HD-GYP domain of RpfG mediates a direct linkage between the Rpf quorum-sensing pathway and a subset of diguanylate cyclase proteins in the phytopathogen Xanthomonas axonopodis pv citri. Mol. Microbiol. 62, 537–551 (2006).

    CAS  PubMed  Google Scholar 

  111. 111.

    Deng, Y. et al. Cis-2-dodecenoic acid receptor RpfR links quorum-sensing signal perception with regulation of virulence through cyclic dimeric guanosine monophosphate turnover. Proc. Natl Acad. Sci. USA 109, 15479–15484 (2012).

    CAS  PubMed  Google Scholar 

  112. 112.

    Abee, T., Kovács, Á. T., Kuipers, O. P. & Van der Veen, S. Biofilm formation and dispersal in Gram-positive bacteria. Curr. Opin. Biotechnol. 22, 172–179 (2011).

    CAS  PubMed  Google Scholar 

  113. 113.

    Chou, S.-H. & Galperin, M. Y. Cyclic di-GMP in Streptomycetes: a new conformation, new binding mode, new receptor, and a new mechanism to control cell development. Mol. Cell 77, 443–445 (2020).

    CAS  PubMed  Google Scholar 

  114. 114.

    Flemming, H. C. & Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 8, 623–633 (2010).

    CAS  PubMed  Google Scholar 

  115. 115.

    Cherny, K. E. & Sauer, K. Pseudomonas aeruginosa requires the DNA-specific endonuclease EndA to degrade eDNA to disperse from the biofilm. J. Bacteriol. 201, e00059-19 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. 116.

    Cherny, K. E. & Sauer, K. Untethering and degradation of the polysaccharide matrix are essential steps in the dispersion response of Pseudomonas aeruginosa biofilms. J. Bacteriol. 202, e00575-19 (2020). This study suggests matrix degradation to induce dispersion is a multistep process.

    PubMed  PubMed Central  Google Scholar 

  117. 117.

    Rybtke, M. et al. The LapG protein plays a role in Pseudomonas aeruginosa biofilm formation by controlling the presence of the CdrA adhesin on the cell surface. Microbiologyopen 4, 917–930 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. 118.

    Borlee, B. R. et al. Pseudomonas aeruginosa uses a cyclic-di-GMP-regulated adhesin to reinforce the biofilm extracellular matrix. Mol. Microbiol. 75, 827–842 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. 119.

    Monds, R. D., Newell, P. D., Gross, R. H. & O’Toole, G. A. Phosphate-dependent modulation of c-di-GMP levels regulates Pseudomonas fluorescens Pf0-1 biofilm formation by controlling secretion of the adhesin LapA. Mol. Microbiol. 63, 656–679 (2007).

    CAS  PubMed  Google Scholar 

  120. 120.

    Reichhardt, C., Wong, C., Passos da Silva, D., Wozniak, D. J. & Parsek, M. R. CdrA interactions within the Pseudomonas aeruginosa biofilm matrix safeguard it from proteolysis and promote cellular packing. mBio 9, e01376-18 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. 121.

    Devaraj, A. et al. The extracellular DNA lattice of bacterial biofilms is structurally related to Holliday junction recombination intermediates. Proc. Natl Acad. Sci. USA 116, 25068–25077 (2019).

    CAS  PubMed  Google Scholar 

  122. 122.

    Steinberger, R. E. & Holden, P. A. Extracellular DNA in single- and multiple-species unsaturated biofilms. Appl. Environ. Microbiol. 71, 5404–5410 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. 123.

    Whitchurch, C. B., Tolker-Nielsen, T., Ragas, P. C. & Mattick, J. S. Extracellular DNA required for bacterial biofilm formation. Science 295, 1487 (2002).

    CAS  PubMed  Google Scholar 

  124. 124.

    Nijland, R., Hall, M. J. & Burgess, J. G. Dispersal of biofilms by secreted, matrix degrading, bacterial DNase. PLoS ONE 5, e15668 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. 125.

    Boles, B. R. & Horswill, A. R. Staphylococcal biofilm disassembly. Trends Microbiol. 19, 449–455 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. 126.

    Gödeke, J., Heun, M., Bubendorfer, S., Paul, K. & Thormann, K. M. Roles of two Shewanella oneidensis MR-1 extracellular endonucleases. Appl. Environ. Microbiol. 77, 5342–5351 (2011).

    PubMed  PubMed Central  Google Scholar 

  127. 127.

    McDougald, D., Rice, S. A., Barraud, N., Steinberg, P. D. & Kjelleberg, S. Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal. Nat. Rev. Microbiol. 10, 39–50 (2012).

    CAS  Google Scholar 

  128. 128.

    Pestrak, M. J. et al. Treatment with the Pseudomonas aeruginosa glycoside hydrolase PslG combats wound infection by improving antibiotic efficacy and host innate immune activity. Antimicrob. Agents Chemother. 63, e00234-19 (2019). This study demonstrates that biofilm disassembly, induced by the exogenous addition of a matrix-degrading protein, PslG, has a positive outcome in the treatment of biofilm-related infections.

    PubMed  PubMed Central  Google Scholar 

  129. 129.

    Baker, P. et al. Exopolysaccharide biosynthetic glycoside hydrolases can be utilized to disrupt and prevent Pseudomonas aeruginosa biofilms. Sci. Adv. 2, e1501632 (2016).

    PubMed  PubMed Central  Google Scholar 

  130. 130.

    Yu, S. et al. PslG, a self-produced glycosyl hydrolase, triggers biofilm disassembly by disrupting exopolysaccharide matrix. Cell Res. 25, 1352–1367 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. 131.

    Kaplan, J. B., Ragunath, C., Ramasubbu, N. & Fine, D. H. Detachment of Actinobacillus actinomycetemcomitans biofilm cells by an endogenous β-hexosaminidase activity. J. Bacteriol. 185, 4693–4698 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. 132.

    Kaplan, J. B., Ragunath, C., Velliyagounder, K., Fine, D. H. & Ramasubbu, N. Enzymatic detachment of Staphylococcus epidermidis biofilms. Antimicrob. Agents Chemother. 48, 2633–2636 (2004). This study features the characterization of one of the first biofilm-releasing enzymes produced by the resident biofilm bacteria to induce biofilm disassembly.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. 133.

    Chaignon, P. et al. Susceptibility of staphylococcal biofilms to enzymatic treatments depends on their chemical composition. Appl. Microbiol. Biotechnol. 75, 125–132 (2007).

    CAS  PubMed  Google Scholar 

  134. 134.

    Boles, B. R. & Horswill, A. R. agr mediated dispersal of Staphylococcus aureus biofilms. PLoS Pathog. 4, e1000052 (2008).

    PubMed  PubMed Central  Google Scholar 

  135. 135.

    Chua, S. L. et al. In vitro and in vivo generation and characterization of Pseudomonas aeruginosa biofilm-dispersed cells via c-di-GMP manipulation. Nat. Protoc. 10, 1165–1180 (2015).

    CAS  PubMed  Google Scholar 

  136. 136.

    Jones, C. J. et al. ChIP-Seq and RNA-Seq reveal an AmrZ-mediated mechanism for cyclic di-GMP synthesis and biofilm development by Pseudomonas aeruginosa. PLoS Pathog. 10, e1003984 (2014).

    PubMed  PubMed Central  Google Scholar 

  137. 137.

    Xu, B. et al. The Pseudomonas aeruginosa AmrZ C-terminal domain mediates tetramerization and is required for its activator and repressor functions. Environ. Microbiol. Rep. 8, 85–90 (2016).

    CAS  PubMed  Google Scholar 

  138. 138.

    Jones, C. J. AmrZ Is A Central Regulator of Biofilm Formation in Pseudomonas aeruginosa. Thesis, Ohio State Univ. (2013).

  139. 139.

    Woo, J. K., Webb, J. S., Kirov, S. M., Kjelleberg, S. & Rice, S. A. Biofilm dispersal cells of a cystic fibrosis Pseudomonas aeruginosa isolate exhibit variability in functional traits likely to contribute to persistent infection. FEMS Immunol. Med. Microbiol. 66, 251–264 (2012). This study provides evidence that the development of a chronic infection phenotype can be reversed to recover acute infection isolates and that growth within a biofilm facilitates diversification of P. aeruginosa, which is important for ecological adaptation.

    CAS  PubMed  Google Scholar 

  140. 140.

    Hall-Stoodley, L. & Stoodley, P. Biofilm formation and dispersal and the transmission of human pathogens. Trends Microbiol. 13, 7–10 (2005). This review summarizes our current knowledge of the role of biofilm formation in facilitating the transmission of pathogens by providing a stable protective environment and acting as a nidus for the dissemination of large numbers of microorganisms.

    CAS  PubMed  Google Scholar 

  141. 141.

    Rollet, C., Gal, L. & Guzzo, J. Biofilm-detached cells, a transition from a sessile to a planktonic phenotype: a comparative study of adhesion and physiological characteristics in Pseudomonas aeruginosa. FEMS Microbiol. Lett. 290, 135–142 (2009). This study provides a summary of the physiological characteristics of cells detached from a P. aeruginosa biofilm relative to their sessile and planktonic counterparts.

    CAS  PubMed  Google Scholar 

  142. 142.

    Uppuluri, P. et al. Candida albicans dispersed cells are developmentally distinct from biofilm and planktonic cells. mBio 9, e01338-18. (2018). This seminal study shows that dispersal of P. aeruginosa from biofilms can be induced by the addition of simple carbon sources and that dispersed cells adopt a specific phenotype.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. 143.

    Liu, J., Ling, J. Q., Zhang, K. & Wu, C. D. Physiological properties of Streptococcus mutans UA159 biofilm-detached cells. FEMS Microbiol. Lett. 340, 11–18 (2013).

    CAS  PubMed  Google Scholar 

  144. 144.

    Guilhen, C. et al. Transcriptional profiling of Klebsiella pneumoniae defines signatures for planktonic, sessile and biofilm-dispersed cells. BMC Genomics 17, 237 (2016).

    PubMed  PubMed Central  Google Scholar 

  145. 145.

    Vaysse, P. J., Sivadon, P., Goulas, P. & Grimaud, R. Cells dispersed from Marinobacter hydrocarbonoclasticus SP17 biofilm exhibit a specific protein profile associated with a higher ability to reinitiate biofilm development at the hexadecane-water interface. Env. Microbiol. 13, 737–746 (2011).

    CAS  Google Scholar 

  146. 146.

    Fleming, D. & Rumbaugh, K. The consequences of biofilm dispersal on the host. Sci. Rep. 8, 10738 (2018). This study shows that P. aeruginosa biofilm cells dispersed from mouse chronic wound infections by glycoside hydrolases can cause fatal sepsis unless antibiotics are given in conjunction.

    PubMed  PubMed Central  Google Scholar 

  147. 147.

    Fleming, D. & Rumbaugh, K. Approaches to dispersing medical biofilms. Microorganisms 5, 15 (2017).

    PubMed Central  Google Scholar 

  148. 148.

    Waryah, C. B. et al. In vitro antimicrobial efficacy of tobramycin against staphylococcus aureus biofilms in combination with or without DNase I and/or dispersin B: a preliminary investigation. Microb. Drug Resist. 23, 384–390 (2017).

    CAS  PubMed  Google Scholar 

  149. 149.

    Izano, E. A., Wang, H., Ragunath, C., Ramasubbu, N. & Kaplan, J. B. Detachment and killing of Aggregatibacter actinomycetemcomitans biofilms by dispersin B and SDS. J. Dent. Res. 86, 618–622 (2007).

    CAS  PubMed  Google Scholar 

  150. 150.

    Gawande, P. V., Leung, K. P. & Madhyastha, S. Antibiofilm and antimicrobial efficacy of DispersinB(R)-KSL-W peptide-based wound gel against chronic wound infection associated bacteria. Curr. Microbiol. 68, 635–641 (2014).

    CAS  PubMed  Google Scholar 

  151. 151.

    Itoh, Y., Wang, X., Hinnebusch, B. J., Preston, J. F. III & Romeo, T. Depolymerization of β-1,6-N-acetyl-d-glucosamine disrupts the integrity of diverse bacterial biofilms. J. Bacteriol. 187, 382–387 (2005). This study demonstrates for the first time that enzymatic hydrolysis of PGA disrupts biofilm formation by strains harbouring pgaABCD homologues, including Yersinia pestis and P. fluorescens.

    CAS  PubMed  PubMed Central  Google Scholar 

  152. 152.

    Gawande, P. V. et al. Antibiofilm efficacy of DispersinB® wound spray used in combination with a silver wound dressing. Microbiol. Insights 7, 9–13 (2014).

    PubMed  PubMed Central  Google Scholar 

  153. 153.

    Kaplan, J. B. et al. Extracellular polymeric substance (EPS)-degrading enzymes reduce staphylococcal surface attachment and biocide resistance on pig skin in vivo. PLoS ONE 13, e0205526 (2018).

    PubMed  PubMed Central  Google Scholar 

  154. 154.

    Darouiche, R. O., Mansouri, M. D., Gawande, P. V. & Madhyastha, S. Antimicrobial and antibiofilm efficacy of triclosan and DispersinB combination. J. Antimicrob. Chemother. 64, 88–93 (2009).

    CAS  PubMed  Google Scholar 

  155. 155.

    Barraud, N., J Kelso, M., A Rice, S. & Kjelleberg, S. Nitric oxide: a key mediator of biofilm dispersal with applications in infectious diseases. Curr. Pharm. Des. 21, 31–42 (2015).

    CAS  PubMed  Google Scholar 

  156. 156.

    Sepehr, S., Rahmani-Badi, A., Babaie-Naiej, H. & Soudi, M. R. Unsaturated fatty acid, cis-2-decenoic acid, in combination with disinfectants or antibiotics removes pre-established biofilms formed by food-related bacteria. PLoS ONE 9, e101677 (2014).

    PubMed  PubMed Central  Google Scholar 

  157. 157.

    Rahmani-Badi, A. et al. A combination of cis-2-decenoic acid and antibiotics eradicates pre-established catheter-associated biofilms. J. Med. Microbiol. 63, 1509–1516 (2014).

    PubMed  Google Scholar 

  158. 158.

    Rahmani-Badi, A., Sepehr, S. & Babaie-Naiej, H. A combination of cis-2-decenoic acid and chlorhexidine removes dental plaque. Arch. Oral. Biol. 60, 1655–1661 (2015).

    CAS  PubMed  Google Scholar 

  159. 159.

    Harris, M. A., Beenken, K. E., Smeltzer, M. S., Haggard, W. O. & Jennings, J. A. Phosphatidylcholine coatings deliver local antimicrobials and reduce infection in a murine model: a preliminary study. Clin. Orthop. Relat. Res. 475, 1847–1853 (2017).

    PubMed  PubMed Central  Google Scholar 

  160. 160.

    Choi, M. et al. Chitosan-based nitric oxide-releasing dressing for anti-biofilm and in vivo healing activities in MRSA biofilm-infected wounds. Int. J. Biol. Macromol. 142, 680–692 (2019).

    PubMed  Google Scholar 

  161. 161.

    Jardeleza, C. et al. An in vivo safety and efficacy demonstration of a topical liposomal nitric oxide donor treatment for Staphylococcus aureus biofilm-associated rhinosinusitis. Transl. Res. 166, 683–692 (2015).

    CAS  PubMed  Google Scholar 

  162. 162.

    Wo, Y. et al. Reduction of thrombosis and bacterial infection via controlled nitric oxide (NO) release from S-nitroso-N-acetylpenicillamine (SNAP) impregnated CarboSil intravascular catheters. ACS Biomater. Sci. Eng. 3, 349–359 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. 163.

    Mihu, M. R. et al. Sustained nitric oxide-releasing nanoparticles interfere with methicillin-resistant Staphylococcus aureus adhesion and biofilm formation in a rat central venous catheter model. Antimicrob. Agents Chemother. 61, e02020-16 (2017).

    CAS  PubMed  Google Scholar 

  164. 164.

    Tao, F., Swarup, S. & Zhang, L. H. Quorum sensing modulation of a putative glycosyltransferase gene cluster essential for Xanthomonas campestris biofilm formation. Environ. Microbiol. 12, 3159–3170 (2010).

    CAS  PubMed  Google Scholar 

  165. 165.

    An, S., Wu, J. & Zhang, L. H. Modulation of Pseudomonas aeruginosa biofilm dispersal by a cyclic-di-GMP phosphodiesterase with a putative hypoxia-sensing domain. Appl. Environ. Microbiol. 76, 8160–8173 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. 166.

    Petrova, O. E., Cherny, K. E. & Sauer, K. The diguanylate cyclase GcbA facilitates Pseudomonas aeruginosa biofilm dispersion by activating BdlA. J. Bacteriol. 197.1, 174–187 (2015).

    Google Scholar 

  167. 167.

    Petrova, O. E. & Sauer, K. Dispersion by Pseudomonas aeruginosa requires an unusual posttranslational modification of BdlA. Proc. Natl Acad. Sci. USA 109, 16690–16695 (2012). This study demonstrates the post-translational modification of BdlA in response to dispersion cue sensing.

    CAS  PubMed  Google Scholar 

  168. 168.

    Marks, L. R., Davidson, B. A., Knight, P. R. & Hakansson, A. P. Interkingdom signaling induces Streptococcus pneumoniae biofilm dispersion and transition from asymptomatic colonization to disease. mBio 4, e00438-13 (2013).

    PubMed  PubMed Central  Google Scholar 

  169. 169.

    Rice, S. et al. Biofilm formation and sloughing in Serratia marcescens are controlled by quorum sensing and nutrient cues. J. Bacteriol. 187, 3477–3485 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. 170.

    Barraud, N. et al. Involvement of nitric oxide in biofilm dispersal of Pseudomonas aeruginosa. J. Bacteriol. 188, 7344–7353 (2006). This seminal study shows that dispersal of P. aeruginosa from biofilms can be induced by the addition of NO and that combined exposure to both NO and antimicrobial agents greatly enhanced the efficacy of antimicrobial compounds in the removal of established P. aeruginosa biofilms.

    CAS  PubMed  PubMed Central  Google Scholar 

  171. 171.

    Schmidt, I., Steenbakkers, P. J., op den Camp, H. J., Schmidt, K. & Jetten, M. S. Physiologic and proteomic evidence for a role of nitric oxide in biofilm formation by Nitrosomonas europaea and other ammonia oxidizers. J. Bacteriol. 186, 2781–2788 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. 172.

    Musk, D. J., Banko, D. A. & Hergenrother, P. J. Iron salts perturb biofilm formation and disrupt existing biofilms of Pseudomonas aeruginosa. Chem. Biol. 12, 789–796 (2005).

    CAS  PubMed  Google Scholar 

  173. 173.

    Mikkelsen, H., Hui, K., Barraud, N. & Filloux, A. The pathogenicity island encoded PvrSR/RcsCB regulatory network controls biofilm formation and dispersal in Pseudomonas aeruginosa PA14. Mol. Microbiol. 89, 450–463 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. 174.

    Kragh, K. N. et al. Role of multicellular aggregates in biofilm formation. mBio 7, e00237-16 (2016).

    PubMed  PubMed Central  Google Scholar 

  175. 175.

    Naumoff, D. Hierarchical classification of glycoside hydrolases. Biochemistry 76, 622–635 (2011).

    CAS  PubMed  Google Scholar 

  176. 176.

    Fleming, D., Chahin, L. & Rumbaugh, K. Glycoside hydrolases degrade polymicrobial bacterial biofilms in wounds. Antimicrob. Agents Chemother. 61, e01998-16 (2017).

    PubMed  PubMed Central  Google Scholar 

  177. 177.

    Mulcahy, H., Charron-Mazenod, L. & Lewenza, S. Pseudomonas aeruginosa produces an extracellular deoxyribonuclease that is required for utilization of DNA as a nutrient source. Environ. Microbiol. 12, 1621–1629 (2010).

    CAS  PubMed  Google Scholar 

  178. 178.

    Klausen, M., Aaes-Jørgensen, A., Molin, S. & Tolker-Nielsen, T. Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms. Mol. Microbiol. 50, 61–68 (2003).

    CAS  PubMed  Google Scholar 

Download references


This work was supported by grants from the US National Institutes of Health (R21 AI137462-01A1 to K.P.R. and 2R01 AI080710 to K.S.) and the Ted Nash Long Life Foundation (to K.P.R.).

Author information




The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Karin Sauer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Microbiology thanks S. Kjelleberg, P. Stoodley and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Centers for Disease Control and Prevention programme announcement PA-03-047:

Centers for Disease Control and Prevention programme announcement PA-06-537:



Generally characterized as the terminal stage of biofilm development, dispersion is an active regulated event during which cells actively escape from the biofilm, leaving behind eroded biofilms and biofilms having central voids. Often referred to as ‘seeding dispersal’ or ‘dispersal’, as dispersion is assumed to lead to the translocation of bacteria to new sites for colonization.


Characterized as the passive release or loss of biofilm cells or biofilm particles due to mechanical, physical or frictional forces. Another term used to refer to detachment is ‘dissolution’.


Strain in the structure of a substance produced by pressure.


Loss of biofilm cells by collisions with particles from the environment; a form of detachment.


The translocation of dispersed biofilm cells to new sites.


Also referred to as ‘σ38’, a primary regulator of stationary phase genes and a central regulator of the general stress response.

Native dispersion

Dispersion in response to self-synthesized signalling molecules or cues that are likely to be the result of steep gradients within the biofilm.

Diffusive and advective transport

Processes that move nutrients, waste, gases or other compounds through the biofilm and the surrounding environment. ‘Advection’ refers to transport of compounds with fluid flow, whereas diffusion eliminates sharp discontinuities of compounds through the action of random motions.


The egress from biofilms and/or the disintegration of the biofilm structure in response to exogenously added matrix-degrading enzymes. The term is frequently used when it is unclear whether the released cell subpopulation retains the biofilm phenotype or adopts the dispersal phenotype.

Quorum sensing

Also referred to as ‘cell-to-cell signalling’, it refers to the regulation of gene expression in response to the production and release of chemical signal molecules called ‘autoinducers’ that increase in concentration as a function of cell density.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rumbaugh, K.P., Sauer, K. Biofilm dispersion. Nat Rev Microbiol 18, 571–586 (2020).

Download citation

Further reading


Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing