Common principles and best practices for engineering microbiomes

Article metrics

Abstract

Despite broad scientific interest in harnessing the power of Earth’s microbiomes, knowledge gaps hinder their efficient use for addressing urgent societal and environmental challenges. We argue that structuring research and technology developments around a design–build–test–learn (DBTL) cycle will advance microbiome engineering and spur new discoveries of the basic scientific principles governing microbiome function. In this Review, we present key elements of an iterative DBTL cycle for microbiome engineering, focusing on generalizable approaches, including top-down and bottom-up design processes, synthetic and self-assembled construction methods, and emerging tools to analyse microbiome function. These approaches can be used to harness microbiomes for broad applications related to medicine, agriculture, energy and the environment. We also discuss key challenges and opportunities of each approach and synthesize them into best practice guidelines for engineering microbiomes. We anticipate that adoption of a DBTL framework will rapidly advance microbiome-based biotechnologies aimed at improving human and animal health, agriculture and enabling the bioeconomy.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The design–build–test–learn cycle for microbiome engineering.
Fig. 2: Top-down and bottom-up approaches to design microbiomes.
Fig. 3: Building self-assembled and synthetic microbiomes.
Fig. 4: Testing microbiome function.
Fig. 5: Learning fundamental principles for microbiome engineering.

References

  1. 1.

    Falkowski, P. G., Fenchel, T. & Delong, E. F. The microbial engines that drive earth ’s biogeochemical cycles. Science 320, 1034–1039 (2008).

  2. 2.

    Kuypers, M. M. M., Marchant, H. K. & Kartal, B. The microbial nitrogen-cycling network. Nat. Rev. Microbiol. 16, 263–276 (2018).

  3. 3.

    O’Connell, K. P., Goodman, R. M. & Handelsman, J. Engineering the rhizosphere: expressing a bias. Trends Biotechnol. 14, 83–88 (1996).

  4. 4.

    Löffler, F. E. & Edwards, E. A. Harnessing microbial activities for environmental cleanup. Curr. Opin. Biotechnol. 17, 274–284 (2006).

  5. 5.

    Mccarty, P. L., Bae, J. & Kim, J. Domestic wastewater treatment as a net energy producer a can this be achieved? Environ. Sci. Technol. 45, 7100–7106 (2011).

  6. 6.

    Rinke, C. et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature 499, 431–437 (2013).

  7. 7.

    Anantharaman, K. et al. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nat. Commun. 7, 1–11 (2016).

  8. 8.

    Alivisatos, A. P. et al. A unified initiative to harness Earth’s microbiomes. Science 350, 507–508 (2015).

  9. 9.

    Dubilier, N., McFall-Ngai, M. & Zhao, L. Create a global microbiome effort. Nature 526, 631–634 (2015).

  10. 10.

    Price, M. N. et al. Mutant phenotypes for thousands of bacterial genes of unknown function. Nature 557, 503–509 (2018).

  11. 11.

    Zengler, K. & Zaramela, L. S. The social network of microorganisms — how auxotrophies shape complex communities. Nat. Rev. Microbiol. 16, 383–390 (2018).

  12. 12.

    Wheelwright, S. C. & Clark, K. B. Revolutionizing Product Development: Quantum Leaps in Speed, Efficiency, and Quality (The Free Press, 1992).

  13. 13.

    Nielsen, J. & Keasling, J. D. Engineering cellular metabolism. Cell 164, 1185–1197 (2016). This review highlights experiences, success stories and challenges associated with implementing the DBTL cycle for metabolic engineering.

  14. 14.

    Blank, S. & Dorf, B. The Startup Owner’s Manual: The Step-by-Step Guide for Building a Great Company (K&S Ranch, 2012).

  15. 15.

    Jansson, J. K. & Hofmockel, K. S. The soil microbiome — from metagenomics to metaphenomics. Curr. Opin. Microbiol. 43, 162–168 (2018).

  16. 16.

    Briones, A. & Raskin, L. Diversity and dynamics of microbial communities in engineered environments and their implications for process stability. Curr. Opin. Biotechnol. 14, 270–276 (2003).

  17. 17.

    Verstraete, W. et al. Microbial resource management: the road to go for environmental biotechnology. Eng. Life Sci. 7, 117–126 (2007).

  18. 18.

    Moralejo-Gárate, H., Mar’Atusalihat, E., Kleerebezem, R. & Van Loosdrecht, M. C. M. Microbial community engineering for biopolymer production from glycerol. Appl. Microbiol. Biotechnol. 92, 631–639 (2011).

  19. 19.

    Nielsen, P. H. et al. A conceptual ecosystem model of microbial communities in enhanced biological phosphorus removal plants. Water Res. 44, 5070–5088 (2010).

  20. 20.

    Winkler, M.-K. H. et al. An integrative review of granular sludge for the biological removal of nutrients and recalcitrant organic matter from wastewater. Chem. Eng. J. 336, 489–502 (2018).

  21. 21.

    Henze, M., Gujer, W., Mino, T. & Van Loosdrecht, M. C. M. Activated Sludge Models ASM1, ASM2, ASM2d and ASM3 (IWA Publishing, 2000).

  22. 22.

    Batstone, D. J., Puyol, D. & Rodrı, X. F. J. Mathematical modelling of anaerobic digestion processes: applications and future needs. Rev. Environ. Sci. Biotechnol. 14, 595–613 (2015).

  23. 23.

    Muñoz-Tamayo, R., Giger-Reverdin, S. & Sauvant, D. Mechanistic modelling of in vitro fermentation and methane production by rumen microbiota. Anim. Feed. Sci. Technol. 220, 1–21 (2016).

  24. 24.

    Picioreanu, C., Kreft, J. & Loosdrecht, M. C. M. Van. Particle-based multidimensional multispecies biofilm model. Appl. Environ. Microbiol. 70, 3024–3040 (2004).

  25. 25.

    Yunjie Ma, Carlos Domingo-Felez, Benedek Gy. Plosz & B. F. S. Intermittent aeration suppresses nitrite-oxidizing bacteria in membrane-aerated biofilms: a model-based explanation. Environ. Sci. Technol. 51, 6146–6155 (2017).

  26. 26.

    Nobu, M. K. et al. Microbial dark matter ecogenomics reveals complex synergistic networks in a methanogenic bioreactor. ISME J. 9, 1710–1722 (2015).

  27. 27.

    Rotaru, A. E. et al. A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane. Energy Environ. Sci. 7, 408–415 (2014).

  28. 28.

    Albertsen, M. et al. Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes. Nat. Biotechnol. 31, 533–538 (2013).

  29. 29.

    Banerjee, S., Schlaeppi, K. & Heijden, M. G. A. Keystone taxa as drivers of microbiome structure and functioning. Nat. Rev. Microbiol. 16, 567–576 (2018).

  30. 30.

    Röttjers, L. & Faust, K. Can we predict keystones? Nat. Rev. Microbiol. 17, 193 (2019).

  31. 31.

    Thiele, I. & Palsson, B. Ø. A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat. Protoc. 5, 93–121 (2010).

  32. 32.

    Wang, L., Dash, S., Ng, C. Y. & Maranas, C. D. A review of computational tools for design and reconstruction of metabolic pathways. Synth. Syst. Biotechnol. 2, 243–252 (2017).

  33. 33.

    Zomorrodi, A. R. & Segre, D. Synthetic ecology of microbes: mathematical models and applications. J. Mol. Biol. 428, 837–886 (2015).

  34. 34.

    Borenstein, E., Kupiec, M., Feldman, M. W. & Ruppin, E. Large-scale reconstruction and phylogenetic analysis of metabolic environments. Proc. Natl Acad. Sci. USA 105, 14482–14487 (2008).

  35. 35.

    Orth, J. D., Thiele, I. & Palsson, B. Ø. What is flux balance analysis? Nat. Biotechnol. 28, 245–248 (2010).

  36. 36.

    Zhuang, K. et al. Genome-scale dynamic modeling of the competition between Rhodoferax and Geobacter in anoxic subsurface environments. ISME J. 5, 305–316 (2011). This study integrates multiple genome-scale models for dynamic flux balance analysis of a microbial community.

  37. 37.

    Harcombe, W. R. et al. Ecosystem interactions and spatial dynamics. Cell Rep. 7, 1104–1115 (2014).

  38. 38.

    Hellweger, F. L., Clegg, R. J., Clark, J. R., Plugge, C. M. & Kreft, J. Advancing microbial sciences by individual-based modelling. Nat. Rev. Microbiol. 14, 461–471 (2016).

  39. 39.

    Zhou, K., Qiao, K., Edgar, S. & Stephanopoulos, G. Distributing a metabolic pathway among a microbial consortium enhances production of natural products. Nat. Biotechnol. 33, 377–383 (2015). This study shows that designing distributed metabolic pathways over multiple microbial taxa can optimize a desired function.

  40. 40.

    Lilja, E. E. & Johnson, D. R. Segregating metabolic processes into different microbial cells accelerates the consumption of inhibitory substrates. ISME J. 10, 1568–1578 (2016).

  41. 41.

    Mee, M. T., Collins, J. J., Church, G. M. & Wang, H. H. Syntrophic exchange in synthetic microbial communities. Proc. Natl Acad. Sci. USA 111, E2149–E2156 (2014).

  42. 42.

    Shade, A. et al. Fundamentals of microbial community resistance and resilience. Front. Microbiol. 3, 417 (2012).

  43. 43.

    Balagaddé, F. K. et al. A synthetic Escherichia coli predator-prey ecosystem. Mol. Syst. Biol. 4, 1–8 (2008).

  44. 44.

    Papenfort, K. & Bassler, B. L. Quorum sensing signal-response systems in Gram-negative bacteria. Nat. Rev. Microbiol. 14, 576–588 (2016).

  45. 45.

    Feist, A. M. & Palsson, B. O. What do cells actually want? Genome Biol. 17, 110 (2016).

  46. 46.

    Oyetunde, T., Bao, F. S., Chen, J. W., Martin, H. G. & Tang, Y. J. Leveraging knowledge engineering and machine learning for microbial bio-manufacturing. Biotechnol. Adv. 36, 1308–1315 (2018).

  47. 47.

    Tran, L. M., Rizk, M. L. & Liao, J. C. Ensemble modeling of metabolic networks. Biophys. J. 95, 5606–5617 (2008).

  48. 48.

    Costello, Z. & Martin, H. G. A machine learning approach to predict metabolic pathway dynamics from time-series multiomics data. NPJ Syst. Biol. Appl. 4, 1–14 (2018).

  49. 49.

    Medlock, G. L. et al. Inferring metabolic mechanisms of interaction within a defined gut microbiota. Cell Syst. 7, 245–257.e7 (2018).

  50. 50.

    Heckmann, D. et al. Machine learning applied to enzyme turnover numbers reveals protein structural correlates and improves metabolic models. Nat. Commun. 9, 5252 (2018).

  51. 51.

    Konopka, A., Lindemann, S. & Fredrickson, J. Dynamics in microbial communities: unraveling mechanisms to identify principles. ISME J. 9, 1488 (2014).

  52. 52.

    Smith, A. L. et al. Navigating wastewater energy recovery strategies: a life cycle comparison of anaerobic membrane bioreactor and conventional treatment systems with anaerobic digestion. Environ. Sci. Technol. 48, 5972–5981 (2014).

  53. 53.

    Balakrishnan, M. et al. Novel pathways for fuels and lubricants from biomass optimized using life-cycle greenhouse gas assessment. Proc. Natl Acad. Sci. USA 112, 7645–7649 (2015).

  54. 54.

    Turnbaugh, P. J. et al. The human microbiome project. Nature 449, 804–810 (2007).

  55. 55.

    McIlroy, S. J. et al. MiDAS: the field guide to the microbes of activated sludge. Database 2015, 1–8 (2015).

  56. 56.

    Arne Alphenaar, P., Visser, A. & Lettinga, G. The effect of liquid upward velocity and hydraulic retention time on granulation in UASB reactors treating wastewater with a high sulphate content. Bioresour. Technol. 43, 249–258 (1993).

  57. 57.

    Liu, Y. & Tay, J.-H. The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge. Water Res. 36, 1653–1665 (2002).

  58. 58.

    Zhao, L. et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science 359, 1151–1156 (2018). This study shows how biostimulation strategies can be used to create microbiomes with desired functions, such as enhanced short-chain fatty acid production.

  59. 59.

    Van Dongen, U., Jetten, M. S. M. & Van Loosdrecht, M. C. M. The SHARON®-Anammox® process for treatment of ammonium rich wastewater. Water Sci. Technol. 44, 153–160 (2001).

  60. 60.

    Mueller, U. G. & Sachs, J. L. Engineering microbiomes to improve plant and animal health. Trends Microbiol. 23, 606–617 (2015).

  61. 61.

    Winkler, M. K., Kleerebezem, R., Kuenen, J. G., Yang, J. & van Loosdrecht, M. C. M. Segregation of biomass in cyclic anaerobic/aerobic granular sludge allows the enrichment of anaerobic ammonium oxidizing bacteria at low temperatures. Environ. Sci. Technol. 45, 7330–7337 (2011).

  62. 62.

    Laureni, M. et al. Biomass segregation between bio film and flocs improves the control of nitrite-oxidizing bacteria in mainstream partial nitritation and anammox processes. Water Res. 154, 104–116 (2019).

  63. 63.

    Scarborough, M. J., Lawson, C. E., Hamilton, J. J., Donohue, T. J. & Noguera, D. R. Metatranscriptomic and thermodynamic insights into medium-chain fatty acid production using an anaerobic microbiome. mSystems 3, 1–21 (2018). This study provides a detailed reconstruction of the metabolism and interactions of an anaerobic microbiome using multi-omic and thermodynamic analyses.

  64. 64.

    Head, I. M., Jones, D. M. & Röling, W. F. M. Marine microorganisms make a meal of oil. Nat. Rev. Microbiol. 4, 173–182 (2006).

  65. 65.

    Swenson, W., Wilson, D. S. & Elias, R. Artificial ecosystem selection. Proc. Natl Acad. Sci. USA 97, 9110–9114 (2000).

  66. 66.

    Panke-buisse, K., Poole, A. C., Goodrich, J. K., Ley, R. E. & Kao-kniffin, J. Selection on soil microbiomes reveals reproducible impacts on plant function. ISME J. 9, 980–989 (2014).

  67. 67.

    Williams, H. T. P. & Lenton, T. M. Artificial selection of simulated microbial ecosystems. Proc. Natl Acad. Sci. USA 104, 8918–8923 (2007).

  68. 68.

    King, K. C. et al. Rapid evolution of microbe-mediated protection against pathogens in a worm host. ISME J. 10, 1915–1924 (2016).

  69. 69.

    Hillesland, K. L. & Stahl, D. A. Rapid evolution of stability and productivity at the origin of a microbial mutualism. Proc. Natl Acad. Sci. USA 107, 1–6 (2010).

  70. 70.

    Barrick, J. E. et al. Genome evolution and adaptation in a long-term experiment with Escherichia coli. Nature 461, 1243–1247 (2009).

  71. 71.

    Utrilla, J. et al. Global rebalancing of cellular resources by pleiotropic point mutations illustrates a multi-scale mechanism of adaptive evolution. Cell Syst. 2, 260–271 (2016).

  72. 72.

    LaCroix, R. A., Palsson, B. O. & Feist, A. M. A model for designing adaptive laboratory evolution experiments. Appl. Environ. Microbiol. 83, 1–14 (2017).

  73. 73.

    Iwabuchi, N. et al. Extracellular polysaccharides of Rhodococcus rhodochrous S-2 stimulate the degradation of aromatic components in crude oil by indigenous marine bacteria. Appl. Environ. Microbiol. 68, 2337–2343 (2002).

  74. 74.

    Palková, Z. Multicellular microorganisms: laboratory versus nature. EMBO Rep. 5, 470–476 (2004).

  75. 75.

    Eydallin, G., Ryall, B., Maharjan, R. & Ferenci, T. The nature of laboratory domestication changes in freshly isolated Escherichia coli strains. Environ. Microbiol. 16, 813–828 (2014).

  76. 76.

    Steensels, J., Gallone, B., Voordeckers, K. & Verstrepen, K. J. Domestication of industrial microbes. Curr. Biol. 29, R381–R393 (2019).

  77. 77.

    Seshadri, R. et al. Cultivation and sequencing of rumen microbiome members from the Hungate1000 Collection. Nat. Biotechnol. 36, 359 (2018).

  78. 78.

    Forster, S. C. et al. A human gut bacterial genome and culture collection for improved metagenomic analyses. Nat. Biotechnol. 37, 186–192 (2019).

  79. 79.

    Jiang, C.-Y. et al. High-throughput single-cell cultivation on microfluidic streak plates. Appl. Environ. Microbiol. 82, 2210–2218 (2016).

  80. 80.

    Lagier, J. C. et al. Culture of previously uncultured members of the human gut microbiota by culturomics. Nat. Microbiol. 1, 16203 (2016). This study, together with reference 81, describes approaches for high-throughput culturing of microorganisms that can be integrated with metagenomics and allow genome sequencing, genome archiving and phenotypic analysis.

  81. 81.

    Browne, H. P. et al. Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation. Nature 533, 543 (2016).

  82. 82.

    Huber, R. et al. Robo-Lector - a novel platform for automated high-throughput cultivations in microtiter plates with high information content. Microb. Cell Fact. 8, 1–15 (2009).

  83. 83.

    Clark, C. et al. Characterization of TAP Ambr 250 disposable bioreactors, as a reliable scale-down model for biologics process development. Biotechnol. Prog. 33, 478–489 (2017).

  84. 84.

    Gach, P. C. et al. A droplet microfluidic platform for automating genetic engineering. ACS Synth. Biol. 5, 426–433 (2016).

  85. 85.

    Prakadan, S. M., Shalek, A. K. & Weitz, D. A. Scaling by shrinking: empowering single-cell ‘omics’ with microfluidic devices. Nat. Rev. Genet. 18, 345–361 (2017).

  86. 86.

    Cole, R. H. et al. Printed droplet microfluidics for on demand dispensing of picoliter droplets and cells. Proc. Natl Acad. Sci. USA 114, 8728–8733 (2017).

  87. 87.

    Ando, H., Lemire, S., Pires, D. P. & Lu, T. K. Engineering modular viral scaffolds for targeted bacterial population editing. Cell Syst. 1, 187–196 (2015).

  88. 88.

    Lan, F., Demaree, B., Ahmed, N. & Abate, A. R. Single-cell genome sequencing at ultra-high-throughput with microfluidic droplet barcoding. Nat. Biotechnol. 35, 640–646 (2017).

  89. 89.

    Heinemann, J. et al. On-chip integration of droplet microfluidics and nanostructure-initiator mass spectrometry for enzyme screening. Lab Chip 17, 323–331 (2017).

  90. 90.

    Shapiro, R. S., Chavez, A. & Collins, J. J. CRISPR-based genomic tools for the manipulation of genetically intractable microorganisms. Nat. Rev. Microbiol. 16, 333–339 (2018).

  91. 91.

    Cobb, R. E., Wang, Y. & Zhao, H. High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system. ACS Synth. Biol. 4, 723–728 (2015).

  92. 92.

    Nayak, D. D. & Metcalf, W. W. Cas9-mediated genome editing in the methanogenic archaeon Methanosarcina acetivorans. Proc. Natl Acad. Sci. USA 114, 2976–2981 (2017).

  93. 93.

    Shih, S. C. C. et al. A versatile microfluidic device for automating synthetic biology. ACS Synth. Biol. 4, 1151–1164 (2015).

  94. 94.

    Kotula, J. W. et al. Programmable bacteria detect and record an environmental signal in the mammalian gut Jonathan. Proc. Natl Acad. Sci. USA 111, 4838–4843 (2014).

  95. 95.

    Riglar, D. T. et al. Engineered bacteria can function in the mammalian gut long-term as live diagnostics of inflammation. Nat. Biotechnol. 35, 653–658 (2017).

  96. 96.

    Nielsen, P. H., Saunders, A. M., Hansen, A. A., Larsen, P. & Nielsen, J. L. Microbial communities involved in enhanced biological phosphorus removal from wastewater — a model system in environmental biotechnology. Curr. Opin. Biotechnol. 23, 452–459 (2012).

  97. 97.

    Nadell, C. D., Drescher, K. & Foster, K. R. Spatial structure, cooperation and competition in biofilms. Nat. Rev. Microbiol. 14, 589 (2016).

  98. 98.

    Vlaeminck, S. E., Cloetens, L. F. F., Carballa, M., Boon, N. & Verstraete, W. Granular biomass capable of partial nitritation and anammox. Water Sci. Technol. 58, 1113–1120 (2008).

  99. 99.

    Mark Welch, J. L., Rossetti, B. J., Rieken, C. W., Dewhirst, F. E. & Borisy, G. G. Biogeography of a human oral microbiome at the micron scale. Proc. Natl Acad. Sci. USA 113, E791–E800 (2016).

  100. 100.

    Werner, J. J. et al. Bacterial community structures are unique and resilient in full-scale bioenergy systems. Proc. Natl Acad. Sci. USA 108, 4158–4163 (2011).

  101. 101.

    Gruber-Dorninger, C. et al. Functionally relevant diversity of closely related Nitrospira in activated sludge. ISME J. 9, 643–655 (2015).

  102. 102.

    Kim, H. J., Boedicker, J. Q., Choi, J. W. & Ismagilov, R. F. Defined spatial structure stabilizes a synthetic multispecies bacterial community. Proc. Natl Acad. Sci. USA 105, 18188–18193 (2008).

  103. 103.

    Connell, J. L., Ritschdorff, E. T., Whiteley, M. & Shear, J. B. 3D printing of microscopic bacterial communities. Proc. Natl Acad. Sci. USA 110, 18380–18385 (2013).

  104. 104.

    Schaffner, M., Rühs, P. A., Coulter, F., Kilcher, S. & Studart, A. R. 3D printing of bacteria into functional complex materials. Sci. Adv. 3, eaao6804 (2017).

  105. 105.

    Datta, M. S., Sliwerska, E., Gore, J., Polz, M. & Cordero, O. X. Microbial interactions lead to rapid micro-scale successions on model marine particles. Nat. Commun. 7, 11965 (2016). This study shows how synthetic polysaccharide particles can be used as a model system to study ecological processes and microbe–microbe interactions.

  106. 106.

    Enke, T. N. et al. Modular assembly of polysaccharide-degrading marine microbial communities. Curr. Biol. 29, 1528–1535.e6 (2019).

  107. 107.

    Rusten, B., Eikebrokk, B., Ulgenes, Y. & Lygren, E. Design and operations of the Kaldnes moving bed biofilm reactors. Aquac. Eng. 34, 322–331 (2006).

  108. 108.

    Venturelli, O. S., Egbert, R. G. & Arkin, A. P. Towards engineering biological systems in a broader context. J. Mol. Biol. 428, 928–944 (2016).

  109. 109.

    Lee, J. W., Chan, C. T. Y., Slomovic, S. & Collins, J. J. Next-generation biocontainment systems for engineered organisms. Nat. Chem. Biol. 14, 530–537 (2018).

  110. 110.

    Sheth, R. U., Cabral, V., Chen, S. P. & Wang, H. H. Manipulating bacterial communities by in situ microbiome engineering. Trends Genet. 32, 189–200 (2016).

  111. 111.

    Ronda, C., Chen, S. P., Cabral, V., Yaung, S. J. & Wang, H. H. Metagenomic engineering of the mammalian gut microbiome in situ. Nat. Methods 16, 167–170 (2019). This study, together with reference 112, provides new techniques to transfer engineered mobile genetic elements into microorganisms living in their native environment.

  112. 112.

    Brophy, J. A. N. et al. Engineered integrative and conjugative elements for efficient and inducible DNA transfer to undomesticated bacteria. Nat. Microbiol. 3, 1043–1053 (2018).

  113. 113.

    Mulat, D. G. et al. Quantifying contribution of synthrophic acetate oxidation to methane production in thermophilic anaerobic reactors by membrane inlet mass spectrometry. Environ. Sci. Technol. 8, 2505–2511 (2014).

  114. 114.

    Kehe, J. et al. Massively parallel screening of synthetic microbial communities. Proc. Natl Acad. Sci. USA 116, 12804–12809 (2019). This study develops a high-throughput phenotypic screen using droplet-based microfluidics that can analyse ~100,000 multispecies synthetic communities per day against any optically assayable function.

  115. 115.

    Truong, D. T., Tett, A., Pasolli, E., Huttenhower, C. & Segata, N. Microbial strain-level population structure and genetic diversity diversity from metagenomes. Nat. Methods 12, 626–638 (2017).

  116. 116.

    Mosbæk, F. et al. Identification of syntrophic acetate-oxidizing bacteria in anaerobic digesters by combined protein-based stable isotope probing and metagenomics. ISME J. 10, 2405–2418 (2016).

  117. 117.

    Lawson, C. E. et al. Metabolic network analysis reveals microbial community interactions in anammox granules. Nat. Commun. 8, 1–12 (2017).

  118. 118.

    Hawley, A. K., Brewer, H. M., Norbeck, A. D., Pasa-Toli, L. & Hallam, S. J. Metaproteomics reveals differential modes of metabolic coupling among ubiquitous oxygen minimum zone microbes. Proc. Natl Acad. Sci. USA 111, 11395–11400 (2014).

  119. 119.

    Bowen, J. L., Babbin, A. R., Kearns, P. J. & Ward, B. B. Connecting the dots: linking nitrogen cycle gene expression to nitrogen fluxes in marine sediment mesocosms. Front. Microbiol. 5, 1–10 (2014).

  120. 120.

    He, Z. et al. GeoChip: a comprehensive microarray for investigating biogeochemical, ecological and environmental processes. ISME J. 1, 67–77 (2007).

  121. 121.

    Hellerstein, M. K. In vivo measurement of fluxes through metabolic pathways: the missing link in functional genomics and pharmaceutical research. Annu. Rev. Nutr. 23, 379–402 (2003).

  122. 122.

    Sauer, U. Metabolic networks in motion: 13C-based flux analysis. Mol. Syst. Biol. 2, 62 (2006).

  123. 123.

    Antoniewicz, M. R., Kelleher, J. K. & Stephanopoulos, G. Elementary metabolite units (EMU): a novel framework for modeling isotopic distributions. Metab. Eng. 9, 68–86 (2007).

  124. 124.

    Gebreselassie, N. A. & Antoniewicz, M. R. 13C-metabolic flux analysis of co-cultures: a novel approach. Metab. Eng. 31, 132–139 (2015).

  125. 125.

    Ghosh, A. et al. A peptide-based method for 13C metabolic flux analysis in microbial communities. PLOS Comput. Biol. 10, e1003827 (2014). This study develops a novel method for calculating metabolic fluxes in microbial communities using 13 C-labelled peptides.

  126. 126.

    Nielsen, J. It Is all about metabolic fluxes. J. Bacteriol. 185, 7031–7035 (2003).

  127. 127.

    Beyß, M., Azzouzi, S., Weitzel, M., Wiechert, W. & Nöh, K. The design of FluxML: a universal modeling language for 13C metabolic flux analysis. Front. Microbiol. 10, 1022 (2019).

  128. 128.

    McGlynn, S. E., Chadwick, G. L., Kempes, C. P. & Orphan, V. J. Single cell activity reveals direct electron transfer in methanotrophic consortia. Nature 526, 531–535 (2015).

  129. 129.

    Picioreanu, C., Pérez, J. & van Loosdrecht, M. C. M. Impact of cell cluster size on apparent half-saturation coefficients for oxygen in nitrifying sludge and biofilms. Water Res. 106, 371–382 (2016).

  130. 130.

    Nielsen, J. L. & Nielsen, P. H. Advances in microscopy: microautoradiography of single cells. Methods Enzymol. 397, 237–256 (2005).

  131. 131.

    Huang, W. E. et al. Raman-FISH: combining stable-isotope Raman spectroscopy and fluorescence in situ hybridization for the single cell analysis of identity and function. Environ. Microbiol. 9, 1878–1889 (2007).

  132. 132.

    Dunham, S. J. B., Ellis, J. F., Li, B. & Sweedler, J. V. Mass spectrometry imaging of complex microbial communities. Acc. Chem. Res. 50, 96–104 (2017).

  133. 133.

    Hatzenpichler, R. et al. Visualizing in situ translational activity for identifying and sorting slow-growing archaeal−bacterial consortia. Proc. Natl Acad. Sci. USA 113, E4069–E4078 (2016). This study develops a high-throughput approach for visualizing protein synthesis in individual cells within microbiomes by combining bio-orthogonal non-canonical amino acid tagging with fluorescence-activated cell sorting.

  134. 134.

    Okabe, S., Satoh, H. & Watanabe, Y. Analysis of microbial structure and function of nitrifying biofilms. Methods Ecol. Evol. 337, 213–224 (2001).

  135. 135.

    DiMucci, D., Kon, M. & Segrè, D. Machine learning reveals missing edges and putative interaction mechanisms in microbial ecosystem networks. mSystems 3, e00181–18 (2018).

  136. 136.

    Qu, K., Guo, F., Liu, X., Lin, Y. & Zou, Q. Application of machine learning in microbiology. Front. Microbiol. 10, 827 (2019).

  137. 137.

    Wang, P.-H. et al. An interspecies malate–pyruvate shuttle reconciles redox imbalance in an anaerobic microbial community. ISME J. 13, 1042–1055 (2019). This study combines metabolic modelling with 13 C metabolomic experiments to resolve poorly understood metabolite exchange reactions driving ecosystem function in anaerobic microbiomes.

  138. 138.

    Faust, K. & Raes, J. Microbial interactions: from networks to models. Nat. Rev. Microbiol. 10, 538 (2012).

  139. 139.

    Imam, S., Noguera, D. R. & Donohue, T. J. An integrated approach to reconstructing genome-scale transcriptional regulatory networks. PLOS Comput. Biol. 11, 1–35 (2015).

  140. 140.

    Venturelli, O. S. et al. Deciphering microbial interactions in synthetic human gut microbiome communities. Mol. Syst. Biol. 14, e8157 (2018).

  141. 141.

    MacArthur, R. Fluctuations of animal populations and a measure of community stability. Ecology 36, 533–536 (1955).

  142. 142.

    Martin, H. G. & Goldenfeld, N. On the origin and robustness of power-law species–area relationships in ecology. Proc. Natl Acad. Sci. USA 103, 10310–10315 (2006).

  143. 143.

    Tilman, D. Biodiversity: population versus ecosystem stability. Ecology 77, 350–363 (1996).

  144. 144.

    Garrett Hardin. The competitive exclusion principle. Science 131, 1292–1297 (1960).

  145. 145.

    Lozano, G. L. et al. Introducing THOR, a model microbiome for genetic dissection of community behavior. mBio 10, e02846–18 (2019).

  146. 146.

    Zengler, K. et al. EcoFABs: advancing microbiome science through standardized fabricated ecosystems. Nat. Methods 16, 567–571 (2019). This article describes the construction and use of standardized fabricated ecosystems for the development of theory and predictive models for microbiomes.

  147. 147.

    Zhalnina, K., Zengler, K., Newman, D. & Northen, T. R. Need for laboratory ecosystems to unravel the structures. mBio 9, 1–8 (2018).

  148. 148.

    Shah, P. et al. A microfluidics-based in vitro model of the gastrointestinal human–microbe interface. Nat. Commun. 7, 11535 (2016).

  149. 149.

    Wegener, G., Krukenberg, V., Riedel, D., Tegetmeyer, H. E. & Boetius, A. Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria. Nature 526, 587–590 (2015).

  150. 150.

    Scheller, S., Yu, H., Chadwick, G. L., McGlynn, S. E. & Orphan, V. J. Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction. Science 351, 703–707 (2016).

  151. 151.

    Schink, B. Energetics of syntrophic cooperation in methanogenic degradation. Microbiol. Mol. Biol. Rev. 61, 262–280 (1997).

  152. 152.

    Jackson, B. E. & McInerney, M. J. Anaerobic microbial metabolism can proceed close to thermodynamic limits. Nature 415, 454–456 (2002).

  153. 153.

    Phelan, V. V., Liu, W. T., Pogliano, K. & Dorrestein, P. C. Microbial metabolic exchange–the chemotype-to-phenotype link. Nat. Chem. Biol. 8, 26–35 (2012).

  154. 154.

    Louca, S. et al. Function and functional redundancy in microbial systems. Nat. Ecol. Evol. 2, 936–943 (2018).

  155. 155.

    Ladau, J. & Eloe-Fadrosh, E. A. Spatial, temporal, and phylogenetic scales of microbial ecology. Trends Microbiol. 27, 662–669 (2019).

  156. 156.

    Thompson, J. A., Oliveira, R. A., Djukovic, A., Ubeda, C. & Xavier, K. B. Manipulation of the quorum sensing signal AI-2 affects the antibiotic-treated gut microbiota. Cell Rep. 10, 1861–1871 (2015).

  157. 157.

    Arkin, A. P. et al. KBase: the United States Department of Energy Systems Biology Knowledgebase. Nat. Biotechnol. 36, 566–569 (2018).

  158. 158.

    Morrell, W. C. et al. The experiment data depot: a web-based software tool for biological experimental data storage, sharing, and visualization. ACS Synth. Biol. 6, 2248–2259 (2017).

  159. 159.

    Solden, L. M. et al. Interspecies cross-feeding orchestrates carbon degradation in the rumen ecosystem. Nat. Microbiol. 3, 1274–1284 (2018).

  160. 160.

    Podolsky, I. A. et al. Harnessing nature’s anaerobes for biotechnology and bioprocessing. Annu. Rev. Chem. Biomol. Eng. 10, 105–128 (2019).

  161. 161.

    Swift, C. L., Brown, J. L., Seppälä, S. & O’Malley, M. A. Co-cultivation of the anaerobic fungus Anaeromyces robustus with Methanobacterium bryantii enhances transcription of carbohydrate active enzymes. J. Ind. Microbiol. Biotechnol. https://doi.org/10.1007/s10295-019-02188-0 (2019).

  162. 162.

    Lee, K. S. et al. An automated raman-based platform for the sorting of live cells by functional properties. Nat. Microbiol. 4, 1035–1048 (2019).

  163. 163.

    Swenson, T. L., Karaoz, U., Swenson, J. M., Bowen, B. P. & Northen, T. R. Linking soil biology and chemistry in biological soil crust using isolate exometabolomics. Nat. Commun. 9, 19 (2018).

  164. 164.

    Noor, E., Cherkaoui, S. & Sauer, U. Biological insights through omics data integration. Curr. Opin. Syst. Biol. 15, 39–47 (2019).

  165. 165.

    Guido Zampieri, Supreeta Vijayakumar, & Elisabeth Yaneske, C. A. Machine and deep learning meet genome-scale metabolic modelling. PLOS Comput. Biol. 15, e1007084 (2019).

  166. 166.

    Ziels, R. M., Sousa, D. Z., Stensel, H. D. & Beck, D. A. C. DNA-SIP based genome-centric metagenomics identifies key long-chain fatty acid-degrading populations in anaerobic digesters with different feeding frequencies. ISME J. 12, 112–123 (2018).

  167. 167.

    Fortunato, C. S. & Huber, J. A. Coupled RNA-SIP and metatranscriptomics of active chemolithoautotrophic communities at a deep-sea hydrothermal vent. ISME J. 10, 1925–1938 (2016).

  168. 168.

    Orphan, V. J., Orphan, V. J., House, C. H. & Hinrichs, K. Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science 484, 484–488 (2013).

  169. 169.

    Kaltenpoth, M., Strupat, K. & Svatoš, A. Linking metabolite production to taxonomic identity in environmental samples by (MA)LDI-FISH. ISME J. 10, 527–531 (2015).

  170. 170.

    Nuñez, J., Renslow, R., Cliff, J. B. & Anderton, C. R. NanoSIMS for biological applications: current practices and analyses. Biointerphases 13, 03B301 (2018).

  171. 171.

    Northen, T. R. et al. Clathrate nanostructures for mass spectrometry. Nature 449, 1033 (2007).

  172. 172.

    Louie, K. B. et al. “Replica-extraction-transfer” nanostructure-initiator mass spectrometry imaging of acoustically printed bacteria. Anal. Chem. 85, 10856–10862 (2013).

  173. 173.

    Johnson, C. H. et al. Metabolism links bacterial biofilms and colon carcinogenesis. Cell Metab. 21, 891–897 (2015).

  174. 174.

    Gilmore, I. S., Heiles, S. & Pieterse, C. L. Metabolic imaging at the single-cell scale: recent advances in mass spectrometry imaging. Annu. Rev. Anal. Chem. 12, 201–224 (2019).

  175. 175.

    Hatzenpichler, R. et al. In situ visualization of newly synthesized proteins in environmental microbes using amino acid tagging and click chemistry. Environ. Microbiol. 16, 2568–2590 (2014).

  176. 176.

    Ma, Y. & Yates, J. R. Proteomics and pulse azidohomoalanine labeling of newly synthesized proteins: what are the potential applications? Expert. Rev. Proteom. 15, 545–554 (2018).

  177. 177.

    Kaminski, T. S., Scheler, O. & Garstecki, P. Droplet microfluidics for microbiology: Techniques, applications and challenges. Lab Chip 16, 2168–2187 (2016).

  178. 178.

    Bein, A. et al. Microfluidic organ-on-a-chip models of human intestine. Cell. Mol. Gastroenterol. Hepatol. 5, 659–668 (2018).

  179. 179.

    Aleklett, K. et al. Build your own soil: exploring microfluidics to create microbial habitat structures. ISME J. 12, 312–319 (2018).

  180. 180.

    Hsu, R. H., Clark, R. L., Tan, J. W., Romero, P. A. & Venturelli, O. S. Rapid microbial interaction network inference in microfluidic droplets. Preprint at bioRxiv https://doi.org/10.1101/521823 (2019).

  181. 181.

    Tilman, D. et al. Diversity and productivity in a long-term grassland experiment. Science 294, 843–846 (2001).

Download references

Acknowledgements

The authors acknowledge the College of Engineering at the University of Wisconsin-Madison, which provided financial support for a workshop during the Madison Microbiome Meeting on 27 April 2018, which all authors attended and at which all authors participated in discussions that led to the creation of this article. C.E.L. is supported by a Postgraduate Scholarships–Doctoral award from the National Sciences and Engineering Research Council of Canada and a Wisconsin Distinguished Graduate Fellowship. K.D.M. and D.R.N. acknowledge support from the National Science Foundation (CBET-1803055 and MCB-1518130) and the University of Wisconsin-Madison Wisconsin Alumni Research Foundation via the Microbiome Initiative. D.R.N. and B.F.P. acknowledge support from US Department of Energy (DOE) Great Lakes Bioenergy Research Center grants (DOE Office of Science BER DE-SC0018409). B.F.P. acknowledges support from the National Science Foundation (CBET-1703504 and MCB-1716594). M.A.O. and H.G.-M. are funded by the DOE Joint BioEnergy Institute (http://www.jbei.org) supported by the US DOE, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231 between Lawrence Berkeley Laboratory and the US DOE. H.G.-M. is also funded by the DOE Agile BioFoundry (http://agilebiofoundry.org), supported by the US DOE, Energy Efficiency and Renewable Energy, Bioenergy Technologies Office, through contract DE-AC02-05CH11231. H.G.-M. is also supported by the Basque Government through the Basque Center for Applied Mathematics 2018–2021 programme and by the Spanish Ministry of Economy and Competitiveness (MINECO) through BCAM Severo Ochoa excellence accreditation SEV-2017-071. F.E.L. acknowledges support by the US Department of Defense’s Strategic Environmental Research and Development Program and the Governor’s Chair programme through the University of Tennessee and Oak Ridge National Laboratory. D.G.W. acknowledges the support offered by a mobility fellowship of the Swiss National Science Foundation (Chemical Engineering Division, grant 151977), start-up fund of the Department of Biotechnology of the TU Delft, research grant of the Netherlands Organisation for Scientific Research (NWO, Applied and Engineering Sciences Division, project 15812), talent grants of the Soehngen Institute of Anaerobic Microbiology (SIAM, www.anaerobic-microbiology.eu) research program, and European Commission Horizon 2020 (Research and Innovation Action Saraswati 2.0, and Twinning Project REPARES). F.E.L. acknowledges support by the US Department of Defense’s Strategic Environmental Research and Development Program, the National Science Foundation (Dimensions DEB1831599), and the Governor’s Chair programme through the University of Tennessee and Oak Ridge National Laboratory. R.H. acknowledges support from the Gordon and Betty Moore Foundation (award GBMF5999) and the National Science Foundation (RII Track-2 FEC award 1736255).

Author information

C.E.L. wrote the manuscript with direct input, edits and critical feedback from all authors.

Correspondence to Christopher E. Lawson or Katherine D. McMahon.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer reviewer information

Nature Reviews Microbiology thanks Harris Wang, Paul Wilmes and the other anonymous reviewer for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Microbiome science

Discovery and testing of fundamental principles governing microbiome assembly and function.

Microbiome engineering

Leveraging fundamental scientific principles and quantitative design to create microbiomes that perform desired functions.

Syntrophy

An obligately mutualistic process that is mediated by metabolite cross-feeding between two or more organisms that cannot be catalysed by one organism alone.

Metaphenotypes

Sets of emergent functions of a microbiome resulting from the interactions between individual microbial genomes (metagenome) and their interaction with the environment.

Ecological engineering

The process of designing and operating bioreactors and other engineered systems to foster the development of specific microbial communities that can perform desired functions.

Functional guilds

Groups of organisms that use similar resources (for example, electron donors, electron acceptors or carbon source) and occupy a similar ecological niche.

Keystone species

An organism that has a disproportionately large effect on maintaining the microbiome’s function and microbial interactions (both between microorganisms and with the environment).

Flux balance analysis

A constraint-based mathematical modelling technique for simulating metabolic fluxes through a metabolic network reconstructed from genomic information.

Ensemble modelling

Use of multiple models to address uncertainty by simulating a set of possibilities and selecting those consistent with measured data.

Machine learning

A technique used to build predictive models through patterns and inferences obtained from sample data rather than explicit or mechanistic relationships.

Technoeconomic assessment

A tool used to evaluate the technical and economic viability of an integrated process through a combination of process design, modelling and economic evaluation.

Life cycle analysis

A tool used to evaluate the environmental impacts associated with all stages of a product’s life, such as energy and water consumption, and air pollutant and greenhouse gas emissions.

Self-assembled microbiome

A microbiome built through environmental manipulation that selects for desired functions.

Synthetic microbiome

A microbiome built by combining predefined axenic or enrichment cultures to achieve a desired function.

Integrative and conjugative elements

Mobile genetic elements able to integrate into DNA sites via site-specific recombination that carry genes encoding the machinery necessary for conjugation.

Exometabolomics

An analytical technique to quantify extracellular small-molecule metabolites from environmental and/or biological samples typically through gas/liquid chromatography–mass spectrometry or nuclear magnetic resonance spectroscopy.

Off-gas analysis

The monitoring of gas flow rate and chemical composition (for example, carbon dioxide, hydrogen, methane) produced from a biological system.

Structure–function relationships

The influence of the microbiome’s three-dimensional spatial organization on its function.

Generalized Lotka–Volterra equations

A set of ordinary differential equations used to represent population dynamics based on experimentally inferred species interaction parameters.

Fundamental niche

The entire set of environmental conditions in which an organism can survive and reproduce (that is, an organism’s niche in the absence of interspecific competition).

Realized niche

The set of environmental conditions used by a species after consideration of interspecific competition (competition, predation and other factors).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark