Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Phage diversity, genomics and phylogeny


Recent advances in viral metagenomics have enabled the rapid discovery of an unprecedented catalogue of phages in numerous environments, from the human gut to the deep ocean. Although these advances have expanded our understanding of phage genomic diversity, they also revealed that we have only scratched the surface in the discovery of novel viruses. Yet, despite the remarkable diversity of phages at the nucleotide sequence level, the structural proteins that form viral particles show strong similarities and conservation. Phages are uniquely interconnected from an evolutionary perspective and undergo multiple events of genetic exchange in response to the selective pressure of their hosts, which drives their diversity. In this Review, we explore phage diversity at the structural, genomic and community levels as well as the complex evolutionary relationships between phages, moulded by the mosaicity of their genomes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Phage classification based on morphology and genome type.
Fig. 2: Number of complete genomes and genome size distribution in phage families.
Fig. 3: Integrating metagenomics, single-virus genomics, culture and microscopy to uncover viral diversity.
Fig. 4: Phage distribution and abundance in three ecosystems.
Fig. 5: Network representation of phage phylogeny.


  1. 1.

    Suttle, C. A. Viruses in the sea. Nature 437, 356–361 (2005).

    CAS  PubMed  Google Scholar 

  2. 2.

    Nigro, O. D. et al. Viruses in the oceanic basement. mBio 8, 1–15 (2017).

    Google Scholar 

  3. 3.

    Appelt, S. et al. Viruses in a 14th-century coprolite. Appl. Environ. Microbiol. 80, 2648–2655 (2014).

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    Kim, M.-S. & Bae, J.-W. Lysogeny is prevalent and widely distributed in the murine gut microbiota. ISME J. 12, 1127–1141 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Devoto, A. E. et al. Megaphages infect Prevotella and variants are widespread in gut microbiomes. Nat. Microbiol. 4, 693–700 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Brum, J. R., Schenck, R. O. & Sullivan, M. B. Global morphological analysis of marine viruses shows minimal regional variation and dominance of non-tailed viruses. ISME J. 7, 1738–1751 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Kauffman, K. M. et al. A major lineage of non-tailed dsDNA viruses as unrecognized killers of marine bacteria. Nature 554, 118–122 (2018).

    CAS  PubMed  Google Scholar 

  8. 8.

    Lim, E. S. et al. Early life dynamics of the human gut virome and bacterial microbiome in infants. Nat. Med. 21, 1228–1234 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Roux, S. et al. Cryptic inoviruses are pervasive in bacteria and archaea across Earth’s biomes. Nat. Microbiol. 4, 1895–1906 (2019). This study uses a machine learning approach to identify 10,295 previously uncharacterized inoviruses from microbial genomes and metagenomes.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Paez-Espino, D. et al. Uncovering Earth’s virome. Nature 536, 425–430 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Gregory, A. C. et al. Marine DNA viral macro- and microdiversity from pole to pole. Cell 177, 1–15 (2019).

    Google Scholar 

  12. 12.

    Ackermann, H. W. Phage classification and characterization. Methods Mol. Biol. 501, 127–140 (2009).

    CAS  PubMed  Google Scholar 

  13. 13.

    Ackermann, H. W. 5500 Phages examined in the electron microscope. Arch. Virol. 152, 227–243 (2007).

    CAS  PubMed  Google Scholar 

  14. 14.

    Adams, M. J. et al. 50 years of the International Committee on Taxonomy of Viruses: progress and prospects. Arch. Virol. 162, 1441–1446 (2017).

    CAS  PubMed  Google Scholar 

  15. 15.

    Adriaenssens, E. & Brister, J. R. How to name and classify your phage: an informal guide. Viruses 9, 70 (2017).

    PubMed Central  Google Scholar 

  16. 16.

    Barylski, J. et al. Analysis of Spounaviruses as a case study for the overdue reclassification of tailed phages. Syst. Biol. 69, 110–123 (2019).

    Google Scholar 

  17. 17.

    Adriaenssens, E. M. et al. A suggested new bacteriophage genus: ‘Viunalikevirus’. Arch. Virol. 157, 2035–2046 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Hua, J. et al. Capsids and genomes of jumbo-sized bacteriophages reveal the evolutionary reach of the HK97 fold. mBio 8, e01579-17 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Duda, R. L. & Teschke, C. M. The amazing HK97 fold: versatile results of modest differences. Curr. Opin. Virol. 36, 9–16 (2019).

    CAS  PubMed  Google Scholar 

  20. 20.

    Agirrezabala, X. et al. Structure of the connector of bacteriophage T7 at 8A resolution: structural homologies of a basic component of a DNA translocating machinery. J. Mol. Biol. 347, 895–902 (2005).

    CAS  PubMed  Google Scholar 

  21. 21.

    Lebedev, A. A. et al. Structural framework for DNA translocation via the viral portal protein. EMBO J. 26, 1984–1994 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Lokareddy, R. K. et al. Portal protein functions akin to a DNA-sensor that couples genome-packaging to icosahedral capsid maturation. Nat. Commun. 8, 14310 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Cardarelli, L. et al. The crystal structure of bacteriophage HK97 gp6: defining a large family of head–tail connector proteins. J. Mol. Biol. 395, 754–768 (2010). This study shows the evolutionary relationships that can exist among diverse groups of phage proteins.

    CAS  PubMed  Google Scholar 

  24. 24.

    Olia, A. S., Prevelige Jr., P. E., Johnson, J. E. & Cingolani, G. Three-dimensional structure of a viral genome-delivery portal vertex. Nat. Struct. Mol. Biol. 18, 597–603 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Arnaud, C.-A. et al. Bacteriophage T5 tail tube structure suggests a trigger mechanism for Siphoviridae DNA ejection. Nat. Commun. 8, 1953 (2017).

    PubMed  PubMed Central  Google Scholar 

  26. 26.

    Leiman, P. G., Chipman, P. R., Kostyuchenko, V. A., Mesyanzhinov, V. V. & Rossmann, M. G. Three-dimensional rearrangement of proteins in the tail of bacteriophage T4 on infection of its host. Cell 118, 419–429 (2004).

    CAS  PubMed  Google Scholar 

  27. 27.

    Cardarelli, L. et al. Phages have adapted the same protein fold to fulfill multiple functions in virion assembly. Proc. Natl Acad. Sci. USA 107, 14384–14389 (2010).

    CAS  PubMed  Google Scholar 

  28. 28.

    Pell, L. G., Kanelis, V., Donaldson, L. W., Howell, P. L. & Davidson, A. R. The phage λ major tail protein structure reveals a common evolution for long-tailed phages and the type VI bacterial secretion system. Proc. Natl Acad. Sci. USA 106, 4160–4165 (2009).

    CAS  PubMed  Google Scholar 

  29. 29.

    Wang, C., Tu, J., Liu, J. & Molineux, I. J. Structural dynamics of bacteriophage P22 infection initiation revealed by cryo-electron tomography. Nat. Microbiol. 4, 1049–1056 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Legrand, P. et al. The atomic structure of the phage Tuc2009 baseplate tripod suggests that host recognition involves two different carbohydrate binding modules. mBio 7, e01781–e01815 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Tremblay, D. M. et al. Receptor-binding protein of Lactococcus lactis phages: identification and characterization of the saccharide receptor-binding site. J. Bacteriol. 188, 2400–2410 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Spinelli, S. et al. Modular structure of the receptor binding proteins of Lactococcus lactis phages. The RBP structure of the temperate phage TP901-1. J. Biol. Chem. 281, 14256–14262 (2006).

    CAS  PubMed  Google Scholar 

  33. 33.

    Spinelli, S. et al. Lactococcal bacteriophage p2 receptor-binding protein structure suggests a common ancestor gene with bacterial and mammalian viruses. Nat. Struct. Mol. Biol. 13, 85–89 (2006).

    CAS  PubMed  Google Scholar 

  34. 34.

    Benson, S. D., Bamford, J. K., Bamford, D. H. & Burnett, R. M. Viral evolution revealed by bacteriophage PRD1 and human adenovirus coat protein structures. Cell 98, 825–833 (1999).

    CAS  PubMed  Google Scholar 

  35. 35.

    Abrescia, N. G. et al. Insights into virus evolution and membrane biogenesis from the structure of the marine lipid-containing bacteriophage PM2. Mol. Cell 31, 749–761 (2008).

    CAS  PubMed  Google Scholar 

  36. 36.

    Abrescia, N. G. et al. Insights into assembly from structural analysis of bacteriophage PRD1. Nature 432, 68–74 (2004).

    CAS  PubMed  Google Scholar 

  37. 37.

    Fabry, C. M. S. et al. A quasi-atomic model of human adenovirus type 5 capsid. EMBO J. 24, 1645–1654 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Peralta, B. et al. Mechanism of membranous tunnelling nanotube formation in viral genome delivery. PLoS Biol. 11, e1001667 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Vidaver, A. K., Koski, R. K. & Van Etten, J. L. Bacteriophage ϕ6: a lipid-containing virus of Pseudomonas phaseolicola. J. Virol. 11, 799–805 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Krupovic, M. & ICTV Report Consortium. ICTV virus taxonomy profile: Plasmaviridae. J. Gen. Virol. 99, 617–618 (2018).

    CAS  PubMed  Google Scholar 

  41. 41.

    Greenberg, N. & Rottem, S. Composition and molecular organization of lipids and proteins in the envelope of mycoplasmavirus MVL2. J. Virol. 32, 717–726 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    McKenna, R. et al. Atomic structure of single-stranded DNA bacteriophage ϕX174 and its functional implications. Nature 355, 137–143 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Sun, L. et al. Icosahedral bacteriophage ΦX174 forms a tail for DNA transport during infection. Nature 505, 432–435 (2014).

    CAS  PubMed  Google Scholar 

  44. 44.

    Chipman, P. R., Agbandje-McKenna, M., Renaudin, J., Baker, T. S. & McKenna, R. Structural analysis of the Spiroplasma virus, SpV4: implications for evolutionary variation to obtain host diversity among the Microviridae. Structure 6, 135–145 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Doore, S. M. & Fane, B. A. The kinetic and thermodynamic aftermath of horizontal gene transfer governs evolutionary recovery. Mol. Biol. Evol. 32, 2571–2584 (2015).

    CAS  PubMed  Google Scholar 

  46. 46.

    Valegard, K., Liljas, L., Fridborg, K. & Unge, T. The three-dimensional structure of the bacterial virus MS2. Nature 345, 36–41 (1990).

    CAS  PubMed  Google Scholar 

  47. 47.

    Peabody, D. S. The RNA binding site of bacteriophage MS2 coat protein. EMBO J. 12, 595–600 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Koning, R. I. et al. Asymmetric cryo-EM reconstruction of phage MS2 reveals genome structure in situ. Nat. Commun. 7, 12524 (2016). This article reports the ability of RNA phages to adopt defined conformations that can be involved in genome packaging and virion assembly.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Casjens, S. R. The DNA-packaging nanomotor of tailed bacteriophages. Nat. Rev. Microbiol. 9, 647–657 (2011).

    CAS  PubMed  Google Scholar 

  50. 50.

    Marvin, D. A. Filamentous phage structure, infection and assembly. Curr. Opin. Struct. Biol. 8, 150–158 (1998).

    CAS  PubMed  Google Scholar 

  51. 51.

    Xu, J., Dayan, N., Goldbourt, A. & Xiang, Y. Cryo-electron microscopy structure of the filamentous bacteriophage IKe. Proc. Natl Acad. Sci. USA 116, 5493 (2019).

    CAS  PubMed  Google Scholar 

  52. 52.

    Russel, M. & Model, P. A mutation downstream from the signal peptidase cleavage site affects cleavage but not membrane insertion of phage coat protein. Proc. Natl Acad. Sci. USA 78, 1717–1721 (1981).

    CAS  PubMed  Google Scholar 

  53. 53.

    Suhanovsky, M. M. & Teschke, C. M. Nature’s favorite building block: deciphering folding and capsid assembly of proteins with the HK97-fold. Virology 479–480, 487–497 (2015).

    PubMed  Google Scholar 

  54. 54.

    Pietilä, M. K. et al. Structure of the archaeal head–tailed virus HSTV-1 completes the HK97 fold story. Proc. Natl Acad. Sci. USA 110, 10604 (2013). This article focuses on the MCP HK97 fold and its conservation at the structural level between tailed phages and archaeal and eukaryotic viruses.

    PubMed  Google Scholar 

  55. 55.

    Jordan, T. C. et al. A broadly implementable research course for first-year undergraduate students. mBio 5, 1–8 (2014).

    Google Scholar 

  56. 56.

    Creasy, A., Rosario, K., Leigh, B. A., Dishaw, L. J. & Breitbart, M. Unprecedented diversity of ssDNA phages from the family Microviridae detected within the gut of a protochordate model organism (Ciona robusta). Viruses 10, 404 (2018).

    PubMed Central  Google Scholar 

  57. 57.

    Roux, S., Hallam, S. J., Woyke, T. & Sullivan, M. B. Viral dark matter and virus—host interactions resolved from publicly available microbial genomes. eLife 4, 1–20 (2015).

    Google Scholar 

  58. 58.

    Yuan, Y. & Gao, M. Jumbo bacteriophages: an overview. Front. Microbiol. 8, 1–9 (2017).

    Google Scholar 

  59. 59.

    Bergh, Ø., Børsheim, K. Y., Bratbak, G. & Heldal, M. High abundance of viruses found in aquatic environments. Nature 340, 467–468 (1989).

    CAS  PubMed  Google Scholar 

  60. 60.

    Hatfull, G. F. Bacteriophage genomics. Curr. Opin. Microbiol. 11, 447–453 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Krupovic, M., Prangishvili, D., Hendrix, R. W. & Bamford, D. H. Genomics of bacterial and archaeal viruses: dynamics within the Prokaryotic virosphere. Microbiol. Mol. Biol. Rev. 75, 610–635 (2011). This Review presents phage genomic diversity with a main focus on tailed dsDNA phages and an overview of the other phage families.

    PubMed  PubMed Central  Google Scholar 

  62. 62.

    Grose, J. H. & Casjens, S. R. Understanding the enormous diversity of bacteriophages: the tailed phages that infect the bacterial family Enterobacteriaceae. Virology 468, 421–443 (2014).

    PubMed  Google Scholar 

  63. 63.

    Mavrich, T. N. & Hatfull, G. F. Bacteriophage evolution differs by host, lifestyle and genome. Nat. Microbiol. 2, 1–9 (2017). This study presents a large-scale bioinformatic analysis of evolutionary relationships and the rate of HGT in a dataset of more than 2,300 phages.

    Google Scholar 

  64. 64.

    Breitbart, M. et al. Genomic analysis of uncultured marine viral communities. Proc. Natl Acad. Sci. USA 99, 14250–14255 (2002).

    CAS  PubMed  Google Scholar 

  65. 65.

    Brum, J. R. & Sullivan, M. B. Rising to the challenge: accelerated pace of discovery transforms marine virology. Nat. Rev. Microbiol. 13, 147–159 (2015).

    CAS  PubMed  Google Scholar 

  66. 66.

    Breitbart, M., Bonnain, C., Malki, K. & Sawaya, N. A. Phage puppet masters of the marine microbial realm. Nat. Microbiol. 3, 754–766 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Williamson, K. E., Fuhrmann, J. J., Wommack, K. E. & Radosevich, M. Viruses in soil ecosystems: an unknown quantity within an unexplored territory. Annu. Rev. Virol. 4, 201–219 (2017).

    CAS  PubMed  Google Scholar 

  68. 68.

    Brum, J. R. et al. Patterns and ecological drivers of ocean viral communities. Science 348, 1261498 (2015).

    PubMed  Google Scholar 

  69. 69.

    Hurwitz, B. L. & Sullivan, M. B. The Pacific Ocean virome (POV): a marine viral metagenomic dataset and associated protein clusters for quantitative viral ecology. PLoS One 8, 1–12 (2013).

    Google Scholar 

  70. 70.

    Duarte, C. M. Seafaring in the 21st century: the Malaspina 2010 Circumnavigation Expedition. Limnol. Oceanogr. Bull. 24, 11–14 (2015).

    Google Scholar 

  71. 71.

    Roux, S. et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature 537, 689–693 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Coutinho, F. H. et al. Marine viruses discovered via metagenomics shed light on viral strategies throughout the oceans. Nat. Commun. 8, 1–12 (2017).

    Google Scholar 

  73. 73.

    Breitbart, M. et al. Metagenomic analyses of an uncultured viral community from human feces. J. Bacteriol. 185, 6220–6223 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Reyes, A. et al. Viruses in the fecal microbiota of monozygotic twins and their mothers. Nature 466, 334–338 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Minot, S. et al. The human gut virome: inter-individual variation and dynamic response to diet. Genome Res. 21, 1616–1625 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Manrique, P. et al. Healthy human gut phageome. Proc. Natl Acad. Sci. USA 113, 201601060 (2016).This study identifies 44 phage groups in the gut microbiota, nine of which are shared across more than one-half of individuals and are proposed to be part of a healthy gut phageome.

    Google Scholar 

  77. 77.

    Zuo, T. et al. Gut mucosal virome alterations in ulcerative colitis. Gut 68, 1169–1179 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Dutilh, B. E. et al. A highly abundant bacteriophage discovered in the unknown sequences of human faecal metagenomes. Nat. Commun. 5, 4498 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Avrani, S., Wurtzel, O., Sharon, I., Sorek, R. & Lindell, D. Genomic island variability facilitates Prochlorococcus–virus coexistence. Nature 474, 604–608 (2011).

    CAS  PubMed  Google Scholar 

  80. 80.

    Martinez-Hernandez, F. et al. Single-virus genomics reveals hidden cosmopolitan and abundant viruses. Nat. Commun. 8, 15892 (2017). This study uses single-virus genomics to identify the most widespread phages in the ocean, which were previously overlooked in metagenomics projects because of their high microdiversity.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Martinez-Hernandez, F. et al. Single-cell genomics uncover Pelagibacter as the putative host of the extremely abundant uncultured 37-F6 viral population in the ocean. ISME J. 13, 232–236 (2019).

    CAS  PubMed  Google Scholar 

  82. 82.

    Deng, L. et al. Viral tagging reveals discrete populations in Synechococcus viral genome sequence space. Nature 513, 242–245 (2014). This viral ecology study proposes an approach to quantitatively link phage populations and their genomes to their hosts.

    CAS  PubMed  Google Scholar 

  83. 83.

    Aggarwala, V., Liang, G. & Bushman, F. D. Viral communities of the human gut: metagenomic analysis of composition and dynamics. Mob. DNA 8, 12 (2017).

    PubMed  PubMed Central  Google Scholar 

  84. 84.

    Suttle, C. A. Marine viruses — major players in the global ecosystem. Nat. Rev. Microbiol. 5, 801–812 (2007).

    CAS  PubMed  Google Scholar 

  85. 85.

    Wigington, C. H. et al. Re-examination of the relationship between marine virus and microbial cell abundances. Nat. Microbiol. 1, 15024 (2016).

    CAS  PubMed  Google Scholar 

  86. 86.

    Marston, M. F. & Martiny, J. B. H. Genomic diversification of marine cyanophages into stable ecotypes. Environ. Microbiol. 18, 4240–4253 (2016).

    CAS  PubMed  Google Scholar 

  87. 87.

    Zhao, Y. et al. Abundant SAR11 viruses in the ocean. Nature 494, 357–360 (2013).

    CAS  PubMed  Google Scholar 

  88. 88.

    Holmfeldt, K. et al. Twelve previously unknown phage genera are ubiquitous in global oceans. Proc. Natl Acad. Sci. USA 110, 12798 (2013).

    CAS  PubMed  Google Scholar 

  89. 89.

    López-Pérez, M., Haro-Moreno, J. M., Gonzalez-Serrano, R., Parras-Moltó, M. & Rodriguez-Valera, F. Genome diversity of marine phages recovered from Mediterranean metagenomes: size matters. PLoS Genet. 13, e1007018 (2017).

    PubMed  PubMed Central  Google Scholar 

  90. 90.

    Brum, J. R., Hurwitz, B. L., Schofield, O., Ducklow, H. W. & Sullivan, M. B. Seasonal time bombs: dominant temperate viruses affect Southern Ocean microbial dynamics. ISME J. 10, 437–449 (2016).

    CAS  PubMed  Google Scholar 

  91. 91.

    Payet, J. P. & Suttle, C. A. To kill or not to kill: the balance between lytic and lysogenic viral infection is driven by trophic status. Limnol. Oceanogr. 58, 465–474 (2013).

    Google Scholar 

  92. 92.

    Thingstad, T. F. & Lignell, R. Theoretical models for the control of bacterial growth rate, abundance, diversity and carbon demand. Aquat. Microb. Ecol. 13, 19–27 (1997).

    Google Scholar 

  93. 93.

    Thingstad, T. F., Vage, S., Storesund, J. E., Sandaa, R.-A. & Giske, J. A theoretical analysis of how strain-specific viruses can control microbial species diversity. Proc. Natl Acad. Sci. USA 111, 7813–7818 (2014).

    CAS  PubMed  Google Scholar 

  94. 94.

    Knowles, B. et al. Lytic to temperate switching of viral communities. Nature 531, 466–470 (2016).

    CAS  PubMed  Google Scholar 

  95. 95.

    Silveira, C. B. & Rohwer, F. L. Piggyback-the-winner in host-associated microbial communities. NPJ Biofilms Microbiomes 2, 16010 (2016).

    PubMed  PubMed Central  Google Scholar 

  96. 96.

    Williamson, K. E., Radosevich, M. & Wommack, K. E. Abundance and diversity of viruses in six Delaware soils. Appl. Environ. Microbiol. 71, 3119–3125 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. 97.

    Chen, L. et al. Effect of different long-term fertilization regimes on the viral community in an agricultural soil of southern China. Eur. J. Soil. Biol. 62, 121–126 (2014).

    Google Scholar 

  98. 98.

    Fierer, N. et al. Metagenomic and small-subunit rRNA analyses reveal the genetic diversity of bacteria, archaea, fungi, and viruses in soil. Appl. Environ. Microbiol. 73, 7059 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99.

    Adriaenssens, E. M. et al. Environmental drivers of viral community composition in Antarctic soils identified by viromics. Microbiome 5, 83 (2017).

    PubMed  PubMed Central  Google Scholar 

  100. 100.

    Hoyles, L. et al. Characterization of virus-like particles associated with the human faecal and caecal microbiota. Res. Microbiol. 165, 803–812 (2014).

    CAS  PubMed  Google Scholar 

  101. 101.

    Lepage, P. et al. Dysbiosis in inflammatory bowel disease: a role for bacteriophages? Gut 57, 424–425 (2008).

    CAS  PubMed  Google Scholar 

  102. 102.

    Barr, J. J. et al. Bacteriophage adhering to mucus provide a non-host-derived immunity. Proc. Natl Acad. Sci. USA 110, 10771–10776 (2013).

    CAS  PubMed  Google Scholar 

  103. 103.

    Minot, S. & Bryson, A. Rapid evolution of the human gut virome. Proc. Natl Acad. Sci. USA 110, 12450–12455 (2013).

    CAS  PubMed  Google Scholar 

  104. 104.

    Shkoporov, A. N. et al. Reproducible protocols for metagenomic analysis of human faecal phageomes. Microbiome 6, 68 (2018).

    PubMed  PubMed Central  Google Scholar 

  105. 105.

    Norman, J. M. et al. Disease-specific alterations in the enteric virome in inflammatory bowel disease. Cell 160, 447–460 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. 106.

    Hendrix, R. W., Smith, M. C. M., Burns, R. N., Ford, M. E. & Hatfull, G. F. Evolutionary relationships among diverse bacteriophages and prophages: all the world’s a phage. Proc. Natl Acad. Sci. USA 96, 2192–2197 (1999).

    CAS  PubMed  Google Scholar 

  107. 107.

    Highton, P. J., Chang, Y. & Myers, R. J. Evidence for the exchange of segments between genomes during the evolution of lambdoid bacteriophages. Mol. Microbiol. 4, 1329–1340 (1990).

    CAS  PubMed  Google Scholar 

  108. 108.

    Hatfull, G. F. Dark matter of the biosphere: the amazing world of bacteriophage diversity. J. Virol. 89, 8107–8110 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. 109.

    Juhala, R. J. et al. Genomic sequences of bacteriophages HK97 and HK022: pervasive genetic mosaicism in the lambdoid bacteriophages. J. Mol. Biol. 299, 27–51 (2000).

    CAS  PubMed  Google Scholar 

  110. 110.

    De Paepe, M. et al. Temperate phages acquire DNA from defective prophages by relaxed homologous recombination: the role of Rad52-like recombinases. PLoS Genet. 10, e1004181 (2014).

    PubMed  PubMed Central  Google Scholar 

  111. 111.

    Nilsson, A. S. & Haggård-Ljungquist, E. Detection of homologous recombination among bacteriophage P2 relatives. Mol. Phylogenet. Evol. 21, 259–269 (2001).

    CAS  PubMed  Google Scholar 

  112. 112.

    Bobay, L., Touchon, M. & Rocha, E. P. C. Manipulating or superseding host recombination functions: a dilemma that shapes phage evolvability. PLoS Genet. 9, 1–9 (2013).

    Google Scholar 

  113. 113.

    Hershey, A. D. (ed.) The Bacteriophage Lambda (Cold Spring Harbor Laboratory Press 1971).

  114. 114.

    Roux, S. et al. Ecology and evolution of viruses infecting uncultivated SUP05 bacteria as revealed by single-cell- and meta-genomics. eLife 3, e03125 (2014).

    PubMed  PubMed Central  Google Scholar 

  115. 115.

    Diemer, G. S. & Stedman, K. M. A novel virus genome discovered in an extreme environment suggests recombination between unrelated groups of RNA and DNA viruses. Biol. Direct 7, 1–14 (2012).

    Google Scholar 

  116. 116.

    Lawrence, J. G., Hatfull, G. F. & Hendrix, R. W. Imbroglios of viral taxonomy: genetic exchange and failings of phenetic approaches. J. Bacteriol. 184, 4891–4905 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. 117.

    Labrie, S. J. & Moineau, S. Abortive infection mechanisms and prophage sequences significantly influence the genetic makeup of emerging lytic lactococcal phages. J. Bacteriol. 189, 1482–1487 (2007).

    CAS  PubMed  Google Scholar 

  118. 118.

    Chopin, A., Bolotin, A., Sorokin, A., Ehrlich, S. D. & Chopin, M.-C. Analysis of six prophages in Lactococcus lactis IL1403: different genetic structure of temperate and virulent phage populations. Nucleic Acids Res. 29, 644–651 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. 119.

    Lima-Mendez, G., Helden, J. Van, Toussaint, A. & Leplae, R. Reticulate representation of evolutionary and functional relationships between phage genomes. Mol. Biol. Evol. 25, 762–777 (2008). This study shows that phage evolutionary relationships are better represented with a reticulate network because mosaicism leads to phages belonging to multiple groups.

    CAS  PubMed  Google Scholar 

  120. 120.

    Hendrix, R. W., Hatfull, G. F. & Smith, M. C. M. Bacteriophages with tails: chasing their origins and evolution. Res. Microbiol. 154, 253–257 (2003).

    CAS  PubMed  Google Scholar 

  121. 121.

    Marston, M. F. & Amrich, C. G. Recombination and microdiversity in coastal marine cyanophages. Environ. Microbiol. 11, 2893–2903 (2009).

    PubMed  Google Scholar 

  122. 122.

    Gregory, A. C. et al. Genomic differentiation among wild cyanophages despite widespread horizontal gene transfer. BMC Genomics 17, 930 (2016).

    PubMed  PubMed Central  Google Scholar 

  123. 123.

    Szymczak, P., Janzen, T., Neves, R. & Kot, W. Novel variants of Streptococcus thermophilus bacteriophages are indicative of genetic recombination among phages from different bacterial species. Appl. Environ. Microbiol. 83, 1–16 (2017).

    Google Scholar 

  124. 124.

    Lavelle, K. et al. A decade of Streptococcus thermophilus phage evolution in an Irish dairy plant. Appl. Environ. Microbiol. 84, 1–17 (2018).

    Google Scholar 

  125. 125.

    Kupczok, A. et al. Rates of mutation and recombination in Siphoviridae phage genome evolution over three decades. Mol. Biol. Evol. 35, 1147–1159 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. 126.

    Pope, W. H. et al. Whole genome comparison of a large collection of mycobacteriophages reveals a continuum of phage genetic diversity. eLife 4, e06416 (2015). This study uses the largest collection of phages infecting the same host (M. smegmatis) to evaluate evolutionary relationships, genomic clusters and discreteness of these clusters.

    PubMed  PubMed Central  Google Scholar 

  127. 127.

    Hendrix, R. W. Bacteriophages: evolution of the majority. Theor. Popul. Biol. 61, 471–480 (2002).

    PubMed  Google Scholar 

  128. 128.

    Rohwer, F. & Edwards, R. The phage proteomic tree: a genome-based taxonomy for phage. J. Bacteriol. 184, 4529–4535 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. 129.

    Iranzo, J., Krupovic, M. & Koonin, E. V. The double-stranded DNA virosphere as a modular hierarchical network of gene sharing. mBio 7, 1–21 (2016).

    Google Scholar 

  130. 130.

    Bolduc, B. et al. vConTACT: an iVirus tool to classify double-stranded DNA viruses that infect archaea and bacteria. PeerJ 5, e3243 (2017).

    PubMed  PubMed Central  Google Scholar 

  131. 131.

    Jang, H. Bin et al. Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks. Nat. Biotechnol. 37, 632–639 (2019).

    Google Scholar 

  132. 132.

    Cesar Ignacio-Espinoza, J., Solonenko, S. A. & Sullivan, M. B. The global virome: not as big as we thought? Curr. Opin. Virol. 3, 566–571 (2013).

    PubMed  Google Scholar 

  133. 133.

    Simmonds, P. et al. Virus taxonomy in the age of metagenomics. Nat. Rev. Microbiol. 15, 161–168 (2017).

    CAS  PubMed  Google Scholar 

  134. 134.

    Khayat, R. et al. Structure of an archaeal virus capsid protein reveals a common ancestry to eukaryotic and bacterial viruses. Proc. Natl Acad. Sci. USA 102, 18944–18949 (2005).

    CAS  PubMed  Google Scholar 

  135. 135.

    Benson, S. D., Bamford, J. K. H., Bamford, D. H. & Burnett, R. M. Does common architecture reveal a viral lineage spanning all three domains of life? Mol. Cell 16, 673–685 (2004).

    CAS  PubMed  Google Scholar 

  136. 136.

    Hendrix, R. W. Evolution: the long evolutionary reach of viruses. Curr. Biol. 9, 914–917 (1999).

    Google Scholar 

  137. 137.

    Krupovič, M. & Bamford, D. H. Virus evolution: how far does the double β-barrel viral lineage extend? Nat. Rev. Microbiol. 6, 941–948 (2008).

    PubMed  Google Scholar 

  138. 138.

    Baker, M. L., Jiang, W., Rixon, F. J. & Chiu, W. Common ancestry of herpesviruses and tailed DNA bacteriophages. J. Virol. 79, 14967–14970 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. 139.

    Rixon, F. J. & Schmid, M. F. Structural similarities in DNA packaging and delivery apparatuses in herpesvirus and dsDNA bacteriophages. Curr. Opin. Virol. 5, 105–110 (2014).

    CAS  PubMed  Google Scholar 

  140. 140.

    El Omari, K. et al. Plate tectonics of virus shell assembly and reorganization in phage φ8, a distant relative of mammalian reoviruses. Structure 21, 1384–1395 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. 141.

    Huiskonen, J. T. et al. Structure of the bacteriophage ϕ6 nucleocapsid suggests a mechanism for sequential RNA packaging. Structure 14, 1039–1048 (2006).

    CAS  PubMed  Google Scholar 

  142. 142.

    Bamford, D. H. Do viruses form lineages across different domains of life? Res. Microbiol. 154, 231–236 (2003).

    CAS  PubMed  Google Scholar 

  143. 143.

    Sinclair, R., Ravantti, J. & Bamford, D. H. Nucleic and amino acid sequences support structure-based viral classification. J. Virol. 91, 1–13 (2017).

    Google Scholar 

  144. 144.

    Ackermann, H.-W. Bacteriophage electron microscopy. Adv. Virus Res. 82, 1–32 (2012).

    CAS  PubMed  Google Scholar 

  145. 145.

    Hurwitz, B. L., Brum, J. R. & Sullivan, M. B. Depth-stratified functional and taxonomic niche specialization in the ‘core’ and ‘flexible’ Pacific Ocean virome. ISME J. 9, 472–484 (2015).

    CAS  PubMed  Google Scholar 

  146. 146.

    Villar, E. et al. Ocean plankton. Environmental characteristics of Agulhas rings affect interocean plankton transport. Science 348, 1261447 (2015).

    PubMed  Google Scholar 

  147. 147.

    Luo, E., Aylward, F. O., Mende, D. R. & DeLong, E. F. Bacteriophage distributions and temporal variability in the ocean’s interior. mBio 8, e01903–e01917 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. 148.

    Gogokhia, L. et al. Expansion of bacteriophages is linked to aggravated intestinal inflammation and colitis. Cell Host Microbe 25, 285–299.e8 (2019).

    CAS  Google Scholar 

Download references


This work is supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Program and the Canadian Institutes of Health Research (team grant on Intestinal Microbiomics, Institute of Nutrition, Metabolism and Diabetes). M.B.D. is a recipient of graduate scholarships from the Fonds de Recherche du Québec — Nature et Technologies (FRQNT) as well as Sentinelle Nord, and is a recipient of the Goran-Enhorning Graduate Student Research Award from the Canadian Allergy, Asthma and Immunology Foundation. F.O. is a recipient of a fellowship from the Swiss National Science Foundation (Early Postdoc.Mobility). S.M. holds the Tier 1 Canada Research Chair in Bacteriophages and is a member of the PROTEO and Op+Lait FRQNT Networks.

Author information




The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Sylvain Moineau.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Félix d’Hérelle Reference Center for Bacterial Viruses:



Bacterial cells containing an integrated prophage, which can be induced, excised from the chromosome and enter the lytic cycle.


The observation that different regions (genes and gene blocks) of the phage genomes have distinct evolutionary histories, owing to horizontal gene transfer events.

Viral metagenomics

Sequencing genomes of the viral fraction in a sample.


A shape of the phage capsid, which consists of many polygonal faces and is most commonly found as an icosahedron (polyhedron with 20 faces).


Variability in shapes and sizes for phages.

HK97 fold

A 3D conformation termed after the capsid protein structure of phage HK97.

Portal complex

A dodecamer forming a central channel involved in viral DNA packaging and injection, providing a docking site for attachment of the tail machinery.


Physical co-localization in the genome of genes with associated functions.


Intra-population genetic variation.

Viral tagging metagenomics

A high-throughput method to link a virus to its host, consisting of labelling viruses with a fluorescent dye, collecting infected cells by flow cytometry and sequencing the viral DNA.


A replication strategy where a phage takes control of the host cell to replicate its genetic material, produce its structural components, self-assemble to form new virions and burst (lyses) the cell to release new viral particles.

Virulent phages

Phages that can strictly undergo a lytic mode of replication.

Temperate phages

Phages that can perform either a lytic or a lysogenic mode of replication.


A non-functional prophage within a bacterial chromosome.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dion, M.B., Oechslin, F. & Moineau, S. Phage diversity, genomics and phylogeny. Nat Rev Microbiol 18, 125–138 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing