Plasmodium asexual growth and sexual development in the haematopoietic niche of the host

Abstract

Plasmodium spp. parasites are the causative agents of malaria in humans and animals, and they are exceptionally diverse in their morphology and life cycles. They grow and develop in a wide range of host environments, both within blood-feeding mosquitoes, their definitive hosts, and in vertebrates, which are intermediate hosts. This diversity is testament to their exceptional adaptability and poses a major challenge for developing effective strategies to reduce the disease burden and transmission. Following one asexual amplification cycle in the liver, parasites reach high burdens by rounds of asexual replication within red blood cells. A few of these blood-stage parasites make a developmental switch into the sexual stage (or gametocyte), which is essential for transmission. The bone marrow, in particular the haematopoietic niche (in rodents, also the spleen), is a major site of parasite growth and sexual development. This Review focuses on our current understanding of blood-stage parasite development and vascular and tissue sequestration, which is responsible for disease symptoms and complications, and when involving the bone marrow, provides a niche for asexual replication and gametocyte development. Understanding these processes provides an opportunity for novel therapies and interventions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Life cycle of Plasmodium falciparum in humans and mosquitoes.
Fig. 2: Sexual development of Plasmodium falciparum.
Fig. 3: Intravascular sequestration of Plasmodium falciparum.
Fig. 4: Plasmodium falciparum development in the haematopoietic niche of the bone marrow.
Fig. 5: Revisiting interventions to block Plasmodium falciparum transmission.

References

  1. 1.

    WHO. World Malaria Report 2018. https://www.who.int/malaria/publications/world-malaria-report-2018/report/en/ (2018).

  2. 2.

    Tavares, J. et al. Role of host cell traversal by the malaria sporozoite during liver infection. J. Exp. Med. 210, 905–915 (2013).

  3. 3.

    Amino, R. et al. Quantitative imaging of Plasmodium transmission from mosquito to mammal. Nat. Med. 12, 220–224 (2006).

  4. 4.

    Mota, M. M. et al. Migration of Plasmodium sporozoites through cells before infection. Science 291, 141–144 (2001).

  5. 5.

    Sturm, A. et al. Manipulation of host hepatocytes by the malaria parasite for delivery into liver sinusoids. Science 313, 1287–1290 (2006).

  6. 6.

    Sologub, L. et al. Malaria proteases mediate inside-out egress of gametocytes from red blood cells following parasite transmission to the mosquito. Cell Microbiol. 13, 897–912 (2011).

  7. 7.

    Janse, C. J., Ramesar, J., van den Berg, F. M. & Mons, B. Plasmodium berghei: in vivo generation and selection of karyotype mutants and non-gametocyte producer mutants. Exp. Parasitol. 74, 1–10 (1992).

  8. 8.

    Alano, P. et al. Plasmodium falciparum: parasites defective in early stages of gametocytogenesis. Exp. Parasitol. 81, 227–235 (1995).

  9. 9.

    Kafsack, B. F. et al. A transcriptional switch underlies commitment to sexual development in malaria parasites. Nature 507, 248–252 (2014).

  10. 10.

    Sinha, A. et al. A cascade of DNA-binding proteins for sexual commitment and development in Plasmodium. Nature 507, 253–257 (2014).

  11. 11.

    Brancucci, N. M. B. et al. Heterochromatin protein 1 secures survival and transmission of malaria parasites. Cell Host Microbe 16, 165–176 (2014).

  12. 12.

    Coleman, B. I. et al. A Plasmodium falciparum histone deacetylase regulates antigenic variation and gametocyte conversion. Cell Host Microbe 16, 177–186 (2014).

  13. 13.

    Eksi, S. et al. Plasmodium falciparum gametocyte development 1 (Pfgdv1) and gametocytogenesis early gene identification and commitment to sexual development. PLOS Pathog. 8, e1002964 (2012).

  14. 14.

    Filarsky, M. et al. GDV1 induces sexual commitment of malaria parasites by antagonizing HP1-dependent gene silencing. Science 359, 1259–1263 (2018).

  15. 15.

    Buckling, A., Ranford-Cartwright, L. C., Miles, A. & Read, A. F. Chloroquine increases Plasmodium falciparum gametocytogenesis in vitro. Parasitology 118 (Pt 4), 339–346 (1999).

  16. 16.

    Buchholz, K. et al. A high-throughput screen targeting malaria transmission stages opens new avenues for drug development. J. Infect. Dis. 203, 1445–1453 (2011).

  17. 17.

    Brancucci, N. M. B. et al. Lysophosphatidylcholine regulates sexual stage differentiation in the human malaria parasite Plasmodium falciparum. Cell 171, 1532–1544.e15 (2017).

  18. 18.

    Brancucci, N. M. B. et al. Probing Plasmodium falciparum sexual commitment at the single-cell level. Wellcome Open Res. 3, 70 (2018).

  19. 19.

    Poran, A. et al. Single-cell RNA sequencing reveals a signature of sexual commitment in malaria parasites. Nature 551, 95–99 (2017).

  20. 20.

    Brancucci, N. M., Witmer, K., Schmid, C. & Voss, T. S. A var gene upstream element controls protein synthesis at the level of translation initiation in Plasmodium falciparum. PLOS ONE 9, e100183 (2014).

  21. 21.

    Josling, G. A. & Llinas, M. Sexual development in Plasmodium parasites: knowing when it’s time to commit. Nat. Rev. Microbiol. 13, 573–587 (2015).

  22. 22.

    Josling, G. A., Williamson, K. C. & Llinas, M. Regulation of sexual commitment and gametocytogenesis in malaria parasites. Annu. Rev. Microbiol. 72, 501–519 (2018).

  23. 23.

    Hawking, F., Wilson, M. E. & Gammage, K. Evidence for cyclic development and short-lived maturity in the gametocytes of Plasmodium falciparum. Trans. R. Soc. Trop. Med. Hyg. 65, 549–559 (1971).

  24. 24.

    Gautret, P. & Motard, A. Periodic infectivity of Plasmodium gametocytes to the vector. A review. Parasite 6, 103–111 (1999).

  25. 25.

    Dearnley, M. et al. Reversible host cell remodeling underpins deformability changes in malaria parasite sexual blood stages. Proc. Natl Acad. Sci. USA 113, 4800–4805 (2016).

  26. 26.

    Hliscs, M. et al. Organization and function of an actin cytoskeleton in Plasmodium falciparum gametocytes. Cell. Microbiol. 17, 207–225 (2015).

  27. 27.

    Dearnley, M. K. et al. Origin, composition, organization and function of the inner membrane complex of Plasmodium falciparum gametocytes. J. Cell Sci. 125, 2053–2063 (2012).

  28. 28.

    Turner, L. et al. Severe malaria is associated with parasite binding to endothelial protein C receptor. Nature 498, 502–505 (2013).

  29. 29.

    Seydel, K. B. et al. Brain swelling and death in children with cerebral malaria. N. Engl. J. Med. 372, 1126–1137 (2015).

  30. 30.

    Fried, M. & Duffy, P. E. Adherence of Plasmodium falciparum to chondroitin sulfate a in the human placenta. Science 272, 1502–1504 (1996).

  31. 31.

    Cranston, H. A. et al. Plasmodium falciparum maturation abolishes physiologic red cell deformability. Science 223, 400–403 (1984).

  32. 32.

    Ginsburg, H. & Krugliak, M. Uptake of L-tryptophan by erythrocytes infected with malaria parasites (Plasmodium falciparum). Biochim. Biophys. Acta 729, 97–103 (1983).

  33. 33.

    Vestweber, D. How leukocytes cross the vascular endothelium. Nat. Rev. Immunol. 15, 692–704 (2015).

  34. 34.

    Leech, J. H., Barnwell, J. W., Miller, L. H. & Howard, R. J. Identification of a strain-specific malarial antigen exposed on the surface of Plasmodium falciparum-infected erythrocytes. J. Exp. Med. 159, 1567–1575 (1984).

  35. 35.

    Su, X. Z. et al. The large diverse gene family var encodes proteins involved in cytoadherence and antigenic variation of Plasmodium falciparum-infected erythrocytes. Cell 82, 89–100 (1995).

  36. 36.

    Smith, J. D. et al. Identification of a Plasmodium falciparum intercellular adhesion molecule-1 binding domain: a parasite adhesion trait implicated in cerebral malaria. Proc. Natl Acad. Sci. USA 97, 1766–1771 (2000).

  37. 37.

    Salanti, A. et al. Evidence for the involvement of VAR2CSA in pregnancy-associated malaria. J. Exp. Med. 200, 1197–1203 (2004).

  38. 38.

    Flick, K. et al. Role of nonimmune IgG bound to PfEMP1 in placental malaria. Science 293, 2098–2100 (2001).

  39. 39.

    Chan, J. A. et al. Targets of antibodies against Plasmodium falciparum-infected erythrocytes in malaria immunity. J. Clin. Invest. 122, 3227–3238 (2012).

  40. 40.

    Kyes, S. A., Rowe, J. A., Kriek, N. & Newbold, C. I. Rifins: a second family of clonally variant proteins expressed on the surface of red cells infected with Plasmodium falciparum. Proc. Natl Acad. Sci. USA 96, 9333–9338 (1999).

  41. 41.

    Cheng, Q. et al. Stevor and rif are Plasmodium falciparum multicopy gene families which potentially encode variant antigens. Mol. Biochem. Parasitol. 97, 161–176 (1998).

  42. 42.

    Niang, M. et al. STEVOR is a Plasmodium falciparum erythrocyte binding protein that mediates merozoite invasion and rosetting. Cell Host Microbe 16, 81–93 (2014).

  43. 43.

    Goel, S. et al. RIFINs are adhesins implicated in severe Plasmodium falciparum malaria. Nat. Med. 21, 314–317 (2015).

  44. 44.

    Smith, C. D., Brown, A. E., Nakazawa, S., Fujioka, H. & Aikawa, M. Multi-organ erythrocyte sequestration and ligand expression in rhesus monkeys infected with Plasmodium coatneyi malaria. Am. J. Trop. Med. Hyg. 55, 379–383 (1996).

  45. 45.

    Handayani, S. et al. High deformability of Plasmodium vivax-infected red blood cells under microfluidic conditions. J. Infect. Dis. 199, 445–450 (2009).

  46. 46.

    Marchiafava, E. & Bignami, A. Sulle febbri estivo aumnali (E. Loescher, 1894).

  47. 47.

    Baro, B. et al. Plasmodium vivax gametocytes in the bone marrow of an acute malaria patient and changes in the erythroid miRNA profile. PLOS Negl. Trop. Dis. 11, e0005365 (2017).

  48. 48.

    Farfour, E., Charlotte, F., Settegrana, C., Miyara, M. & Buffet, P. The extravascular compartment of the bone marrow: a niche for Plasmodium falciparum gametocyte maturation? Malar. J. 11, 285 (2012).

  49. 49.

    Smalley, M. E., Abdalla, S. & Brown, J. The distribution of Plasmodium falciparum in the peripheral blood and bone marrow of Gambian children. Trans. R. Soc. Trop. Med. Hyg. 75, 103–105 (1981).

  50. 50.

    Thomson, J. G. & Robertson, A. The structure and development of Plasmodium falciparum gametocytes in the internal organs and peripheral circulation. Trans. R. Soc. Trop. Med. Hyg. 14, 31–40 (1935).

  51. 51.

    Joice, R. et al. Plasmodium falciparum transmission stages accumulate in the human bone marrow. Sci. Transl. Med. 6, 244re245 (2014). This study provides quantitative evidence for P. falciparum gametocyte enrichment in the human bone marrow.

  52. 52.

    Aguilar, R. et al. Molecular evidence for the localization of Plasmodium falciparum immature gametocytes in bone marrow. Blood 123, 959–966 (2014).

  53. 53.

    Ellis, R. E. The distribution of active bone marrow in the adult. Phys. Med. Biol. 5, 255–258 (1961).

  54. 54.

    Woodard, H. Q. & Holodny, E. A summary of the data of Mechanik on the distribution of human bone marrow. Phys. Med. Biol. 5, 57–59 (1960).

  55. 55.

    Nombela-Arrieta, C. & Manz, M. G. Quantification and three-dimensional microanatomical organization of the bone marrow. Blood Adv. 1, 407–416 (2017).

  56. 56.

    Chasis, J. A. & Mohandas, N. Erythroblastic islands: niches for erythropoiesis. Blood 112, 470–478 (2008).

  57. 57.

    Obaldia, N., 3rd et al. Bone marrow is a major parasite reservoir in Plasmodium vivax infection. MBio 8, 1–16 (2018). This study provides quantitative evidence for P. vivax gametocyte enrichment and an asexual reservoir in the bone marrow of non-human primates.

  58. 58.

    De Niz, M. et al. Plasmodium gametocytes display homing and vascular transmigration in the host bone marrow. Sci. Adv. 4, eaat3775 (2018). This study shows a P. berghei asexual and gametocyte reservoir in the bone marrow and spleen of infected mice and provides the first description of parasite transmigration events across the endothelial barrier.

  59. 59.

    Duffier, Y. et al. A humanized mouse model for sequestration of Plasmodium falciparum sexual stages and in vivo evaluation of gametocytidal drugs. Sci. Rep. 6, 35025 (2016). This study demonstrates P. faciparum gametocyte enrichment in the bone marrow and spleen of humanized mice.

  60. 60.

    Lee, R. S., Waters, A. P. & Brewer, J. M. A cryptic cycle in haematopoietic niches promotes initiation of malaria transmission and evasion of chemotherapy. Nat. Commun. 9, 1689 (2018). This study provides evidence that an asexual P. berghei parasite reservoir in the spleen of infected mice can lead to recrudescence.

  61. 61.

    Lopes, S. C. et al. Paucity of Plasmodium vivax mature schizonts in peripheral blood is associated with their increased cytoadhesive potential. J. Infect. Dis. 209, 1403–1407 (2014).

  62. 62.

    Lim, C. et al. Reticulocyte preference and stage development of Plasmodium vivax Isolates. J. Infect. Dis. 214, 1081–1084 (2016).

  63. 63.

    Fonseca, L. L., Joyner, C. J., Ma, H. C., Galinski, M. R. & Voit, E. O. A model of Plasmodium vivax concealment based on Plasmodium cynomolgi infections in Macaca mulatta. Malar. J. 16, 375 (2017).

  64. 64.

    Usui, M. et al. Plasmodium falciparum sexual differentiation in malaria patients is associated with host factors and GDV1-dependent genes. Nat. Commun. 10, 2140 (2019).

  65. 65.

    Farid, R., Dixon, M. W., Tilley, L. & McCarthy, J. S. Initiation of gametocytogenesis at very low parasite density in Plasmodium falciparum infection. J. Infect. Dis. 215, 1167–1174 (2017).

  66. 66.

    Rono, M. K. et al. Adaptation of Plasmodium falciparum to its transmission environment. Nat. Ecol. Evol. 2, 377–387 (2018).

  67. 67.

    Pelle, K. G. et al. Transcriptional profiling defines dynamics of parasite tissue sequestration during malaria infection. Genome Med. 7, 19 (2015).

  68. 68.

    Perrin, A. J., Bartholdson, S. J. & Wright, G. J. P-selectin is a host receptor for Plasmodium MSP7 ligands. Malar. J. 14, 238 (2015).

  69. 69.

    Avril, M., Brazier, A. J., Melcher, M., Sampath, S. & Smith, J. D. DC8 and DC13 var genes associated with severe malaria bind avidly to diverse endothelial cells. PLOS Pathog. 9, e1003430 (2013).

  70. 70.

    Rogers, N. J., Hall, B. S., Obiero, J., Targett, G. A. & Sutherland, C. J. A model for sequestration of the transmission stages of Plasmodium falciparum: adhesion of gametocyte-infected erythrocytes to human bone marrow cells. Infect. Immun. 68, 3455–3462 (2000).

  71. 71.

    Tiburcio, M. et al. Early gametocytes of the malaria parasite Plasmodium falciparum specifically remodel the adhesive properties of infected erythrocyte surface. Cell. Microb. 15, 647–659 (2012).

  72. 72.

    Silvestrini, F., Tiburcio, M., Bertuccini, L. & Alano, P. Differential adhesive properties of sequestered asexual and sexual stages of Plasmodium falciparum on human endothelial cells are tissue independent. PLOS ONE 7, e31567 (2012).

  73. 73.

    Fraschka, S. A. et al. Comparative heterochromatin profiling reveals conserved and unique epigenome signatures linked to adaptation and development of malaria parasites. Cell Host Microbe 23, 407–420.e8 (2018).

  74. 74.

    Messina, V. et al. Gametocytes of the malaria parasite Plasmodium falciparum interact with and stimulate bone marrow mesenchymal cells to secrete angiogenetic factors. Front. Cell. Infect. Microbiol. 8, 50 (2018). This study provides evidence for binding of asexual and gametocyte iRBCs to bone marrow MSCs.

  75. 75.

    Neveu, G. et al. Plasmodium falciparum gametocyte-infected erythrocytes do not adhere to human primary erythroblasts. Sci. Rep. 8, 17886 (2018).

  76. 76.

    Silvestrini, F. et al. Protein export marks the early phase of gametocytogenesis of the human malaria parasite Plasmodium falciparum. Mol. Cell. Proteomics 9, 1437–1448 (2010).

  77. 77.

    Dantzler, K. W. et al. Naturally acquired immunity against immature Plasmodium falciparum gametocytes. Sci. Transl. Med. 11, 1–14 (2019). This study identifies shared antigens on the asexual and gametocyte iRBC surface.

  78. 78.

    Hermand, P. et al. Plasmodium falciparum proteins involved in cytoadherence of infected erythrocytes to chemokine CX3CL1. Sci. Rep. 6, 33786 (2016).

  79. 79.

    Honczarenko, M. et al. Human bone marrow stromal cells express a distinct set of biologically functional chemokine receptors. Stem Cell 24, 1030–1041 (2006).

  80. 80.

    Tamez, P. A., Liu, H., Fernandez-Pol, S., Haldar, K. & Wickrema, A. Stage-specific susceptibility of human erythroblasts to Plasmodium falciparum malaria infection. Blood 114, 3652–3655 (2009).

  81. 81.

    Tiburcio, M. et al. A switch in infected erythrocyte deformability at the maturation and blood circulation of Plasmodium falciparum transmission stages. Blood 119, e172–e180 (2012).

  82. 82.

    Aingaran, M. et al. Host cell deformability is linked to transmission in the human malaria parasite Plasmodium falciparum. Cell. Microbiol. 14, 983–993 (2012).

  83. 83.

    Waugh, R. E. Reticulocyte rigidity and passage through endothelial-like pores. Blood 78, 3037–3042 (1991).

  84. 84.

    Ramdani, G. et al. cAMP-signalling regulates gametocyte-infected erythrocyte deformability required for malaria parasite transmission. PLOS Pathog. 11, e1004815 (2015). This study demonstrates that gametocyte deformability can be targeted with drugs.

  85. 85.

    Naissant, B. et al. Plasmodium falciparum STEVOR phosphorylation regulates host erythrocyte deformability enabling malaria parasite transmission. Blood 127, e42–e53 (2016).

  86. 86.

    Nixon, C. P. Plasmodium falciparum gametocyte transit through the cutaneous microvasculature: a new target for malaria transmission blocking vaccines? Hum. Vaccin. Immunother 12, 3189–3195 (2016).

  87. 87.

    Lawniczak, M. K. & Eckhoff, P. A. A computational lens for sexual-stage transmission, reproduction, fitness and kinetics in Plasmodium falciparum. Malar. J. 15, 487 (2016).

  88. 88.

    Srivastava, A. et al. Host reticulocytes provide metabolic reservoirs that can be exploited by malaria parasites. PLOS Pathog. 11, e1004882 (2015).

  89. 89.

    Mu, C. F. et al. Targeted drug delivery for tumor therapy inside the bone marrow. Biomaterials 155, 191–202 (2018).

  90. 90.

    Ng, C. L. & Fidock, D. A. Plasmodium falciparum in vitro drug resistance selections and gene editing. Methods Mol. Biol. 2013, 123–140 (2019).

  91. 91.

    Camarda, G. et al. Antimalarial activity of primaquine operates via a two-step biochemical relay. Nat. Commun. 10, 3226 (2019).

  92. 92.

    Duez, J. et al. High-throughput microsphiltration to assess red blood cell deformability and screen for malaria transmission-blocking drugs. Nat. Protoc. 13, 1362–1376 (2018).

  93. 93.

    Lavazec, C. & Naissant, B. Viagra® makes Plasmodium stiff: a novel way to block malaria transmission? [French]. Med. Sci. 31, 826–828 (2015).

  94. 94.

    Nemazee, D. Mechanisms of central tolerance for B cells. Nat. Rev. Immunol. 17, 281–294 (2017).

  95. 95.

    Vainieri, M. L. et al. Systematic tracking of altered haematopoiesis during sporozoite-mediated malaria development reveals multiple response points. Open Biol. 6, 1–13 (2016).

  96. 96.

    Bockstal, V., Geurts, N. & Magez, S. Acute disruption of bone marrow B lymphopoiesis and apoptosis of transitional and marginal zone B cells in the spleen following a blood-stage Plasmodium chabaudi infection in mice. J. Parasitol. Res. 2011, 534697 (2011).

  97. 97.

    Nduati, E. W. et al. Distinct kinetics of memory B-cell and plasma-cell responses in peripheral blood following a blood-stage Plasmodium chabaudi infection in mice. PLOS ONE 5, e15007 (2010).

  98. 98.

    Markus, M. B. New evidence for hypnozoite-independent Plasmodium vivax malarial recurrences. Trends Parasitol. 34, 1015–1016 (2018).

  99. 99.

    Nothelfer, K., Sansonetti, P. J. & Phalipon, A. Pathogen manipulation of B cells: the best defence is a good offence. Nat. Rev. Microbiol. 13, 173–184 (2015).

  100. 100.

    Das, B. et al. CD271+ bone marrow mesenchymal stem cells may provide a niche for dormant Mycobacterium tuberculosis. Sci. Transl. Med. 5, 170ra113 (2013).

  101. 101.

    Varma, N. & Naseem, S. Hematologic changes in visceral leishmaniasis/kala azar. Indian J. Hematol. Blood Transfus. 26, 78–82 (2010).

  102. 102.

    Pinho, S. & Frenette, P. S. Haematopoietic stem cell activity and interactions with the niche. Nat. Rev. Mol. Cell Biol. 20, 303–320 (2019).

  103. 103.

    Torisawa, Y. S. et al. Bone marrow-on-a-chip replicates hematopoietic niche physiology in vitro. Nat. Meth. 11, 663–669 (2014).

  104. 104.

    Sieber, S. et al. Bone marrow-on-a-chip: long-term culture of human haematopoietic stem cells in a three-dimensional microfluidic environment. J. Tissue Eng. Regen. Med. 12, 479–489 (2018). This study describes the first human bone marrow-on-a-chip platform.

  105. 105.

    Rahmig, S. et al. Improved human erythropoiesis and platelet formation in humanized NSGW41 mice. Stem Cell Rep. 7, 591–601 (2016).

  106. 106.

    Baryawno, N. et al. A cellular taxonomy of the bone marrow stroma in homeostasis and leukemia. Cell 177, 1915–1932.e16 (2019). This study provides a single-cell atlas of the human bone marrow niche.

  107. 107.

    Howick, V. M. et al. The Malaria Cell Atlas: single parasite transcriptomes across the complete Plasmodium life cycle. Science 365, 1–11 (2019). This study provides a single-cell atlas of the P. falciparum life cycle.

  108. 108.

    Telford, S. R. in The Hemoparasites of the Reptilia: Color Atlas and Text 376 pp. (CRC, 2009).

  109. 109.

    Garnham, P. C. C. in Malaria Parasites and Other Haemosporidia 1132 pp. (Blackwell, 1966).

  110. 110.

    Valkiunas, G. in Avian Malaria Parasites and Other Haemosporidia 946 pp. (CRC Press, 2005).

  111. 111.

    Palinauskas, V. et al. Description, molecular characterisation, diagnostics and life cycle of Plasmodium elongatum (lineage pERIRUB01), the virulent avian malaria parasite. Int. J. Parasitol. 46, 697–707 (2016). This work is one of several avian malaria studies describing erythrocytic schizonts in the bone marrow of infected birds.

  112. 112.

    Perkins, S. L. Malaria’s many mates: past, present, and future of the systematics of the order Haemosporida. J. Parasitol. 100, 11–25 (2014).

  113. 113.

    MacCallum, W. G. On the flagellated form of the malaria parasite. Lancet 11, 1240–1241 (1897).

  114. 114.

    Aragão, H. B. Über den Entwicklungsgang and die Übertragung von Haemoproteus columbae. Arch. Protistenkunde 12, 154–167 (1908).

  115. 115.

    James, S. P. & Tate, P. New knowledge of the life-cycle of malaria parasites. Nature 139, 545 (1937).

  116. 116.

    Ross, R. Report on the cultivation of Proteosoma, Labbé, in grey mosquitoes. Indian Med. Gaz. 33, 401–408 (1898).

  117. 117.

    Coatney, G. R., Cooper, W. C., Eddy, N. B. & Greenberg, J. Survey of antimalarial agents: chemotherapy of Plasmodium gallinaceum infections; toxicity; correlation of structure and action. Public Health Monogr. 9, 1–322 (1953).

  118. 118.

    Hawking, F. Tissue culture of malaria parasites (Plasmodium gallinaceum). Lancet 246, 693–694 (1944).

  119. 119.

    Ilgunas, M. et al. Patterns of Plasmodium homocircumflexum virulence in experimentally infected passerine birds. Malar. J. 18, 174 (2019).

  120. 120.

    Valkiunas, G. & Iezhova, T. A. Exo-erythrocytic development of avian malaria and related haemosporidian parasites. Malar. J. 16, 101 (2017). This review is the first on exo-erythrocytic development of avian malaria parasites, including cells of the haematopoietic niche.

  121. 121.

    Ben-Harel, S. Studies of bird malaria in relation to the mechanism of relapse. Am. J. Hyg. 3, 652 (1923).

  122. 122.

    Ilgunas, M., Palinauskas, V., Platonova, E., Iezhova, T. & Valkiunas, G. The experimental study on susceptibility of common European songbirds to Plasmodium elongatum (lineage pGRW6), a widespread avian malaria parasite. Malar. J. 18, 290 (2019). This study provides evidence that virulence is related to damage of bone marrow cells during avian malaria.

  123. 123.

    Lainson, R. in Atlas of Protozoan Parasites of the Amazonian fauna of Brazil. Volume 1: Haemosporidia of Reptiles 81 pp. (Instituto Evandro Chagas, 2012).

  124. 124.

    Schaer, J. et al. Nycteria parasites of Afrotropical insectivorous bats. Int. J. Parasitol. 45, 375–384 (2015).

  125. 125.

    Schaer, J. et al. Epauletted fruit bats display exceptionally high infections with a Hepatocystis species complex in South Sudan. Sci. Rep. 7, 6928 (2017).

  126. 126.

    Galen, S. C. et al. The polyphyly of Plasmodium: comprehensive phylogenetic analyses of the malaria parasites (order Haemosporida) reveal widespread taxonomic conflict. R. Soc. Open. Sci. 5, 171780 (2018). This study presents a comprehensive phylogenetic analysis of Haemosporidia, proposing the polyphyletic status of the genus Plasmodium.

  127. 127.

    Borner, J. et al. Phylogeny of haemosporidian blood parasites revealed by a multi-gene approach. Mol. Phylogenet. Evol. 94, 221–231 (2016).

  128. 128.

    Galen, S. C., Nunes, R., Sweet, P. R. & Perkins, S. L. Integrating coalescent species delimitation with analysis of host specificity reveals extensive cryptic diversity despite minimal mitochondrial divergence in the malaria parasite genus Leucocytozoon. BMC Evol. Biol. 18, 128 (2018).

Download references

Acknowledgements

The authors thank Chris Moxon (University of Glasgow), Juliane Schär (Humboldt University, Berlin) and members of the Marti laboratory for critical reading of the manuscript and helpful discussions. Research in the Marti laboratory is supported by a Wellcome Senior Investigator award (M.M.), European Research Council Consolidator award BoneMalar (M.M.) and a Wellcome Trust Centre award to the Wellcome Center for Integrative Parasitology. Additional funding comes from a Royal Society Wolfson Merit award (M.M.) and a German Research Foundation postdoctoral fellowship (F.H.).

Author information

All authors researched data for the article, wrote the article and reviewed or edited the manuscript before submission.

Correspondence to Matthias Marti.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Microbiology thanks Pietro Alano, Tania de Koning-Ward and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Gametogenesis

Maturation of male and female gametes.

Meiosis

Cell division involving chromosome duplication and genetic exchange.

Sporozoites

The only parasite stage that can invade the vertebrate host upon insect bite.

Sinusoids

Special capillaries lacking a basal lamina and present in the bone marrow, liver, spleen and adrenal glands.

Parasitophorous vacuole

A membrane compartment surrounding the parasite and separating it from the host cell.

Schizont

Or meront. A replicative parasite stage in the vertebrate host producing daughter merozoites.

Merozoites

The only parasite stage that can invade red blood cells.

Hypnozoite

A non-replicative dormant parasite stage in the vertebrate host liver that can reactivate and lead to relapses.

Reticulocytes

Immature red blood cells developing in the bone marrow before final maturation in the blood circulation.

Microgametes

Male gametes.

Macrogamete

Female gamete.

Zygote

A union of male and female gametes where meiosis takes place.

Ookinete

A motile zygote that forms the oocyst upon crossing the basal lamina of the mosquito midgut.

Oocyst

A replicative stage in the mosquito host producing daughter sporozoites.

Haemolymph

Equivalent to blood in arthropods and other invertebrates.

Haematopoietic stem cells

A cell type that gives rise to all blood cells in the process of haematopoiesis.

Parenchyma

An extravascular compartment of the bone marrow where haematopoiesis takes place.

Phanerozoites

Secondary exo-erythrocytic schizonts in avian and reptile malaria parasites.

Dyserythropoiesis

Defective development of red blood cells, or erythropoiesis.

Central tolerance

The process of eliminating developing T and B cells that are reactive to the self.

Recrudescence

The recurrence of detectable parasitaemia upon clearance to submicroscopic levels.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Venugopal, K., Hentzschel, F., Valkiūnas, G. et al. Plasmodium asexual growth and sexual development in the haematopoietic niche of the host. Nat Rev Microbiol 18, 177–189 (2020). https://doi.org/10.1038/s41579-019-0306-2

Download citation