Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Citrobacter rodentium–host–microbiota interactions: immunity, bioenergetics and metabolism

Abstract

Citrobacter rodentium is an extracellular enteric mouse-specific pathogen used to model infections with human pathogenic Escherichia coli and inflammatory bowel disease. C. rodentium injects type III secretion system effectors into intestinal epithelial cells (IECs) to target inflammatory, metabolic and cell survival pathways and establish infection. While the host responds to infection by activating innate and adaptive immune signalling, required for clearance, the IECs respond by rapidly shifting bioenergetics to aerobic glycolysis, which leads to oxygenation of the epithelium, an instant expansion of mucosal-associated commensal Enterobacteriaceae and a decline of obligate anaerobes. Moreover, infected IECs reprogramme intracellular metabolic pathways, characterized by simultaneous activation of cholesterol biogenesis, import and efflux, leading to increased serum and faecal cholesterol levels. In this Review we summarize recent advances highlighting the intimate relationship between C. rodentium pathogenesis, metabolism and the gut microbiota.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The phases of Citrobacter rodentium infection in a mild disease model.
Fig. 2: Citrobacter rodentium manipulates innate immunity and microbiota composition by subverting cellular bioenergetics.
Fig. 3: Citrobacter rodentium infection leads to simultaneous upregulation of cholesterol biosynthesis and cholesterol efflux pathways.
Fig. 4: Citrobacter rodentium–microbiota interactions.
Fig. 5: Manipulation of host innate immune pathways by attaching and effacing pathogen type III secretion system (T3SS) effectors.

References

  1. 1.

    Barthold, S. W., Coleman, G., Bhatt, P., Osbaldiston, G. & Jonas, A. The etiology of transmissible murine colonic hyperplasia. Lab. Anim. Sci. 26, 889–894 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Itoh, K., Matsui, T., Tsuji, K., Mitsuoka, T. & Ueda, K. Genetic control in the susceptibility of germfree inbred mice to infection by Escherichia coli O115a,c:K(B). Infect. Immun. 56, 930–935 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Petty, N. K. et al. Citrobacter rodentium is an unstable pathogen showing evidence of significant genomic flux. PLOS Pathog. 7, e1002018 (2011).

    Article  CAS  Google Scholar 

  4. 4.

    Schauer, D. & Falkow, S. Attaching and effacing locus of a Citrobacter freundii biotype that causes transmissible murine colonic hyperplasia. Infect. Immun. 61, 2486–2492 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Schauer, D. & Falkow, S. The eae gene of Citrobacter freundii biotype 4280 is necessary for colonization in transmissible murine colonic hyperplasia. Infect. Immun. 61, 4654–4661 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Willing, B. P., Vacharaksa, A., Croxen, M., Thanachayanont, T. & Finlay, B. B. Altering host resistance to infections through microbial transplantation. PLOS ONE 6, e26988 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Ghosh, S. et al. Colonic microbiota alters host susceptibility to infectious colitis by modulating inflammation, redox status, and ion transporter gene expression. Am. J. Physiol. Gastrointest. Liver Physiol. 301, G39–G49 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Papapietro, O. et al. R-spondin 2 signalling mediates susceptibility to fatal infectious diarrhoea. Nat. Commun. 4, 1898 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Kang, E. et al. Loss of disease tolerance during Citrobacter rodentium infection is associated with impaired epithelial differentiation and hyperactivation of T cell responses. Sci. Rep. 8, 847 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Hopkins, E. G. D., Roumeliotis, T. I., Mullineaux-Sanders, C., Choudhary, J. S. & Frankel, G. Intestinal epithelial cells and the microbiome undergo swift reprogramming at the inception of colonic Citrobacter rodentium infection. mBio 10, e00062-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Lupp, C. et al. Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe 2, 119–129 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Berger, C. N. et al. Citrobacter rodentium subverts ATP flux and cholesterol homeostasis in intestinal epithelial cells in vivo. Cell Metab. 6, 738–752.e6 (2017). This study shows that C. rodentium infection is associated with simultaneous upregulation of cholesterol biosynthesis, import and export and downregulation of OXPHOS in host colonic epithelial cells in vivo, as well as an expansion of facultative anaerobes on the gut mucosa.

    Article  CAS  Google Scholar 

  13. 13.

    Wiles, S. et al. Organ specificity, colonization and clearance dynamics in vivo following oral challenges with the murine pathogen Citrobacter rodentium. Cell. Microbiol. 6, 963–972 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Crepin, V. F., Collins, J. W., Habibzay, M. & Frankel, G. Citrobacter rodentium mouse model of bacterial infection. Nat. Protoc. 11, 1851–1876 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Kamada, N. et al. Humoral immunity in the gut selectively targets phenotypically virulent attaching-and-effacing bacteria for intraluminal elimination. Cell Host Microbe 17, 617–627 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Gibson, D. L. et al. Toll-like receptor 2 plays a critical role in maintaining mucosal integrity during Citrobacter rodentium-induced colitis. Cell. Microbiol. 10, 388–403 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Wiles, S., Dougan, G. & Frankel, G. Emergence of a ‘hyperinfectious’ bacterial state after passage of Citrobacter rodentium through the host gastrointestinal tract. Cell. Microbiol. 7, 1163–1172 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Simmons, C. P. et al. Central role for B lymphocytes and CD4+ T cells in immunity to infection by the attaching and effacing pathogen Citrobacter rodentium. Infect. Immun. 71, 5077–5086 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Kamada, N. et al. Regulated virulence controls the ability of a pathogen to compete with the gut microbiota. Science 336, 1325–1329 (2012). This study shows that in C57BL/6 mice, following elimination of virulent C. rodentium , commensal bacteria are required to eradicate avirulent luminal C. rodentium.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Sperandio, V. & Nguyen, Y. Enterohemorrhagic E. coli (EHEC) pathogenesis. Front. Cell. Infect. Microbiol. 2, 90 (2012).

    PubMed  PubMed Central  Google Scholar 

  21. 21.

    Mundy, R., Girard, F., FitzGerald, A. J. & Frankel, G. Comparison of colonization dynamics and pathology of mice infected with enteropathogenic Escherichia coli, enterohaemorrhagic E. coli and Citrobacter rodentium. FEMS Microbiol. Lett. 265, 126–132 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Mullineaux-Sanders, C., Suez, J., Elinav, E. & Frankel, G. Sieving through gut models of colonization resistance. Nat. Microbiol. 3, 132–140 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Mallick, E. M. et al. A novel murine infection model for Shiga toxin–producing Escherichia coli. J. Clin. Invest. 122, 4012–4024 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Balasubramanian, S., Osburne, M. S., BrinJones, H., Tai, A. K. & Leong, J. M. Prophage induction, but not production of phage particles, is required for lethal disease in a microbiome-replete murine model of enterohemorrhagic E. coli infection. PLOS Pathog. 15, e1007494 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Vallance, B. A., Deng, W., Jacobson, K. & Finlay, B. B. Host susceptibility to the attaching and effacing bacterial pathogen Citrobacter rodentium. Infect. Immun. 71, 3443–3453 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Borenshtein, D. et al. Decreased expression of colonic Slc26a3 and carbonic anhydrase IV as a cause of fatal infectious diarrhea in mice. Infect. Immun. 77, 3639–3650 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Garmendia, J., Frankel, G. & Crepin, V. F. Enteropathogenic and enterohemorrhagic Escherichia coli infections: translocation, translocation, translocation. Infect. Immun. 73, 2573–2585 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Umanski, T., Rosenshine, I. & Friedberg, D. Thermoregulated expression of virulence genes in enteropathogenic Escherichia coli. Microbiology 148, 2735–2744 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Reading, N. C., Rasko, D. A., Torres, A. G. & Sperandio, V. The two-component system QseEF and the membrane protein QseG link adrenergic and stress sensing to bacterial pathogenesis. Proc. Natl Acad. Sci. USA 106, 5889–5894 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Nakanishi, N. et al. Regulation of virulence by butyrate sensing in enterohaemorrhagic Escherichia coli. Microbiology 155, 521–530 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Hart, E. et al. RegA, an AraC-like protein, is a global transcriptional regulator that controls virulence gene expression in Citrobacter rodentium. Infect. Immun. 76, 5247–5256 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Pifer, R., Russell, R. M., Kumar, A., Curtis, M. M. & Sperandio, V. Redox, amino acid, and fatty acid metabolism intersect with bacterial virulence in the gut. Proc. Natl Acad. Sci. USA 115, E10712–E10719 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Moreira, C. G. et al. Bacterial adrenergic sensors regulate virulence of enteric pathogens in the gut. MBio 7, e00826–00816 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Yang, B., Feng, L., Wang, F. & Wang, L. Enterohemorrhagic Escherichia coli senses low biotin status in the large intestine for colonization and infection. Nat. Commun. 6, 6592 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Connolly, J. P. et al. Host-associated niche metabolism controls enteric infection through fine-tuning the regulation of type 3 secretion. Nat. Commun. 9, 4187 (2018). This study shows that metabolism of microbiota-derived 1,2-propanediol by C. rodentium regulates virulence gene expression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Alsharif, G. et al. Host attachment and fluid shear are integrated into a mechanical signal regulating virulence in Escherichia coli O157: H7. Proc. Natl Acad. Sci. USA 112, 5503–5508 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Mullineaux-Sanders, C. et al. Citrobacter rodentium relies on commensals for colonization of the colonic mucosa. Cell Rep. 21, 3381–3389 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    DeCoffe, D. et al. Dietary lipid type, rather than total number of calories, alters outcomes of enteric infection in mice. J. Infect. Dis. 213, 1846–1856 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Cepeda-Molero, M. et al. Attaching and effacing (A/E) lesion formation by enteropathogenic E. coli on human intestinal mucosa is dependent on non-LEE effectors. PLOS Pathogen. 13, e1006706 (2017).

    Article  CAS  Google Scholar 

  40. 40.

    Shenoy, A. R., Furniss, R. C. D., Goddard, P. J. & Clements, A. Modulation of host cell processes by T3SS effectors in Escherichia coli, a Versatile Pathogen. 73-115 (Springer, 2018).

  41. 41.

    Pal, R. R. et al. Pathogenic E. coli extracts nutrients from infected host cells utilizing injectisome components. Cell 177, 683–696 (2019). This study shows that an A/E pathogen (EPEC) uses injectisome components to extract nutrients from host cells during infection.

    Article  CAS  Google Scholar 

  42. 42.

    Bhattacharya, S. et al. A ubiquitous platform for bacterial nanotube biogenesis. Cell Rep. 27, 334–342 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Caballero-Flores, G. et al. Maternal immunization confers protection to the offspring against an attaching and effacing pathogen through delivery of IgG in breast milk. Cell Host Microbe 25, 313–323 (2019). This study shows that sterilizing immunity in adult mice requires induction of local IgG and that immunized dams confer protection to neonates via IgG delivery in the breast milk.

    Article  CAS  Google Scholar 

  44. 44.

    Bishu, S. et al. Citrobacter rodentium induces tissue-resident memory CD4+ T-cells. Infect. Immun. 87, 00295-19 (2019).

    Google Scholar 

  45. 45.

    Cummings, J., Pomare, E., Branch, W., Naylor, C. & Macfarlane, G. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28, 1221–1227 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Schilderink, R., Verseijden, C. & de Jonge, W. J. Dietary inhibitors of histone deacetylases in intestinal immunity and homeostasis. Front. Immunol. 4, 226 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Roediger, W. Utilization of nutrients by isolated epithelial cells of the rat colon. Gastroenterology 83, 424–429 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Kelly, C. J. et al. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe 17, 662–671 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Espey, M. G. Role of oxygen gradients in shaping redox relationships between the human intestine and its microbiota. Free. Radic. Biol. Med. 55, 130–140 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Ma, C. et al. Citrobacter rodentium infection causes both mitochondrial dysfunction and intestinal epithelial barrier disruption in vivo: role of mitochondrial associated protein (Map). Cell. Microbiol. 8, 1669–1686 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Nougayrède, J. P. & Donnenberg, M. S. Enteropathogenic Escherichia coli EspF is targeted to mitochondria and is required to initiate the mitochondrial death pathway. Cell. Microbiol. 6, 1097–1111 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Lopez, C. A. et al. Virulence factors enhance Citrobacter rodentium expansion through aerobic respiration. Science 353, 1249–1253 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Rivera-Chávez, F. et al. Depletion of butyrate-producing clostridia from the gut microbiota drives an aerobic luminal expansion of Salmonella. Cell Host Microbe 19, 443–454 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Berger, C. N. et al. The Citrobacter rodentium type III secretion system effector EspO affects mucosal damage repair and antimicrobial responses. PLOS Pathogen. 14, e1007406 (2018).

    Article  CAS  Google Scholar 

  55. 55.

    Gillis, C. C. et al. Dysbiosis-associated change in host metabolism generates lactate to support Salmonella growth. Cell Host Microbe 23, 54–64 (2017).

    Article  CAS  Google Scholar 

  56. 56.

    Wallimann, T., Tokarska-Schlattner, M. & Schlattner, U. The creatine kinase system and pleiotropic effects of creatine. Amino Acids 40, 1271–1296 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Vallance, B. A. et al. Modulation of inducible nitric oxide synthase expression by the attaching and effacing bacterial pathogen Citrobacter rodentium in infected mice. Infect. Immun. 70, 6424–6435 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Zheng, Y. et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat. Med. 14, 282–289 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Metidji, A. et al. The environmental sensor AHR protects from inflammatory damage by maintaining intestinal stem cell homeostasis and barrier integrity. Immun. 49, 353–362.e5 (2018). This study highlights the importance of AHR in intestinal epithelial cell homeostasis, independently of its role in immune cell function.

    Article  CAS  Google Scholar 

  60. 60.

    Guo, X. et al. Induction of innate lymphoid cell-derived interleukin-22 by the transcription factor STAT3 mediates protection against intestinal infection. Immunity 40, 25–39 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Lee, Y.-S. et al. Interleukin-1 (IL-1) signaling in intestinal stromal cells controls KC/CXCL1 secretion, which correlates with recruitment of IL-22-secreting neutrophils at early stages of Citrobacter rodentium infection. Infect. Immun. 83, 3257–3267 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Backert, I. et al. STAT3 activation in Th17 and Th22 cells controls IL-22–mediated epithelial host defense during infectious colitis. J. Immunol. 193, 3779–3791 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Wang, X. et al. Interleukin-22 alleviates metabolic disorders and restores mucosal immunity in diabetes. Nature 514, 237–241 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Goldstein, J. L., DeBose-Boyd, R. A. & Brown, M. S. Protein sensors for membrane sterols. Cell 124, 35–46 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Wang, B. & Tontonoz, P. Liver X receptors in lipid signalling and membrane homeostasis. Nat. Rev. Endocrinol. 14, 458–463 (2018).

    Google Scholar 

  66. 66.

    Raczynski, A. R. et al. Enteric infection with Citrobacter rodentium induces coagulative liver necrosis and hepatic inflammation prior to peak infection and colonic disease. PLOS ONE 7, e33099 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Castrillo, A., Joseph, S. B., Marathe, C., Mangelsdorf, D. J. & Tontonoz, P. Liver X receptor-dependent repression of matrix metalloproteinase-9 expression in macrophages. J. Biol. Chem. 278, 10443–10449 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Köberlin, M. S., Heinz, L. X. & Superti-Furga, G. Functional crosstalk between membrane lipids and TLR biology. Curr. Opin. Cell Biol. 39, 28–36 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Tall, A. R. & Yvan-Charvet, L. Cholesterol, inflammation and innate immunity. Nat. Rev. Immunol. 15, 104–116 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Castrillo, A. et al. Crosstalk between LXR and toll-like receptor signaling mediates bacterial and viral antagonism of cholesterol metabolism. Mol. Cell 12, 805–816 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Smoak, K. et al. Effects of liver X receptor agonist treatment on pulmonary inflammation and host defense. J. Immunol. 180, 3305–3312 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Joseph, S. B. et al. LXR-dependent gene expression is important for macrophage survival and the innate immune response. Cell 119, 299–309 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Korf, H. et al. Liver X receptors contribute to the protective immune response against Mycobacterium tuberculosis in mice. J. Clin. Invest. 119, 1626–1637 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Määttänen, P. et al. Ground flaxseed reverses protection of a reduced-fat diet against Citrobacter rodentium-induced colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 315, G788–G798 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Ryz, N. R. et al. Dietary vitamin D3 deficiency alters intestinal mucosal defense and increases susceptibility to Citrobacter rodentium induced colitis. Am. J. Physiol. Heart Circ. Physiol. 309, G730–G742 (2015).

    CAS  Google Scholar 

  76. 76.

    McDaniel, K. L. et al. Vitamin A-deficient hosts become nonsymptomatic reservoirs of Escherichia coli-like enteric infections. Infect. Immun. 83, 2984–2991 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Smith, A. D., Botero, S., Shea-Donohue, T. & Urban, J. F. The pathogenicity of an enteric Citrobacter rodentium infection is enhanced by deficiencies in the antioxidants selenium and vitamin E. Infect. Immun. 79, 1471–1478 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Ghosh, S. et al. Fish oil attenuates omega-6 polyunsaturated fatty acid-induced dysbiosis and infectious colitis but impairs LPS dephosphorylation activity causing sepsis. PLOS ONE 8, e55468 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Sanchez, K. K. et al. Cooperative metabolic adaptations in the host can favor asymptomatic infection and select for attenuated virulence in an enteric pathogen. Cell 175, 146–158. e15 (2018). This study shows that altering the diet of lethally susceptible mice can result in selection of avirulent mutations in C. rodentium and prevent death during infection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Desai, M. S. et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 167, 1339–1353.e21 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Joshi, S. et al. 1, 25-Dihydroxyvitamin D3 ameliorates Th17 autoimmunity via transcriptional modulation of interleukin-17A. Mol. Cell. Biol. 31, 3653–3669 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Palmer, M. T. et al. Lineage-specific effects of 1, 25-dihydroxyvitamin D3 on the development of effector CD4 T cells. J. Biol. Chem. 286, 997–1004 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Mangan, P. R. et al. Transforming growth factor-β induces development of the TH17 lineage. Nature 441, 231–234 (2006).

    Article  CAS  Google Scholar 

  84. 84.

    Cantorna, M. T. Mechanisms underlying the effect of vitamin D on the immune system. Proc. Nutr. Soc. 69, 286–289 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Mielke, L. A. et al. Retinoic acid expression associates with enhanced IL-22 production by γδ T cells and innate lymphoid cells and attenuation of intestinal inflammation. J. Exp. Med. 210, 1117–1124 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Snyder, L. M. et al. Retinoic acid mediated clearance of Citrobacter rodentium in vitamin A deficient mice requires CD11b+ and T cells. Front. Immunol. 9, 3090 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Lin, Y.-D., Arora, J., Diehl, K., Bora, S. A. & Cantorna, M. T. Vitamin D Is required for ILC3 derived IL-22 and protection from Citrobacter rodentium infection. Front. Immunol. 10, 1 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Chen, J., Waddell, A., Lin, Y.-D. & Cantorna, M. T. Dysbiosis caused by vitamin D receptor deficiency confers colonization resistance to Citrobacter rodentium through modulation of innate lymphoid cells. Mucosal Immunol. 8, 618–626 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Caballero-Franco, C., Keller, K., De Simone, C. & Chadee, K. The VSL# 3 probiotic formula induces mucin gene expression and secretion in colonic epithelial cells. Am. J. Physiol. Gastrointest. Liver Physiol. 292, G315–G322 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Burger-van Paassen, N. et al. The regulation of intestinal mucin MUC2 expression by short-chain fatty acids: implications for epithelial protection. Biochem. J. 420, 211–219 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Wrzosek, L. et al. Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii influence the production of mucus glycans and the development of goblet cells in the colonic epithelium of a gnotobiotic model rodent. BMC Biol. 11, 61 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. 92.

    Bergstrom, K. S. et al. Muc2 protects against lethal infectious colitis by disassociating pathogenic and commensal bacteria from the colonic mucosa. PLOS Pathog. 6, e1000902 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Wlodarska, M. et al. Antibiotic treatment alters the colonic mucus layer and predisposes the host to exacerbated Citrobacter rodentium-induced colitis. Infect. Immun. 79, 1536–1545 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Fabich, A. J. et al. Comparison of carbon nutrition for pathogenic and commensal Escherichia coli strains in the mouse intestine. Infect. Immun. 76, 1143–1152 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. 95.

    Kim, Y.-G. et al. Neonatal acquisition of Clostridia species protects against colonization by bacterial pathogens. Science 356, 315–319 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. 96.

    Ivanov, I. I. et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139, 485–498 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. 97.

    Pacheco, A. R. et al. Fucose sensing regulates bacterial intestinal colonization. Nature 492, 113–117 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. 98.

    Kumar, A. & Sperandio, V. Indole signaling at the host-microbiota-pathogen interface. mBio 10, e01031-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  99. 99.

    Curtis, M. M. et al. The gut commensal Bacteroides thetaiotaomicron exacerbates enteric infection through modification of the metabolic landscape. Cell Host Microbe 16, 759–769 (2014). This study shows that microbiota-derived metabolites regulate C. rodentium virulence during mouse infection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. 100.

    Cameron, E. A., Curtis, M. M., Kumar, A., Dunny, G. M. & Sperandio, V. Microbiota and pathogen proteases modulate type III secretion activity in enterohemorrhagic Escherichia coli. mBio 9, e02204-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  101. 101.

    Yang, H. et al. TLR9 Limits enteric antimicrobial responses and promotes microbiota based colonization resistance during C itrobacter rodentium infection. Cell. Microbiol. 21, e13026 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. 102.

    Kim, Y.-G. et al. The Nod2 sensor promotes intestinal pathogen eradication via the chemokine CCL2-dependent recruitment of inflammatory monocytes. Immunity 34, 769–780 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. 103.

    Li, Y. et al. TLR9 regulates the NF-κB–NLRP3–IL-1β pathway negatively in salmonella-induced NKG2D-mediated intestinal inflammation. J. Immunol. 199, 761–773 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. 104.

    Zhan, R., Han, Q., Zhang, C., Tian, Z. & Zhang, J. Toll-like receptor 2 (TLR2) and TLR9 play opposing roles in host innate immunity against Salmonella enterica serovar Typhimurium infection. Infect. Immun. 83, 1641–1649 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. 105.

    Friedrich, C. et al. MyD88 signaling in dendritic cells and the intestinal epithelium controls immunity against intestinal infection with C. rodentium. PLOS Pathog. 13, e1006357 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. 106.

    Dann, S. M. et al. IL-6-dependent mucosal protection prevents establishment of a microbial niche for attaching/effacing lesion-forming enteric bacterial pathogens. J. Immunol. 180, 6816–6826 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. 107.

    Lamas, B. et al. Card9 mediates susceptibility to intestinal pathogens through microbiota modulation and control of bacterial virulence. Gut 67, 1836–1844 (2018). This study links an IBD susceptibility gene, CARD9 , to increased sensitivity to enteric infection. Importantly, the implementation of an adequate diet can reverse the genetic susceptibility to infection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. 108.

    Li, L. et al. Cytokine IL-6 is required in Citrobacter rodentium infection-induced intestinal Th17 responses and promotes IL-22 expression in inflammatory bowel disease. Mol. Med. Report. 9, 831–836 (2014).

    Article  CAS  Google Scholar 

  109. 109.

    Satpathy, A. T. et al. Notch2-dependent classical dendritic cells orchestrate intestinal immunity to attaching-and-effacing bacterial pathogens. Nat. Immunol. 14, 937–948 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. 110.

    Hood, M. I. & Skaar, E. P. Nutritional immunity: transition metals at the pathogen–host interface. Nat. Rev. Microbiol. 10, 525–537 (2012).

    Article  CAS  Google Scholar 

  111. 111.

    Sakamoto, K. et al. IL-22 controls iron-dependent nutritional immunity against systemic bacterial infections. Sci. Immunol. 2, eaai8371 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  112. 112.

    Weinberg, E. D. Nutritional immunity: host's attempt to withhold iron from microbial invaders. JAMA 231, 39–41 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. 113.

    Xiao, Y. et al. Interleukin-33 promotes REG3γ expression in intestinal epithelial cells and regulates gut microbiota. Cell Mol. Gastroenterol. Hepatol. 8, 21–36 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  114. 114.

    Waldschmitt, N. et al. The regenerating family member 3 β instigates IL-17A-mediated neutrophil recruitment downstream of NOD1/2 signalling for controlling colonisation resistance independently of microbiota community structure. Gut 68, 1190–1199 (2018). This study demonstrates that clearance of C. rodentium is delayed in mice deficient in NOD2 and RIPK2 due to defective IL-17 responses and delayed recruitment of leukocytes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. 115.

    Silberger, D. J., Zindl, C. L. & Weaver, C. T. Citrobacter rodentium: a model enteropathogen for understanding the interplay of innate and adaptive components of type 3 immunity. Mucosal Immunol. 10, 1108–1117 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. 116.

    Liu, Z. et al. Role of inflammasomes in host defense against Citrobacter rodentium infection. J. Biol. Chem. 287, 16955–16964 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. 117.

    Pallett, M. A. et al. Bacterial virulence factor inhibits caspase-4/11 activation in intestinal epithelial cells. Mucosal Immunol. 10, 602–612 (2017). This study reveals that the bacterial effector NleF is a caspase inhibitor with a role in in vivo infection, where it inhibits caspase 11 cleavage of IL-18 in IECs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. 118.

    Seo, S.-U. et al. Intestinal macrophages arising from CCR2+ monocytes control pathogen infection by activating innate lymphoid cells. Nat. Commun. 6, 8010 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. 119.

    Song-Zhao, G. X. et al. Nlrp3 activation in the intestinal epithelium protects against a mucosal pathogen. Mucosal Immunol. 7, 763–774 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. 120.

    Guo, C. et al. Cholesterol homeostatic regulator SCAP-SREBP2 integrates NLRP3 inflammasome activation and cholesterol biosynthetic signaling in macrophages. Immunity 49, 842–856.e7 (2018). This study establishes a surprising connection between cholesterol biosynthesis and NLRP3 inflammasome activation, hinting at the possibility that increased lipogenesis may promote immune cell survival once the inflammasome has been activated.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. 121.

    Nordlander, S., Pott, J. & Maloy, K. J. NLRC4 expression in intestinal epithelial cells mediates protection against an enteric pathogen. Mucosal Immunol. 7, 775–785 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. 122.

    Kayagaki, N. et al. Non-canonical inflammasome activation targets caspase-11. Nature 479, 117–121 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. 123.

    Lupfer, C. R. et al. Reactive oxygen species regulate caspase-11 expression and activation of the non-canonical NLRP3 inflammasome during enteric pathogen infection. PLOS Pathog. 10, e1004410 (2014).

    Article  CAS  Google Scholar 

  124. 124.

    Muñoz, M. et al. Interleukin-22 induces interleukin-18 expression from epithelial cells during intestinal infection. Immunity 42, 321–331 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. 125.

    Chen, K. W. et al. Noncanonical inflammasome signaling elicits gasdermin D–dependent neutrophil extracellular traps. Sci. Immunol. 3, eaar6676 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  126. 126.

    Saha, P. et al. PAD4-dependent NETs generation are indispensable for intestinal clearance of Citrobacter rodentium. Mucosal Immunol. 12, 761–771 (2019). This study shows the neutrophil extracellular trap formation mediated via peptidyl arginine deiminase 4 (PAD4) is required to control C. rodentium infection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. 127.

    Elinav, E. et al. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 145, 745–757 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. 128.

    Levy, M. et al. Microbiota-modulated metabolites shape the intestinal microenvironment by regulating NLRP6 inflammasome signaling. Cell 163, 1428–1443 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. 129.

    Wlodarska, M. et al. NLRP6 inflammasome orchestrates the colonic host-microbial interface by regulating goblet cell mucus secretion. Cell 156, 1045–1059 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. 130.

    Geddes, K. et al. Identification of an innate T helper type 17 response to intestinal bacterial pathogens. Nat. Med. 17, 837–844 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. 131.

    Higgins, L. M., Frankel, G., Douce, G., Dougan, G. & MacDonald, T. T. Citrobacter rodentium infection in mice elicits a mucosal Th1 cytokine response and lesions similar to those in murine inflammatory bowel disease. Infect. Immun. 67, 3031–3039 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. 132.

    Atarashi, K. et al. Th17 cell induction by adhesion of microbes to intestinal epithelial cells. Cell 163, 367–380 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. 133.

    Ahlfors, H. et al. IL-22 fate reporter reveals origin and control of IL-22 production in homeostasis and infection. J. Immunol. 193, 4602–4613 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. 134.

    Stockinger, B. & Omenetti, S. The dichotomous nature of T helper 17 cells. Nat. Rev. Immunol. 17, 535–544 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. 135.

    Omenetti, S. et al. The intestine harbors functionally distinct homeostatic tissue-resident and inflammatory Th17 cells. Immunity 51, 77–89 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. 136.

    Solaymani-Mohammadi, S. & Berzofsky, J. A. Interleukin 21 collaborates with interferon-γ for the optimal expression of interferon-stimulated genes and enhances protection against enteric microbial infection. PLOS Pathog. 15, e1007614 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. 137.

    Wang, L. et al. miR-34a is a microRNA safeguard for Citrobacter-induced inflammatory colon oncogenesis. eLife 7, e39479 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  138. 138.

    Mundy, R. et al. Identification of a novel Citrobacter rodentium type III secreted protein, EspI, and roles of this and other secreted proteins in infection. Infect. Immun. 72, 2288–2302 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. 139.

    Yen, H., Sugimoto, N. & Tobe, T. Enteropathogenic Escherichia coli uses NleA to inhibit NLRP3 inflammasome activation. PLOS Pathog. 11, e1005121 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. 140.

    Blasche, S. et al. The E. coli effector protein NleF is a caspase inhibitor. PLOS ONE 8, e58937 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. 141.

    Pearson, J. S., Giogha, C., Wong Fok Lung, T. & Hartland, E. L. The genetics of enteropathogenic Escherichia coli virulence. Annu. Rev. Genet. 50, 493–513 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. 142.

    Ding, J. et al. Structural and functional insights into host death domains inactivation by the bacterial arginine GlcNAcyltransferase effector. Mol. Cell 74, 922–935 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. 143.

    Pollard, D. J. et al. Broad-spectrum regulation of nonreceptor tyrosine kinases by the bacterial ADP-ribosyltransferase EspJ. MBio 9, e00170-18 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. 144.

    Goddard, P. J. et al. Enteropathogenic Escherichia coli stimulates effector-driven rapid Caspase-4 activation in human macrophages. Cell Rep. 27, 1008–1017 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. 145.

    Crepin, V. F. et al. Tir triggers expression of CXCL1 in enterocytes and neutrophil recruitment during Citrobacter rodentium infection. Infect. Immun. 83, 3342–3354 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. 146.

    Jostins, L. et al. Host–microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491, 119–124 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. 147.

    Rivas, M. A. et al. Deep resequencing of GWAS loci identifies independent rare variants associated with inflammatory bowel disease. Nat. Genet. 43, 1066–1073 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. 148.

    Normand, S. et al. Proteasomal degradation of NOD2 by NLRP12 in monocytes promotes bacterial tolerance and colonization by enteropathogens. Nat. Commun. 9, 5338 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. 149.

    Marchiando, A. M. et al. A deficiency in the autophagy gene Atg16L1 enhances resistance to enteric bacterial infection. Cell Host Microbe 14, 216–224 (2013). This study and Martin et al. (2018) show that mice deficient in ATG16L1 are resistant to intestinal disease induced by C. rodentium.

    Article  CAS  Google Scholar 

  150. 150.

    Martin, P. K. et al. Autophagy proteins suppress protective type I interferon signalling in response to the murine gut microbiota. Nat. Microbiol. 3, 1131–1141 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. 151.

    Pott, J., Kabat, A. M. & Maloy, K. J. Intestinal epithelial cell autophagy is required to protect against TNF-induced apoptosis during chronic colitis in mice. Cell Host Microbe 23, 191–202. e4 (2018).

    Article  CAS  Google Scholar 

  152. 152.

    Walsham, N. E. & Sherwood, R. A. Fecal calprotectin in inflammatory bowel disease. Clin. Exp. Gastroenterol. 9, 21–29 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. 153.

    Collins, J. W. et al. Citrobacter rodentium: infection, inflammation and the microbiota. Nat. Rev. Microbiol. 12, 612–623 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. 154.

    Stappenbeck, T. S. & Virgin, H. W. Accounting for reciprocal host–microbiome interactions in experimental science. Nat. 534, 191–199 (2016).

    Article  CAS  Google Scholar 

  155. 155.

    Velazquez, E. M. et al. Endogenous Enterobacteriaceae underlie variation in susceptibility to Salmonella infection. Nat. Microbiol. 4, 1057–1064 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. 156.

    Liu, J. et al. Use of quantitative molecular diagnostic methods to identify causes of diarrhoea in children: a reanalysis of the GEMS case-control study. Lancet 388, 1291–1301 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. 157.

    Galluzzi, L. et al. Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018. Cell Death Differ. 25, 486–541 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  158. 158.

    Green, D., Oguin, T. & Martinez, J. The clearance of dying cells: table for two. Cell Death Differ. 23, 915–926 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. 159.

    Man, S. M., Karki, R. & Kanneganti, T. D. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol. Rev. 277, 61–75 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. 160.

    Rühl, S. et al. ESCRT-dependent membrane repair negatively regulates pyroptosis downstream of GSDMD activation. Science 362, 956–960 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. 161.

    Kayagaki, N. et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526, 666–671 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. 162.

    Shi, J. et al. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 514, 187–192 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. 163.

    Wang, Y. et al. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature 547, 99–103 (2017).

    Article  CAS  Google Scholar 

  164. 164.

    Rogers, C. et al. Cleavage of DFNA5 by caspase-3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death. Nat. Commun. 8, 14128 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. 165.

    Ashkenazi, A. & Dixit, V. M. Death receptors: signaling and modulation. Science 281, 1305–1308 (1998).

    Article  CAS  Google Scholar 

  166. 166.

    Tait, S. W. & Green, D. R. Mitochondria and cell death: outer membrane permeabilization and beyond. Nat. Rev. Mol. Cell Biol. 11, 621–632 (2010).

    Article  CAS  Google Scholar 

  167. 167.

    Cho, Y. et al. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137, 1112–1123 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. 168.

    Murphy, J. M. et al. The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism. Immunity 39, 443–453 (2013).

    Article  CAS  Google Scholar 

  169. 169.

    Oberst, A. et al. Catalytic activity of the caspase-8–FLIP L complex inhibits RIPK3-dependent necrosis. Nature 471, 363–367 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. 170.

    Weinlich, R., Oberst, A., Beere, H. M. & Green, D. R. Necroptosis in development, inflammation and disease. Nat. Rev. Mol. Cell Biol. 18, 127–136 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. 171.

    Schauer, C. et al. Aggregated neutrophil extracellular traps limit inflammation by degrading cytokines and chemokines. Nat. Med. 20, 511–517 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. 172.

    Hansen, K. K. et al. A major role for proteolytic activity and proteinase-activated receptor-2 in the pathogenesis of infectious colitis. Proc. Natl Acad. Sci. USA 102, 8363–8368 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. 173.

    Saeed, M. A. et al. Protease-activated receptor 1 plays a proinflammatory role in colitis by promoting Th17-related immunity. Inflamm. Bowel Dis. 23, 593–602 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  174. 174.

    O’Donnell, J. A. et al. Fas regulates neutrophil lifespan during viral and bacterial infection. J. Leukoc. Biol. 97, 321–326 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. 175.

    Pearson, J. S. et al. A type III effector antagonizes death receptor signalling during bacterial gut infection. Nature 501, 247–251 (2013). This study highlights that mice deficient in death receptor signalling via FAS ligand show delayed clearance of C. rodentium ; moreover, the bacterial effector protein NleB1 inhibits FAS signalling.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Wellcome Trust, the Medical Research Council and the Royal Society. The authors apologize to authors whose work could not be cited due to space constraints.

Reviewer information

Nature Reviews Microbiology thanks G. Nunez and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Affiliations

Authors

Contributions

All authors contributed to writing the article.

Corresponding author

Correspondence to Gad Frankel.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Attaching and effacing (A/E) lesions

Lesions formed on intestinal epithelial cells characterized by intimate bacterial attachment to the apical plasma membrane and effacement of the brush border microvilli.

R-spondin

Secreted growth factor which activates the canonical WNT/β-catenin pathway.

Fluid shear force

Shear stress produced by fluid flow over a surface.

Warburg effect

The production of ATP via glycolysis under aerobic conditions.

Lipopolysaccharide

Major component of the outer membrane of Gram-negative bacteria which acts as a potent stimulator of the innate immune response.

Lipid rafts

Membrane microdomains enriched in cholesterol and sphingolipids that facilitate the interaction between activated receptors and adaptors to promote downstream signalling.

Mucin

Glycoprotein, secreted by goblet cells in the colon, which forms a protective mucus barrier on the apical side of the gut epithelium.

Colonization resistance

Protection against pathogen colonization conferred to the host by its microbiota.

Mucinases

Enzymes which hydrolyse mucins.

Alarmin

Intracellular endogenous molecule that can act as a danger signal when recognized by the immune system on its release into the extracellular environment.

Inflammasomes

Cytosolic surveillance systems defined by sensor proteins that oligomerize and form signalling platforms for the activation of caspase 1.

N-GlcNAcylation

Post-translational modification in which a glycosyltransferase catalyses the attachment of an N-acetylglucosamine (GlcNAc) moiety to the side chain amide of an asparagine or an arginine residue.

Pyroptosis

A form of cell death characterized by osmotic swelling and lysis triggered by the pore-forming amino terminus of GSDMD, which is liberated on proteolysis by caspases 1, 4 and 5.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mullineaux-Sanders, C., Sanchez-Garrido, J., Hopkins, E.G.D. et al. Citrobacter rodentium–host–microbiota interactions: immunity, bioenergetics and metabolism. Nat Rev Microbiol 17, 701–715 (2019). https://doi.org/10.1038/s41579-019-0252-z

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing