Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

The evolution of Zika virus from Asia to the Americas

Abstract

Zika virus (ZIKV) was once considered an obscure member of the large and diverse family of mosquito-borne flaviviruses, and human infections with ZIKV were thought to be sporadic, with mild and self-limiting symptoms. The large-scale ZIKV epidemics in the Americas and the unexpected uncovering of a link to congenital birth defects escalated ZIKV infections to the status of a global public health emergency. Recent studies that combined reverse genetics with modelling in multiple systems have provided evidence that ZIKV has acquired additional amino acid substitutions at the same time as congenital Zika syndrome and other birth defects were detected. In this Progress article, we summarize the evolution of ZIKV during its spread from Asia to the Americas and discuss potential links to pathogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ZIKV mutations and their potential links to pathogenesis and transmission.
Fig. 2: Phylogenetics and inferred transmission route of the Asian ZIKV lineage.

Similar content being viewed by others

References

  1. Suthar, M. S., Diamond, M. S. & Gale, M. Jr. West Nile virus infection and immunity. Nat. Rev. Microbiol. 11, 115–128 (2013).

    CAS  PubMed  Google Scholar 

  2. St John, A. L., Abraham, S. N. & Gubler, D. J. Barriers to preclinical investigations of anti-dengue immunity and dengue pathogenesis. Nat. Rev. Microbiol. 11, 420–426 (2013).

    Google Scholar 

  3. Holbrook, M. R. Historical perspectives on Flavivirus research. Viruses 9, E97 (2017).

    PubMed  Google Scholar 

  4. Brasil, P. et al. Zika virus infection in pregnant women in Rio de Janeiro. N. Engl. J. Med. 375, 2321–2334 (2016).

    PubMed  PubMed Central  Google Scholar 

  5. Mlakar, J. et al. Zika virus associated with microcephaly. N. Engl. J. Med. 374, 951–958 (2016).

    CAS  PubMed  Google Scholar 

  6. Hoen, B. et al. Pregnancy outcomes after ZIKV infection in French territories in the Americas. N. Engl. J. Med. 378, 985–994 (2018).

    PubMed  Google Scholar 

  7. Macnamara, F. N. Zika virus: a report on three cases of human infection during an epidemic of jaundice in Nigeria. Trans. R. Soc. Trop. Med. Hyg. 48, 139–145 (1954).

    CAS  PubMed  Google Scholar 

  8. Simpson, D. I. Zika virus infection in man. Trans. R. Soc. Trop. Med. Hyg. 58, 335–338 (1964).

    CAS  PubMed  Google Scholar 

  9. Moore, D. L. et al. Arthropod-borne viral infections of man in Nigeria, 1964–1970. Ann. Trop. Med. Parasitol. 69, 49–64 (1975).

    CAS  PubMed  Google Scholar 

  10. Fagbami, A. H. Zika virus infections in Nigeria: virological and seroepidemiological investigations in Oyo State. J. Hyg. 83, 213–219 (1979).

    CAS  Google Scholar 

  11. Olson, J. G. & Ksiazek, T. G., Suhandiman & Triwibowo Zika virus, a cause of fever in Central Java, Indonesia. Trans. R. Soc. Trop. Med. Hyg. 75, 389–393 (1981).

    CAS  PubMed  Google Scholar 

  12. Weaver, S. C. et al. Zika virus: history, emergence, biology, and prospects for control. Antiviral Res. 130, 69–80 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Duffy, M. R. et al. Zika virus outbreak on Yap Island, Federated States of Micronesia. N. Engl. J. Med. 360, 2536–2543 (2009).

    CAS  PubMed  Google Scholar 

  14. Garcez, P. P. et al. Zika virus impairs growth in human neurospheres and brain organoids. Science 352, 816–818 (2016).

    CAS  PubMed  Google Scholar 

  15. Dang, J. et al. Zika virus depletes neural progenitors in human cerebral organoids through activation of the innate immune receptor TLR3. Cell Stem Cell 19, 258–265 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Gabriel, E. et al. Recent Zika virus isolates induce premature differentiation of neural progenitors in human brain organoids. Cell Stem Cell 20, 397–406 (2017).

    CAS  PubMed  Google Scholar 

  17. Ma, W. et al. Zika virus causes testis damage and leads to male infertility in mice. Cell 167, 1511–1524 (2016).

    CAS  PubMed  Google Scholar 

  18. Yockey, L. J. et al. Vaginal exposure to Zika virus during pregnancy leads to fetal brain infection. Cell 166, 1247–1256 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Li, C. et al. Zika virus disrupts neural progenitor development and leads to microcephaly in mice. Cell Stem Cell 19, 120–126 (2016).

    CAS  PubMed  Google Scholar 

  20. Li, H. et al. Zika virus infects neural progenitors in the adult mouse brain and alters proliferation. Cell Stem Cell 19, 593–598 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Shan, C. et al. An infectious cDNA clone of Zika virus to study viral virulence, mosquito transmission, and antiviral inhibitors. Cell Host Microbe 19, 891–900 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu, Z. Y. et al. Characterization of cis-acting RNA elements of Zika virus by using a self-splicing ribozyme-dependent infectious clone. J. Virol. 91, e00484-17 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu, Y. et al. Evolutionary enhancement of Zika virus infectivity in Aedes aegypti mosquitoes. Nature 545, 482–486 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Yuan, L. et al. A single mutation in the prM protein of Zika virus contributes to fetal microcephaly. Science 358, 933–936 (2017).

    CAS  PubMed  Google Scholar 

  25. Yoon, K. J. et al. Zika-virus-encoded NS2A disrupts mammalian cortical neurogenesis by degrading adherens junction proteins. Cell Stem Cell 21, 349–358 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Liang, Q. et al. Zika virus NS4A and NS4B proteins deregulate Akt-mTOR signaling in human fetal neural stem cells to inhibit neurogenesis and induce autophagy. Cell Stem Cell 19, 663–671 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Chavali, P. L. et al. Neurodevelopmental protein Musashi-1 interacts with the Zika genome and promotes viral replication. Science 357, 83–88 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Schnettler, E. et al. Noncoding flavivirus RNA displays RNA interference suppressor activity in insect and Mammalian cells. J. Virol. 86, 13486–13500 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Manokaran, G. et al. Dengue subgenomic RNA binds TRIM25 to inhibit interferon expression for epidemiological fitness. Science 350, 217–221 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Donald, C. L. et al. Full genome sequence and sfRNA interferon antagonist activity of Zika virus from Recife, Brazil. PLOS Negl. Trop. Dis. 10, e0005048 (2016).

    PubMed  PubMed Central  Google Scholar 

  31. Schuessler, A. et al. West Nile virus noncoding subgenomic RNA contributes to viral evasion of the type I interferon-mediated antiviral response. J. Virol. 86, 5708–5718 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Bidet, K., Dadlani, D. & Garcia-Blanco, M. A. G3BP1, G3BP2 and CAPRIN1 are required for translation of interferon stimulated mRNAs and are targeted by a dengue virus non-coding RNA. PLOS Pathog. 10, e1004242 (2014).

    PubMed  PubMed Central  Google Scholar 

  33. Pettersson, J. H. et al. How did Zika virus emerge in the Pacific Islands and Latin America? mBio 7, e01239-16 (2016).

    PubMed  PubMed Central  Google Scholar 

  34. Gubler, D. J., Vasilakis, N. & Musso, D. History and emergence of Zika virus. J. Infect. Dis. 216, S860–S867 (2017).

    PubMed  PubMed Central  Google Scholar 

  35. Dick, G. W., Kitchen, S. F. & Haddow, A. J. Zika virus. I. Isolations and serological specificity. Trans. R. Soc. Trop. Med. Hyg. 46, 509–520 (1952).

    CAS  PubMed  Google Scholar 

  36. Ladner, J. T. et al. Complete genome sequences of five Zika virus isolates. Genome Announc. 4, e00377-16 (2016).

    PubMed  PubMed Central  Google Scholar 

  37. Marchette, N. J., Garcia, R. & Rudnick, A. Isolation of Zika virus from Aedes aegypti mosquitoes in Malaysia. Am. J. Trop. Med. Hyg. 18, 411–415 (1969).

    CAS  PubMed  Google Scholar 

  38. Musso, D. & Gubler, D. J. Zika virus. Clin. Microbiol. Rev. 29, 487–524 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Hancock, W. T., Marfel, M. & Bel, M. Zika virus, French Polynesia, South Pacific, 2013. Emerg. Infect. Dis. 20, 1960 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Ioos, S. et al. Current Zika virus epidemiology and recent epidemics. Med. Mal. Infect. 44, 302–307 (2014).

    CAS  PubMed  Google Scholar 

  41. Cao-Lormeau, V. M. et al. Guillain-Barre syndrome outbreak associated with Zika virus infection in French Polynesia: a case-control study. Lancet 387, 1531–1539 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Oehler, E. et al. Zika virus infection complicated by Guillain-Barre syndrome—case report, French Polynesia, December 2013. Euro Surveill. 19, 20720 (2014).

    PubMed  Google Scholar 

  43. Tognarelli, J. et al. A report on the outbreak of Zika virus on Easter Island, South Pacific, 2014. Arch. Virol. 161, 665–668 (2016).

    CAS  PubMed  Google Scholar 

  44. Zanluca, C. et al. First report of autochthonous transmission of Zika virus in Brazil. Mem. Inst. Oswaldo Cruz 110, 569–572 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Faria, N. R. et al. Zika virus in the Americas: early epidemiological and genetic findings. Science 352, 345–349 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Metsky, H. C. et al. Zika virus evolution and spread in the Americas. Nature 546, 411–415 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Faria, N. R. et al. Establishment and cryptic transmission of Zika virus in Brazil and the Americas. Nature 546, 406–410 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Grubaugh, N. D. et al. Genomic epidemiology reveals multiple introductions of Zika virus into the United States. Nature 546, 401–405 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Ikejezie, J. et al. Zika virus transmission - region of the Americas, May 15, 2015-December 15, 2016. MMWR Morb. Mortal. Wkly Rep. 66, 329–334 (2017).

    PubMed  PubMed Central  Google Scholar 

  50. World Health Organization. Zika Situation Report (WHO, 2017).

  51. Singapore Zika Study, G. Outbreak of Zika virus infection in Singapore: an epidemiological, entomological, virological, and clinical analysis. Lancet Infect. Dis. 17, 813–821 (2017).

    Google Scholar 

  52. Lim, S. K., Lim, J. K. & Yoon, I. K. An update on Zika virus in Asia. Infect. Chemother. 49, 91–100 (2017).

    PubMed  PubMed Central  Google Scholar 

  53. Moi, M. L. et al. Zika virus infection and microcephaly in Vietnam. Lancet Infect. Dis. 17, 805–806 (2017).

    PubMed  Google Scholar 

  54. Wongsurawat, T. et al. Case of microcephaly after congenital infection with Asian lineage Zika virus, Thailand. Emerg. Infect. Dis. 24, 1758–1761 (2018).

    PubMed Central  Google Scholar 

  55. Tsetsarkin, K. A. et al. A full-length infectious cDNA clone of Zika virus from the 2015 epidemic in Brazil as a genetic platform for studies of virus-host interactions and vaccine development. mBio 7, e01114-16 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Wen, D. et al. N-glycosylation of viral E protein is the determinant for vector midgut invasion by flaviviruses. mBio 9, e00046-18 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Schwarz, M. C. et al. Rescue of the 1947 Zika virus prototype strain with a cytomegalovirus promoter-driven cDNA clone. mSphere 1, e00246-16 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Sheridan, M. A. et al. Vulnerability of primitive human placental trophoblast to Zika virus. Proc. Natl Acad. Sci. USA 114, E1587–E1596 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Sheridan, M. A. et al. African and Asian strains of Zika virus differ in their ability to infect and lyse primitive human placental trophoblast. PLOS ONE 13, e0200086 (2018).

    PubMed  PubMed Central  Google Scholar 

  60. Tripathi, S. et al. A novel Zika virus mouse model reveals strain specific differences in virus pathogenesis and host inflammatory immune responses. PLOS Pathog. 13, e1006258 (2017).

    PubMed  PubMed Central  Google Scholar 

  61. Weger-Lucarelli, J. et al. Vector competence of American mosquitoes for three strains of Zika virus. PLOS Negl. Trop. Dis. 10, e0005101 (2016).

    PubMed  PubMed Central  Google Scholar 

  62. Wang, L. et al. From mosquitos to humans: genetic evolution of Zika virus. Cell Host Microbe 19, 561–565 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Heang, V. et al. Zika virus infection, Cambodia, 2010. Emerg. Infect. Dis. 18, 349–351 (2012).

    PubMed  PubMed Central  Google Scholar 

  64. Besnard, M. et al. Congenital cerebral malformations and dysfunction in fetuses and newborns following the 2013 to 2014 Zika virus epidemic in French Polynesia. Euro Surveill. 21, 30181 (2016).

    Google Scholar 

  65. Kim, J. M. et al. A single N-linked glycosylation site in the Japanese encephalitis virus prM protein is critical for cell type-specific prM protein biogenesis, virus particle release, and pathogenicity in mice. J. Virol. 82, 7846–7862 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Miner, J. J. et al. Zika virus infection during pregnancy in mice causes placental damage and fetal demise. Cell 165, 1081–1091 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Nguyen, S. M. et al. Highly efficient maternal-fetal Zika virus transmission in pregnant rhesus macaques. PLOS Pathog. 13, e1006378 (2017).

    PubMed  PubMed Central  Google Scholar 

  68. Martinot, A. J. et al. Fetal neuropathology in Zika virus-infected pregnant female rhesus monkeys. Cell 173, 1111–1122 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Dudley, D. M. et al. Miscarriage and stillbirth following maternal Zika virus infection in nonhuman primates. Nat. Med. 24, 1104–1107 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Liu, J. et al. Flavivirus NS1 protein in infected host sera enhances viral acquisition by mosquitoes. Nat. Microbiol. 1, 16087 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Xia, H. et al. An evolutionary NS1 mutation enhances Zika virus evasion of host interferon induction. Nat. Commun. 9, 414 (2018).

    PubMed  PubMed Central  Google Scholar 

  72. Ye, Q. et al. Genomic characterization and phylogenetic analysis of Zika virus circulating in the Americas. Infect. Genet. Evol. 43, 43–49 (2016).

    CAS  PubMed  Google Scholar 

  73. Zhao, F. et al. Negligible contribution of M2634V substitution to ZIKV pathogenesis in AG6 mice revealed by a bacterial promoter activity reduced infectious clone. Sci. Rep. 8, 10491 (2018).

    PubMed  PubMed Central  Google Scholar 

  74. Delatorre, E., Mir, D. & Bello, G. Tracing the origin of the NS1 A188V substitution responsible for recent enhancement of Zika virus Asian genotype infectivity. Mem. Inst. Oswaldo Cruz 112, 793–795 (2017).

    PubMed  PubMed Central  Google Scholar 

  75. Gu, S. H. et al. Whole-genome sequence analysis of Zika virus, amplified from urine of traveler from the Philippines. Virus Genes 53, 918–921 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Jeong, Y. E. et al. Viral and serological kinetics in Zika virus-infected patients in South Korea. Virol. J. 14, 70 (2017).

    PubMed  PubMed Central  Google Scholar 

  77. Pettersson, J. H. et al. Re-visiting the evolution, dispersal and epidemiology of Zika virus in Asia. Emerg. Microbes Infect. 7, 79 (2018).

    PubMed  PubMed Central  Google Scholar 

  78. Ng, L. C. & Hapuarachchi, H. C. Tracing the path of Chikungunya virus—evolution and adaptation. Infect. Genet. Evol. 10, 876–885 (2010).

    PubMed  Google Scholar 

  79. Tsetsarkin, K. A., Vanlandingham, D. L., McGee, C. E. & Higgs, S. A single mutation in chikungunya virus affects vector specificity and epidemic potential. PLOS Pathog. 3, e201 (2007).

    PubMed  PubMed Central  Google Scholar 

  80. Vazeille, M. et al. Two Chikungunya isolates from the outbreak of La Reunion (Indian Ocean) exhibit different patterns of infection in the mosquito, Aedes albopictus. PLOS ONE 2, e1168 (2007).

    PubMed  PubMed Central  Google Scholar 

  81. Priya, R., Dhanwani, R., Patro, I. K., Rao, P. V. & Parida, M. M. Differential regulation of TLR mediated innate immune response of mouse neuronal cells following infection with novel ECSA genotype of Chikungunya virus with and without E1:A226V mutation. Infect. Genet. Evol. 20, 396–406 (2013).

    CAS  PubMed  Google Scholar 

  82. Brault, A. C. et al. A single positively selected West Nile viral mutation confers increased virogenesis in American crows. Nat. Genet. 39, 1162–1166 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Wang, D. et al. A mutation identified in neonatal microcephaly destabilizes Zika virus NS1 assembly in vitro. Sci. Rep. 7, 42580 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Weaver, S. C. Emergence of epidemic Zika virus transmission and congenital Zika syndrome: are recently evolved traits to blame? mBio 8, e02063-16 (2017).

    PubMed  PubMed Central  Google Scholar 

  85. Goertz, G. P., Abbo, S. R., Fros, J. J. & Pijlman, G. P. Functional RNA during Zika virus infection. Virus Res. 254, 41–53 (2017).

    PubMed  Google Scholar 

  86. Paz, S. & Semenza, J. C. El Nino and climate change—contributing factors in the dispersal of Zika virus in the Americas? Lancet 387, 745 (2016).

    PubMed  Google Scholar 

  87. Kraemer, M. U. et al. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. eLife 4, e08347 (2015).

    PubMed  PubMed Central  Google Scholar 

  88. Ayres, C. F. Identification of Zika virus vectors and implications for control. Lancet Infect. Dis. 16, 278–279 (2016).

    PubMed  Google Scholar 

  89. Shi, W., Li, J., Zhou, H. & Gao, G. F. Pathogen genomic surveillance elucidates the origins, transmission and evolution of emerging viral agents in China. Sci. China Life Sci. 60, 1317–1330 (2017).

    PubMed  PubMed Central  Google Scholar 

  90. Eisen, J. A. & MacCallum, C. J. Genomics of emerging infectious disease: a PLoS collection. PLOS Biol. 7, e1000224 (2009).

    PubMed  PubMed Central  Google Scholar 

  91. Prasad, V. M. et al. Structure of the immature Zika virus at 9 Å resolution. Nat. Struct. Mol. Biol. 24, 184–186 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Sirohi, D. et al. The 3.8 Å resolution cryo-EM structure of Zika virus. Science 352, 467–470 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Patkar, C. G. & Kuhn, R. J. Yellow fever virus NS3 plays an essential role in virus assembly independent of its known enzymatic functions. J. Virol. 82, 3342–3352 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Scaturro, P., Cortese, M., Chatel-Chaix, L., Fischl, W. & Bartenschlager, R. Dengue virus non-structural protein 1 modulates infectious particle production via interaction with the structural proteins. PLOS Pathog. 11, e1005277 (2015).

    PubMed  PubMed Central  Google Scholar 

  95. Kummerer, B. M. & Rice, C. M. Mutations in the yellow fever virus nonstructural protein NS2A selectively block production of infectious particles. J. Virol. 76, 4773–4784 (2002).

    PubMed  PubMed Central  Google Scholar 

  96. Grant, A. et al. Zika virus targets human STAT2 to inhibit type I interferon signaling. Cell Host Microbe 19, 882–890 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Miorin, L., Maestre, A. M., Fernandez-Sesma, A. & Garcia-Sastre, A. Antagonism of type I interferon by flaviviruses. Biochem. Biophys. Res. Commun. 492, 587–596 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Zhang, Z. et al. Crystal structure of unlinked NS2B-NS3 protease from Zika virus. Science 354, 1597–1600 (2016).

    CAS  PubMed  Google Scholar 

  99. Phoo, W. W. et al. Structure of the NS2B-NS3 protease from Zika virus after self-cleavage. Nat. Commun. 7, 13410 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Lei, J. et al. Crystal structure of Zika virus NS2B-NS3 protease in complex with a boronate inhibitor. Science 353, 503–505 (2016).

    CAS  PubMed  Google Scholar 

  101. Tian, H. et al. Structural basis of Zika virus helicase in recognizing its substrates. Protein Cell 7, 562–570 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Jain, R., Coloma, J., Garcia-Sastre, A. & Aggarwal, A. K. Structure of the NS3 helicase from Zika virus. Nat. Struct. Mol. Biol. 23, 752–754 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Benarroch, D. et al. The RNA helicase, nucleotide 5ʹ-triphosphatase, and RNA 5ʹ-triphosphatase activities of Dengue virus protein NS3 are Mg2+-dependent and require a functional Walker B motif in the helicase catalytic core. Virology 328, 208–218 (2004).

    CAS  PubMed  Google Scholar 

  104. Bukrejewska, M., Derewenda, U., Radwanska, M., Engel, D. A. & Derewenda, Z. S. Crystal structures of the methyltransferase and helicase from the ZIKA 1947 MR766 Uganda strain. Acta Crystallogr. D Struct. Biol. 73, 767–774 (2017).

    CAS  PubMed  Google Scholar 

  105. Egloff, M. P., Benarroch, D., Selisko, B., & Romette, J. L. & Canard, B. An RNA cap (nucleoside-2ʹ-O)-methyltransferase in the flavivirus RNA polymerase NS5: crystal structure and functional characterization. EMBO J. 21, 2757–2768 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Issur, M. et al. The flavivirus NS5 protein is a true RNA guanylyltransferase that catalyzes a two-step reaction to form the RNA cap structure. RNA 15, 2340–2350 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Godoy, A. S. et al. Crystal structure of Zika virus NS5 RNA-dependent RNA polymerase. Nat. Commun. 8, 14764 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Yap, T. L. et al. Crystal structure of the dengue virus RNA-dependent RNA polymerase catalytic domain at 1.85-angstrom resolution. J. Virol. 81, 4753–4765 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Gillespie, L. K., Hoenen, A., Morgan, G. & Mackenzie, J. M. The endoplasmic reticulum provides the membrane platform for biogenesis of the flavivirus replication complex. J. Virol. 84, 10438–10447 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Klema, V. J., Padmanabhan, R. & Choi, K. H. Flaviviral replication complex: coordination between RNA synthesis and 5ʹ-RNA capping. Viruses 7, 4640–4656 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Filomatori, C. V. et al. A 5’ RNA element promotes dengue virus RNA synthesis on a circular genome. Genes Dev. 20, 2238–2249 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Liu, Z. Y. et al. Viral RNA switch mediates the dynamic control of flavivirus replicase recruitment by genome cyclization. eLife 5, e17636 (2016).

    PubMed  PubMed Central  Google Scholar 

  113. Friedrich, S. et al. The host factor AUF1 p45 supports flavivirus propagation by triggering the RNA switch required for viral genome cyclization. J. Virol. 92, e01647-17 (2017).

    Google Scholar 

  114. Clyde, K. & Harris, E. RNA secondary structure in the coding region of dengue virus type 2 directs translation start codon selection and is required for viral replication. J. Virol. 80, 2170–2182 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Brinton, M. A. Replication cycle and molecular biology of the West Nile virus. Viruses 6, 13–53 (2013).

    PubMed  PubMed Central  Google Scholar 

  116. Fleming, A. M., Ding, Y., Alenko, A. & Burrows, C. J. Zika virus genomic RNA possesses conserved G-quadruplexes characteristic of the flaviviridae family. ACS Infect. Dis. 2, 674–681 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Alvarez, D. E., De Lella Ezcurra, A. L., Fucito, S. & Gamarnik, A. V. Role of RNA structures present at the 3’UTR of dengue virus on translation, RNA synthesis, and viral replication. Virology 339, 200–212 (2005).

    CAS  PubMed  Google Scholar 

  118. Funk, A. et al. RNA structures required for production of subgenomic flavivirus RNA. J. Virol. 84, 11407–11417 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Chapman, E. G., Moon, S. L., Wilusz, J. & Kieft, J. S. RNA structures that resist degradation by Xrn1 produce a pathogenic Dengue virus RNA. eLife 3, e01892 (2014).

    PubMed  PubMed Central  Google Scholar 

  120. Chapman, E. G. et al. The structural basis of pathogenic subgenomic flavivirus RNA (sfRNA) production. Science 344, 307–310 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Akiyama, B. M. et al. Zika virus produces noncoding RNAs using a multi-pseudoknot structure that confounds a cellular exonuclease. Science 354, 1148–1152 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Silva, P. A., Pereira, C. F., Dalebout, T. J., Spaan, W. J. & Bredenbeek, P. J. An RNA pseudoknot is required for production of yellow fever virus subgenomic RNA by the host nuclease XRN1. J. Virol. 84, 11395–11406 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Alvarez, D. E., Lodeiro, M. F., Luduena, S. J., Pietrasanta, L. I. & Gamarnik, A. V. Long-range RNA-RNA interactions circularize the dengue virus genome. J. Virol. 79, 6631–6643 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Friebe, P., Shi, P. Y. & Harris, E. The 5ʹ and 3’ downstream AUG region elements are required for mosquito-borne flavivirus RNA replication. J. Virol. 85, 1900–1905 (2011).

    CAS  PubMed  Google Scholar 

  125. Khromykh, A. A., Meka, H., Guyatt, K. J. & Westaway, E. G. Essential role of cyclization sequences in flavivirus RNA replication. J. Virol. 75, 6719–6728 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Nicholson, B. L. & White, K. A. Functional long-range RNA-RNA interactions in positive-strand RNA viruses. Nat. Rev. Microbiol. 12, 493–504 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012).

Download references

Acknowledgements

The authors thank E. C. Holmes (University of Sydney) for insightful discussion, X. Wang (Chinese Academy of Science) for assistance with figure preparation of virion models and M. J. Carr (University College Dublin) for proofreading the manuscript before submission. The authors apologize to all colleagues whose work they could not cite owing to space limitations. Research in the authors’ laboratory was financially supported by the National Key Research and Development Project of China (No.2016YFD0500304, 2018ZX09711003, 2017FYC1200800 and 2017ZX10104001-006), the National Natural Science Foundation of China (Nos.31770190, U1702282, 81661148054, 81621005 and 81522025), the Newton Advanced Fellowship from the UK Academy of Medical Sciences to C.-F.Q. and the Taishan Scholar programme of Shandong province (ts201511056) to W.-F.S.

Author information

Authors and Affiliations

Authors

Contributions

C.-F.Q. researched data for the article. All authors made substantial contributions to discussions of the content and wrote the article. C.-F.Q reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Wei-Feng Shi or Cheng-Feng Qin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, ZY., Shi, WF. & Qin, CF. The evolution of Zika virus from Asia to the Americas. Nat Rev Microbiol 17, 131–139 (2019). https://doi.org/10.1038/s41579-018-0134-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41579-018-0134-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing