Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Multidrug efflux pumps: structure, function and regulation

An Author Correction to this article was published on 18 July 2018

This article has been updated

Abstract

Infections arising from multidrug-resistant pathogenic bacteria are spreading rapidly throughout the world and threaten to become untreatable. The origins of resistance are numerous and complex, but one underlying factor is the capacity of bacteria to rapidly export drugs through the intrinsic activity of efflux pumps. In this Review, we describe recent advances that have increased our understanding of the structures and molecular mechanisms of multidrug efflux pumps in bacteria. Clinical and laboratory data indicate that efflux pumps function not only in the drug extrusion process but also in virulence and the adaptive responses that contribute to antimicrobial resistance during infection. The emerging picture of the structure, function and regulation of efflux pumps suggests opportunities for countering their activities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of representative structures of multidrug transporters and tripartite assemblies.
Fig. 2: Transport mechanisms of efflux pumps.
Fig. 3: Transport mechanism and drug pathways for RND transporters.
Fig. 4: Drug and inhibitor-binding sites of RND, MFS and MATE transporters.
Fig. 5: Regulation of efflux pumps.

Similar content being viewed by others

Change history

  • 18 July 2018

    In the version of this Review originally published, the author contributions of co-author Arthur Neuberger were incorrectly listed. The author contributions should have appeared as ‘D.D., X.W.-K., A.N., H.W.v.V., K.M.P., L.J.V.P. and B.F.L. researched data for the article, made substantial contributions to discussions of the content, wrote the article, and reviewed and edited the manuscript before submission’. This has now been corrected in all versions of the Review. The authors apologize to readers for this error.

References

  1. Alcalde-Rico, M., Hernando-Amado, S., Blanco, P. & Martínez, J. L. Multidrug efflux pumps at the crossroad between antibiotic resistance and bacterial virulence. Front. Microbiol. 7, 1483 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Blair, J. M. et al. AcrB drug-binding pocket substitution confers clinically relevant resistance and altered substrate specificity. Proc. Natl Acad. Sci. USA 112, 3511–3516 (2015).

    Article  PubMed  CAS  Google Scholar 

  3. Bergmiller, T. et al. Biased partitioning of the multidrug efflux pump AcrAB-TolC underlies long-lived phenotypic heterogeneity. Science 356, 311–315 (2017).

    Article  PubMed  CAS  Google Scholar 

  4. Li, X.-Z., Plésiat, P. & Nikaido, H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin. Microbiol. Rev. 28, 337–418 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Nichols, R. J. et al. Phenotypic landscape of a bacterial cell. Cell 144, 143–156 (2011).

    Article  PubMed  CAS  Google Scholar 

  6. Lee, A. et al. Interplay between efflux pumps may provide either additive or multiplicative effects on drug resistance. J. Bacteriol. 182, 3142–3150 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Tal, N. & Schuldiner, S. A coordinated network of transporters with overlapping specificities provides a robust survival strategy. Proc. Natl Acad. Sci. USA 106, 9051–9056 (2009).

    Article  PubMed  CAS  Google Scholar 

  8. Hassan, K. A. et al. Transcriptomic and biochemical analyses identify a family of chlorhexidine efflux proteins. Proc. Natl Acad. Sci. USA 110, 20254–20259 (2013).

    Article  PubMed  CAS  Google Scholar 

  9. Hassan, K. A., Liu, Q., Henderson, P. J. & Paulsen, I. T. Homologs of the Acinetobacter baumannii AceI transporter represent a new family of bacterial multidrug efflux systems. mBio 6, e01982–14 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Fraimow, H. S. & Tsigrelis, C. Antimicrobial resistance in the intensive care unit: mechanisms, epidemiology, and management of specific resistant pathogens. Crit. Care Clin. 27, 163–205 (2011).

    Article  PubMed  CAS  Google Scholar 

  11. Viale, P., Giannella, M., Tedeschi, S. & Lewis, R. Treatment of MDR-Gram negative infections in the 21st century: a never ending threat for clinicians. Curr. Opin. Pharmacol. 24, 30–37 (2015).

    Article  PubMed  CAS  Google Scholar 

  12. Pu, Y. et al. Enhanced efflux activity facilitates drug tolerance in dormant bacterial cells. Mol. Cell 62, 284–294 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Li, N. et al. Structure of a pancreatic ATP-sensitive potassium channel. Cell 168, 101–110.e10 (2017).

    Article  PubMed  CAS  Google Scholar 

  14. Choudhury, H. G. et al. Structure of an antibacterial peptide ATP-binding cassette transporter in a novel outward occluded state. Proc. Natl Acad. Sci. USA 111, 9145–9150 (2014).

    Article  PubMed  CAS  Google Scholar 

  15. Dawson, R. J. & Locher, K. P. Structure of a bacterial multidrug ABC transporter. Nature 443, 180 (2006).

    Article  PubMed  CAS  Google Scholar 

  16. Jin, M. S., Oldham, M. L., Zhang, Q. & Chen, J. Crystal structure of the multidrug transporter P-glycoprotein from Caenorhabditis elegans. Nature 490, 566 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Johnson, Z. L. & Chen, J. Structural basis of substrate recognition by the multidrug resistance protein MRP1. Cell 168, 1075–1085.e9 (2017).

    Article  PubMed  CAS  Google Scholar 

  18. Kodan, A. et al. Structural basis for gating mechanisms of a eukaryotic P-glycoprotein homolog. Proc. Natl Acad. Sci. USA 111, 4049–4054 (2014).

    Article  PubMed  CAS  Google Scholar 

  19. Verhalen, B. et al. Energy transduction and alternating access of the mammalian ABC transporter P-glycoprotein. Nature 543, 738–741 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Hürlimann, L. M., Hohl, M. & Seeger, M. A. Split tasks of asymmetric nucleotide-binding sites in the heterodimeric ABC exporter EfrCD. FEBS J. 284, 1672–1687 (2017).

    Article  PubMed  CAS  Google Scholar 

  21. Mishra, S. et al. Conformational dynamics of the nucleotide binding domains and the power stroke of a heterodimeric ABC transporter. eLife 3, e02740 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Khare, D., Oldham, M. L., Orelle, C., Davidson, A. L. & Chen, J. Alternating access in maltose transporter mediated by rigid-body rotations. Mol. Cell 33, 528–536 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Woo, J.-S., Zeltina, A., Goetz, B. A. & Locher, K. P. X-Ray structure of the Yersinia pestis heme transporter HmuUV. Nat. Struct. Mol. Biol. 19, 1310 (2012).

    Article  PubMed  CAS  Google Scholar 

  24. Korkhov, V. M., Mireku, S. A. & Locher, K. P. Structure of AMP-PNP-bound vitamin B sub 12 transporter BtuCD-F. Nature 490, 367 (2012).

    Article  PubMed  CAS  Google Scholar 

  25. Mi, W. et al. Structural basis of MsbA-mediated lipopolysaccharide transport. Nature 549, 233–237 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Bountra, K. et al. Structural basis for antibacterial peptide self-immunity by the bacterial ABC transporter McjD. EMBO J. 36, 3062–3079 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Venter, H., Shilling, R. A., Velamakanni, S., Balakrishnan, L. & van Veen, H. W. An ABC transporter with a secondary-active multidrug translocator domain. Nature 426, 866–870 (2003).

    Article  PubMed  CAS  Google Scholar 

  28. Singh, H. et al. ATP-dependent substrate transport by the ABC transporter MsbA is proton-coupled. Nat. Commun. 7, 12387 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. van Veen, H. W. in ABC Transporters — 40 Years on (ed. George, A. M.) 37–51 (Springer, 2016).

  30. Fitzpatrick, A. W. et al. Structure of the MacAB-TolC ABC-type tripartite multidrug efflux pump. Nat. Microbiol. 2, 17070 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Lin, H. T. et al. MacB ABC transporter is a dimer whose ATPase activity and macrolide-binding capacity are regulated by the membrane fusion protein MacA. J. Biol. Chem. 284, 1145–1154 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Okada, U. et al. Crystal structure of tripartite-type ABC transporter MacB from Acinetobacter baumannii. Nat. Commun. 8, 1336 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Crow, A., Greene, N. P., Kaplan, E. & Koronakis, V. Structure and mechanotransmission mechanism of the MacB ABC transporter superfamily. Proc. Natl Acad. Sci. USA 114, 12572–12577 (2017).

    Article  PubMed  CAS  Google Scholar 

  34. Yamanaka, H., Kobayashi, H., Takahashi, E. & Okamoto, K. MacAB is involved in the secretion of Escherichia coli heat-stable enterotoxin II. J. Bacteriol. 190, 7693–7698 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Locher, K. P. Mechanistic diversity in ATP-binding cassette (ABC) transporters. Nat. Struct. Mol. Biol. 23, 487–493 (2016).

    Article  PubMed  CAS  Google Scholar 

  36. Perez, C. et al. Structure and mechanism of an active lipid-linked oligosaccharide flippase. Nature 524, 433 (2015).

    Article  PubMed  CAS  Google Scholar 

  37. Radestock, S. & Forrest, L. R. The alternating-access mechanism of MFS transporters arises from inverted-topology repeats. J. Mol. Biol. 407, 698–715 (2011).

    Article  PubMed  CAS  Google Scholar 

  38. Kaback, H. R. A chemiosmotic mechanism of symport. Proc. Natl Acad. Sci. USA 112, 1259–1264 (2015).

    Article  PubMed  CAS  Google Scholar 

  39. Yin, Y., He, X., Szewczyk, P., Nguyen, T. & Chang, G. Structure of the multidrug transporter EmrD from Escherichia coli. Science 312, 741–744 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Heng, J. et al. Substrate-bound structure of the E. coli multidrug resistance transporter MdfA. Cell Res. 25, 1060 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Jiang, D. et al. Structure of the YajR transporter suggests a transport mechanism based on the conserved motif A. Proc. Natl Acad. Sci. USA 110, 14664–14669 (2013).

    Article  PubMed  CAS  Google Scholar 

  42. Wisedchaisri, G., Park, M.-S., Iadanza, M. G., Zheng, H. & Gonen, T. Proton-coupled sugar transport in the prototypical major facilitator superfamily protein XylE. Nat. Commun. 5, 4521 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Quistgaard, E. M., Löw, C., Moberg, P., Trésaugues, L. & Nordlund, P. Structural basis for substrate transport in the GLUT-homology family of monosaccharide transporters. Nat. Struct. Mol. Biol. 20, 766 (2013).

    Article  PubMed  CAS  Google Scholar 

  44. Zhao, Y. et al. Crystal structure of the E. coli peptide transporter YbgH. Structure 22, 1152–1160 (2014).

    Article  PubMed  CAS  Google Scholar 

  45. Fluman, N., Ryan, C. M., Whitelegge, J. P. & Bibi, E. Dissection of mechanistic principles of a secondary multidrug efflux protein. Mol. Cell 47, 777–787 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Masureel, M. et al. Protonation drives the conformational switch in the multidrug transporter LmrP. Nat. Chem. Biol. 10, 149–155 (2014).

    Article  PubMed  CAS  Google Scholar 

  47. Norimatsu, Y., Hasegawa, K., Shimizu, N. & Toyoshima, C. Protein–phospholipid interplay revealed with crystals of a calcium pump. Nature 545, 193 (2017).

    Article  PubMed  CAS  Google Scholar 

  48. Ryan, R. M. & Vandenberg, R. J. Elevating the alternating-access model. Nat. Struct. Mol. Biol. 23, 187 (2016).

    Article  PubMed  CAS  Google Scholar 

  49. Martens, C. et al. Lipids modulate the conformational dynamics of a secondary multidrug transporter. Nat. Struct. Mol. Biol. 23, 744 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Fluman, N., Adler, J., Rotenberg, S. A., Brown, M. H. & Bibi, E. Export of a single drug molecule in two transport cycles by a multidrug efflux pump. Nat. Commun. 5, 4615 (2014).

    Article  PubMed  CAS  Google Scholar 

  51. Schaedler, T. A. & van Veen, H. W. A flexible cation binding site in the multidrug major facilitator superfamily transporter LmrP is associated with variable proton coupling. FASEB J. 24, 3653–3661 (2010).

    Article  PubMed  CAS  Google Scholar 

  52. Sun, J. et al. Crystal structure of the plant dual-affinity nitrate transporter NRT1.1. Nature 507, 73 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Federici, L. et al. The crystal structure of the outer membrane protein VceC from the bacterial pathogen Vibrio cholerae at 1.8 Å resolution. J. Biol. Chem. 280, 15307–15314 (2005).

    Article  PubMed  CAS  Google Scholar 

  54. Mousa, J. J. et al. MATE transport of the E. coli-derived genotoxin colibactin. Nat. Microbiol. 1, 15009 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. He, X. et al. Structure of a cation-bound multidrug and toxic compound extrusion transporter. Nature 467, 991 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Radchenko, M., Symersky, J., Nie, R. & Lu, M. Structural basis for the blockade of MATE multidrug efflux pumps. Nat. Commun. 6, 7995 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Tanaka, Y. et al. Structural basis for the drug extrusion mechanism by a MATE multidrug transporter. Nature 496, 247 (2013).

    Article  PubMed  CAS  Google Scholar 

  58. Ranaweera, I. et al. Structural comparison of bacterial multidrug efflux pumps of the major facilitator superfamily. Trends Cell. Mol. Biol. 10, 131 (2015).

    PubMed  PubMed Central  Google Scholar 

  59. Radchenko, M., Nie, R. & Lu, M. Disulfide cross-linking of a multidrug and toxic compound extrusion transporter impacts multidrug efflux. J. Biol. Chem. 291, 9818–9826 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Lu, M. et al. Structures of a Na+-coupled, substrate-bound MATE multidrug transporter. Proc. Natl Acad. Sci. USA 110, 2099–2104 (2013).

    Article  PubMed  CAS  Google Scholar 

  61. Jin, Y., Nair, A. & van Veen, H. W. Multidrug transport protein NorM from Vibrio cholerae simultaneously couples to sodium-and proton-motive force. J. Biol. Chem. 289, 14624–14632 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Steed, P. R., Stein, R. A., Mishra, S., Goodman, M. C. & Mchaourab, H. S. Na+–substrate coupling in the multidrug antiporter NorM probed with a spin-labeled substrate. Biochemistry 52, 5790–5799 (2013).

    Article  PubMed  CAS  Google Scholar 

  63. Lu, M., Radchenko, M., Symersky, J., Nie, R. & Guo, Y. Structural insights into H+-coupled multidrug extrusion by a MATE transporter. Nat. Struct. Mol. Biol. 20, 1310 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Kuk, A. C., Mashalidis, E. H. & Lee, S.-Y. Crystal structure of the MOP flippase MurJ in an inward-facing conformation. Nat. Struct. Mol. Biol. 24, 171 (2017).

    Article  PubMed  CAS  Google Scholar 

  65. Bolla, J. R. et al. Crystal structure of the Neisseria gonorrhoeae MtrD inner membrane multidrug efflux pump. PLoS ONE 9, e97903 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Eicher, T. et al. Transport of drugs by the multidrug transporter AcrB involves an access and a deep binding pocket that are separated by a switch-loop. Proc. Natl Acad. Sci. USA 109, 5687–5692 (2012).

    Article  PubMed  CAS  Google Scholar 

  67. Murakami, S., Nakashima, R., Yamashita, E. & Yamaguchi, A. Crystal structure of bacterial multidrug efflux transporter AcrB. Nature 419, 587–593 (2002).

    Article  PubMed  CAS  Google Scholar 

  68. Nakashima, R., Sakurai, K., Yamasaki, S., Nishino, K. & Yamaguchi, A. Structures of the multidrug exporter AcrB reveal a proximal multisite drug-binding pocket. Nature 480, 565–569 (2011).

    Article  PubMed  CAS  Google Scholar 

  69. Oswald, C., Tam, H.-K. & Pos, K. M. Transport of lipophilic carboxylates is mediated by transmembrane helix 2 in multidrug transporter AcrB. Nat. Commun. 7, 13819 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Su, C.-C. et al. Structures and transport dynamics of a Campylobacter jejuni multidrug efflux pump. Nat. Commun. 8, 171 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Gong, X. et al. Structural insights into the Niemann-Pick C1 (NPC1)-mediated cholesterol transfer and Ebola infection. Cell 165, 1467–1478 (2016).

    Article  PubMed  CAS  Google Scholar 

  72. Tsukazaki, T. et al. Structure and function of a membrane component SecDF that enhances protein export. Nature 474, 235 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Kumar, N. et al. Crystal structures of the Burkholderia multivorans hopanoid transporter HpnN. Proc. Natl Acad. Sci. USA 114, 6557–6562 (2017).

    Article  PubMed  CAS  Google Scholar 

  74. Murakami, S., Nakashima, R., Yamashita, E., Matsumoto, T. & Yamaguchi, A. Crystal structures of a multidrug transporter reveal a functionally rotating mechanism. Nature 443, 173–179 (2006).

    Article  PubMed  CAS  Google Scholar 

  75. Seeger, M. A., von Ballmoos, C., Verrey, F. & Pos, K. M. Crucial role of Asp408 in the proton translocation pathway of multidrug transporter AcrB: evidence from site-directed mutagenesis and carbodiimide labeling. Biochemistry 48, 5801–5812 (2009).

    Article  PubMed  CAS  Google Scholar 

  76. Eicher, T. et al. Coupling of remote alternating-access transport mechanisms for protons and substrates in the multidrug efflux pump AcrB. elife 3, e03145 (2014).

    Article  PubMed Central  CAS  Google Scholar 

  77. Seeger, M. A. et al. Structural asymmetry of AcrB trimer suggests a peristaltic pump mechanism. Science 313, 1295–1298 (2006).

    Article  PubMed  CAS  Google Scholar 

  78. Kim, H.-S. & Nikaido, H. Different functions of MdtB and MdtC subunits in the heterotrimeric efflux transporter MdtB2C complex of Escherichia coli. Biochemistry 51, 4188–4197 (2012).

    Article  PubMed  CAS  Google Scholar 

  79. Sjuts, H. et al. Molecular basis for inhibition of AcrB multidrug efflux pump by novel and powerful pyranopyridine derivatives. Proc. Natl Acad. Sci. USA 113, 3509–3514 (2016).

    Article  PubMed  CAS  Google Scholar 

  80. Wang, Z. et al. An allosteric transport mechanism for the AcrAB-TolC multidrug efflux pump. eLife 6, e24905 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Nakashima, R. et al. Structural basis for the inhibition of bacterial multidrug exporters. Nature 500, 102 (2013).

    Article  PubMed  CAS  Google Scholar 

  82. Hung, L.-W. et al. Crystal structure of AcrB complexed with linezolid at 3.5 Å resolution. J. Struct. Funct. Genomics 14, 71–75 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Cha, H.-J., Müller, R. T. & Pos, K. M. Switch-loop flexibility affects transport of large drugs by the promiscuous AcrB multidrug efflux transporter. Antimicrob. Agents Chemother. 58, 4767–4772 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Yamaguchi, A., Nakashima, R. & Sakurai, K. Structural basis of RND-type multidrug exporters. Front. Microbiol. 6, 327 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Kinana, A. D., Vargiu, A. V. & Nikaido, H. Some ligands enhance the efflux of other ligands by the Escherichia coli multidrug pump AcrB. Biochemistry 52, 8342–8351 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Vargiu, A. V. et al. Water-mediated interactions enable smooth substrate transport in a bacterial efflux pump. Biochim. Biophys. Acta 1862, 836–845 (2018).

    Article  PubMed  CAS  Google Scholar 

  87. Sennhauser, G., Amstutz, P., Briand, C., Storchenegger, O. & Grütter, M. G. Drug export pathway of multidrug exporter AcrB revealed by DARPin inhibitors. PLoS Biol. 5, e7 (2006).

    Article  PubMed Central  CAS  Google Scholar 

  88. Pos, K. M. Drug transport mechanism of the AcrB efflux pump. Biochim. Biophys. Acta 1794, 782–793 (2009).

    Article  PubMed  CAS  Google Scholar 

  89. Ababou, A. New insights into the structural and functional involvement of the gate loop in AcrB export activity. Biochim. Biophys. Acta 1866, 242–253 (2018).

    Article  PubMed  CAS  Google Scholar 

  90. Zwama, M. et al. Multiple entry pathways within the efflux transporter AcrB contribute to multidrug recognition. Nat. Commun. 9, 124 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Ramaswamy, V. K., Vargiu, A. V., Malloci, G., Dreier, J. & Ruggerone, P. Molecular rationale behind the differential substrate specificity of bacterial RND multi-drug transporters. Sci. Rep. 7, 8075 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Schumacher, M. A., Miller, M. C. & Brennan, R. G. Structural mechanism of the simultaneous binding of two drugs to a multidrug-binding protein. EMBO J. 23, 2923–2930 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Nikaido, H., Basina, M., Nguyen, V. & Rosenberg, E. Y. Multidrug efflux pump AcrAB of Salmonella typhimurium excretes only those β-lactam antibiotics containing lipophilic side chains. J. Bacteriol. 180, 4686–4692 (1998).

    PubMed  PubMed Central  CAS  Google Scholar 

  94. Neyfakh, A. A. Mystery of multidrug transporters: the answer can be simple. Mol. Microbiol. 44, 1123–1130 (2002).

    Article  PubMed  CAS  Google Scholar 

  95. Bay, D. C., Rommens, K. L. & Turner, R. J. Small multidrug resistance proteins: a multidrug transporter family that continues to grow. Biochim. Biophys. Acta 1778, 1814–1838 (2008).

    Article  PubMed  CAS  Google Scholar 

  96. Fleishman, S. J. et al. Quasi-symmetry in the cryo-EM structure of EmrE provides the key to modeling its transmembrane domain. J. Mol. Biol. 364, 54–67 (2006).

    Article  PubMed  CAS  Google Scholar 

  97. Chen, Y.-J. et al. X-ray structure of EmrE supports dual topology model. Proc. Natl Acad. Sci. USA 104, 18999–19004 (2007).

    Article  PubMed  CAS  Google Scholar 

  98. Morrison, E. A. et al. Antiparallel EmrE exports drugs by exchanging between asymmetric structures. Nature 481, 45 (2012).

    Article  CAS  Google Scholar 

  99. Fluman, N., Tobiasson, V. & von Heijne, G. Stable membrane orientations of small dual-topology membrane proteins. Proc. Natl Acad. Sci. USA 114, 7987–7992 (2017).

    Article  PubMed  CAS  Google Scholar 

  100. Woodall, N. B., Yin, Y. & Bowie, J. U. Dual-topology insertion of a dual-topology membrane protein. Nat. Commun. 6, 8099 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Dastvan, R., Fischer, A. W., Mishra, S., Meiler, J. & Mchaourab, H. S. Protonation-dependent conformational dynamics of the multidrug transporter EmrE. Proc. Natl Acad. Sci. USA 113, 1220–1225 (2016).

    Article  PubMed  CAS  Google Scholar 

  102. Gayen, A., Leninger, M. & Traaseth, N. J. Protonation of a glutamate residue modulates the dynamics of the drug transporter EmrE. Nat. Chem. Biol. 12, 141 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Lytvynenko, I., Brill, S., Oswald, C. & Pos, K. M. Molecular basis of polyspecificity of the small multidrug resistance efflux pump AbeS from Acinetobacter baumannii. J. Mol. Biol. 428, 644–657 (2016).

    Article  PubMed  CAS  Google Scholar 

  104. Brill, S., Sade-Falk, O., Elbaz-Alon, Y. & Schuldiner, S. Specificity determinants in small multidrug transporters. J. Mol. Biol. 427, 468–477 (2015).

    Article  PubMed  CAS  Google Scholar 

  105. Blair, J. M., Webber, M. A., Baylay, A. J., Ogbolu, D. O. & Piddock, L. J. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 13, 42 (2015).

    Article  PubMed  CAS  Google Scholar 

  106. Koteva, K. et al. A vancomycin photoprobe identifies the histidine kinase VanSsc as a vancomycin receptor. Nat. Chem. Biol. 6, 327–329 (2010).

    Article  PubMed  CAS  Google Scholar 

  107. Fritz, G. et al. A new way of sensing: need-based activation of antibiotic resistance by a flux-sensing mechanism. mBio 6, e00975 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Piepenbreier, H., Fritz, G. & Gebhard, S. Transporters as information processors in bacterial signalling pathways. Mol. Microbiol. 104, 1–15 (2017).

    Article  PubMed  CAS  Google Scholar 

  109. Gushchin, I. et al. Mechanism of transmembrane signaling by sensor histidine kinases. Science 356, eaah6345 (2017).

    Article  PubMed  CAS  Google Scholar 

  110. Zschiedrich, C. P., Keidel, V. & Szurmant, H. Molecular mechanisms of two-component signal transduction. J. Mol. Biol. 428, 3752–3775 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Poole, K. et al. Potentiation of aminoglycoside activity in Pseudomonas aeruginosa by targeting the AmgRS envelope stress-responsive two-component system. Antimicrob. Agents Chemother. 60, 3509–3518 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Sun, J.-R. et al. Single amino acid substitution Gly186Val in AdeS restores tigecycline susceptibility of Acinetobacter baumannii. J. Antimicrob. Chemother. 71, 1488–1492 (2016).

    Article  PubMed  CAS  Google Scholar 

  113. Marchand, I., Damier-Piolle, L., Courvalin, P. & Lambert, T. Expression of the RND-type efflux pump AdeABC in Acinetobacter baumannii is regulated by the AdeRS two-component system. Antimicrob. Agents Chemother. 48, 3298–3304 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Chang, T.-Y. et al. AdeR protein regulates adeABC expression by binding to a direct-repeat motif in the intercistronic spacer. Microbiol. Res. 183, 60–67 (2016).

    Article  PubMed  CAS  Google Scholar 

  115. Nowak, J., Schneiders, T., Seifert, H. & Higgins, P. G. The Asp20-to-Asn substitution in the response regulator AdeR leads to enhanced efflux activity of AdeB in Acinetobacter baumannii. Antimicrob. Agents Chemother. 60, 1085–1090 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Richmond, G. E. et al. The Acinetobacter baumannii two-component system AdeRS regulates genes required for multidrug efflux, biofilm formation, and virulence in a strain-specific manner. mBio 7, e00430–16 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  117. Nishino, K., Nikaido, E. & Yamaguchi, A. Regulation of multidrug efflux systems involved in multidrug and metal resistance of Salmonella enterica serovar Typhimurium. J. Bacteriol. 189, 9066–9075 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Nishino, K. & Yamaguchi, A. Overexpression of the response RegulatorevgA of the two-component signal transduction system modulates multidrug resistance conferred by multidrug resistance transporters. J. Bacteriol. 183, 1455–1458 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Casino, P., Rubio, V. & Marina, A. Structural insight into partner specificity and phosphoryl transfer in two-component signal transduction. Cell 139, 325–336 (2009).

    Article  PubMed  CAS  Google Scholar 

  120. Chen, H. et al. The Pseudomonas aeruginosa multidrug efflux regulator MexR uses an oxidation-sensing mechanism. Proc. Natl Acad. Sci. USA 105, 13586–13591 (2008).

    Article  PubMed  CAS  Google Scholar 

  121. Li, M. et al. Crystal structure of the transcriptional regulator AcrR from Escherichia coli. J. Mol. Biol. 374, 591–603 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Wilke, M. S. et al. The crystal structure of MexR from Pseudomonas aeruginosa in complex with its antirepressor ArmR. Proc. Natl Acad. Sci. USA 105, 14832–14837 (2008).

    Article  PubMed  CAS  Google Scholar 

  123. Yamada, J. et al. Impact of the RNA chaperone Hfq on multidrug resistance in Escherichia coli. J. Antimicrob. Chemother. 65, 853–858 (2010).

    Article  PubMed  CAS  Google Scholar 

  124. Vidyaprakash, E., Abrams, A. J., Shafer, W. M. & Trees, D. L. Whole genome sequencing of a large panel of contemporary Neisseria gonorrhoeae clinical isolates indicates that a wild-type mtrA gene is common: implications for inducible antimicrobial resistance. Antimicrob. Agents Chemother. 61, e00262–17 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Sharma, P. et al. The multiple antibiotic resistance operon of enteric bacteria controls DNA repair and outer membrane integrity. Nat. Commun. 8, 1444 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Dersch, P., Khan, M. A., Mühlen, S. & Görke, B. Roles of regulatory RNAs for antibiotic resistance in bacteria and their potential value as novel drug targets. Front. Microbiol. 8, 803 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Lalaouna, D., Eyraud, A., Chabelskaya, S., Felden, B. & Masse, E. Regulatory RNAs involved in bacterial antibiotic resistance. PLoS Pathog. 10, e1004299 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Dar, D. & Sorek, R. Regulation of antibiotic-resistance by non-coding RNAs in bacteria. Curr. Opin. Microbiol. 36, 111–117 (2017).

    Article  PubMed  CAS  Google Scholar 

  129. Parker, A. & Gottesman, S. Small RNA regulation of TolC, the outer membrane component of bacterial multidrug transporters. J. Bacteriol. 198, 1101–1113 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Nishino, K., Yamasaki, S., Hayashi-Nishino, M. & Yamaguchi, A. Effect of overexpression of small non-coding DsrA RNA on multidrug efflux in Escherichia coli. J. Antimicrob. Chemother. 66, 291–296 (2010).

    Article  PubMed  CAS  Google Scholar 

  131. Jackson, L. A., Pan, J.-C., Day, M. W. & Dyer, D. W. Control of RNA stability by NrrF, an iron-regulated small RNA in Neisseria gonorrhoeae. J. Bacteriol. 195, 5166–5173 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Göpel, Y. & Görke, B. Rewiring two-component signal transduction with small RNAs. Curr. Opin. Microbiol. 15, 132–139 (2012).

    Article  PubMed  CAS  Google Scholar 

  133. Storz, G., Wolf, Y. I. & Ramamurthi, K. S. Small proteins can no longer be ignored. Annu. Rev. Biochem. 83, 753–777 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Hobbs, E. C., Yin, X., Paul, B. J., Astarita, J. L. & Storz, G. Conserved small protein associates with the multidrug efflux pump AcrB and differentially affects antibiotic resistance. Proc. Natl Acad. Sci. USA 109, 16696–16701 (2012).

    Article  PubMed  CAS  Google Scholar 

  135. Du, D. et al. Structure of the AcrAB-TolC multidrug efflux pump. Nature 509, 512–515 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Young, B. C. et al. Severe infections emerge from commensal bacteria by adaptive evolution. eLife 6, e30637 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Balaban, N. Q., Merrin, J., Chait, R., Kowalik, L. & Leibler, S. Bacterial persistence as a phenotypic switch. Science 305, 1622–1625 (2004).

    Article  PubMed  CAS  Google Scholar 

  138. Maisonneuve, E., Castro-Camargo, M. & Gerdes, K.(p)ppGpp controls bacterial persistence by stochastic induction of toxin-antitoxin activity. Cell 154, 1140–1150 (2013).

    Article  PubMed  CAS  Google Scholar 

  139. Yang, S. et al. Antibiotic regimen based on population analysis of residing persister cells eradicates Staphylococcus epidermidis biofilms. Sci. Rep. 5, 18578 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Everett, M. J., Jin, Y. F., Ricci, V. & Piddock, L. Contributions of individual mechanisms to fluoroquinolone resistance in 36 Escherichia coli strains isolated from humans and animals. Antimicrob. Agents Chemother. 40, 2380–2386 (1996).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Kao, C.-Y. et al. Molecular characterization of antimicrobial susceptibility of Salmonella isolates: first identification of a plasmid carrying qnrD or oqxAB in Taiwan. J. Microbiol. Immunol. Infect. 50, 214–223 (2017).

    Article  PubMed  CAS  Google Scholar 

  142. Machado, D. et al. Interplay between mutations and efflux in drug resistant clinical isolates of Mycobacterium tuberculosis. Front. Microbiol. 8, 711 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Zampieri, M. et al. Metabolic constraints on the evolution of antibiotic resistance. Mol. Syst. Biol. 13, 917 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Ohneck, E. A. et al. Overproduction of the MtrCDE efflux pump in Neisseria gonorrhoeae produces unexpected changes in cellular transcription patterns. Antimicrob. Agents Chemother. 59, 724–726 (2015).

    Article  PubMed  CAS  Google Scholar 

  145. Pacheco, J. O., Alvarez-Ortega, C., Rico, M. A. & Martínez, J. L. Metabolic compensation of fitness costs is a general outcome for antibiotic-resistant Pseudomonas aeruginosa mutants overexpressing efflux pumps. mBio 8, e00500–17 (2017).

    Google Scholar 

  146. Stickland, H. G., Davenport, P. W., Lilley, K. S., Griffin, J. L. & Welch, M. Mutation of nfxB causes global changes in the physiology and metabolism of Pseudomonas aeruginosa. J. Proteome Res. 9, 2957–2967 (2010).

    Article  PubMed  CAS  Google Scholar 

  147. Wang-Kan, X. et al. Lack of AcrB efflux function confers loss of virulence on Salmonella enterica serovar typhimurium. mBio 8, e00968–17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Bailey, A. M. et al. RamA, a member of the AraC/XylS family, influences both virulence and efflux in Salmonella enterica serovar Typhimurium. J. Bacteriol. 192, 1607–1616 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. De Majumdar, S. et al. Elucidation of the RamA regulon in Klebsiella pneumoniae reveals a role in LPS regulation. PLoS Pathog. 11, e1004627 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Yao, H. et al. Emergence of a potent multidrug efflux pump variant that enhances Campylobacter resistance to multiple antibiotics. mBio 7, e01543–16 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. González-Pasayo, R. & Martínez-Romero, E. Multiresistance genes of Rhizobium etli CFN42. Mol. Plant. Microbe Interact. 13, 572–577 (2000).

    Article  PubMed  Google Scholar 

  152. Thanassi, D. G., Cheng, L. W. & Nikaido, H. Active efflux of bile salts by Escherichia coli. J. Bacteriol. 179, 2512–2518 (1997).

    PubMed  CAS  Google Scholar 

  153. Elbourne, L. D., Tetu, S. G., Hassan, K. A. & Paulsen, I. T. TransportDB 2.0: a database for exploring membrane transporters in sequenced genomes from all domains of life. Nucleic Acids Res. 45, D320–D324 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Lee, E. H. & Shafer, W. M. The farAB-encoded efflux pump mediates resistance of gonococci to long-chained antibacterial fatty acids. Mol. Microbiol. 33, 839–845 (1999).

    Article  PubMed  CAS  Google Scholar 

  155. Nishino, K., Latifi, T. & Groisman, E. A. Virulence and drug resistance roles of multidrug efflux systems of Salmonella enterica serovar Typhimurium. Mol. Microbiol. 59, 126–141 (2006).

    Article  PubMed  CAS  Google Scholar 

  156. Buckley, A. M. et al. The AcrAB–TolC efflux system of Salmonella enterica serovar Typhimurium plays a role in pathogenesis. Cell. Microbiol. 8, 847–856 (2006).

    Article  PubMed  CAS  Google Scholar 

  157. Bogomolnaya, L. M. et al. The ABC-type efflux pump MacAB protects Salmonella enterica serovar typhimurium from oxidative stress. mBio 4, e00630–13 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Kunkle, D. E., Bina, X. R. & Bina, J. E. The Vibrio cholerae VexGH RND efflux system maintains cellular homeostasis by effluxing vibriobactin. mBio 8, e00126–17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Horiyama, T. & Nishino, K. AcrB, AcrD, and MdtABC multidrug efflux systems are involved in enterobactin export in Escherichia coli. PLoS ONE 9, e108642 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Sachla, A. J. & Eichenbaum, Z. The GAS PefCD exporter is a MDR system that confers resistance to heme and structurally diverse compounds. BMC Microbiol. 16, 68 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Hagman, K. E. et al. Resistance of Neisseria gonorrhoeae to antimicrobial hydrophobic agents is modulated by the mtrRCDE efflux system. Microbiology 141, 611–622 (1995).

    Article  PubMed  CAS  Google Scholar 

  162. Kobayashi, N., Nishino, K. & Yamaguchi, A. Novel macrolide-specific ABC-type efflux transporter in Escherichia coli. J. Bacteriol. 183, 5639–5644 (2001).

    PubMed  CAS  Google Scholar 

  163. Adams, K. N. et al. Drug tolerance in replicating mycobacteria mediated by a macrophage-induced efflux mechanism. Cell 145, 39–53 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Lee, J. & Zhang, L. The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell 6, 26–41 (2015).

    Article  PubMed  CAS  Google Scholar 

  165. Minagawa, S. et al. RND type efflux pump system MexAB-OprM of Pseudomonas aeruginosa selects bacterial languages, 3-oxo-acyl-homoserine lactones, for cell-to-cell communication. BMC Microbiol. 12, 70 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Lamarche, M. G. & Déziel, E. MexEF-OprN efflux pump exports the Pseudomonas quinolone signal (PQS) precursor HHQ (4-hydroxy-2-heptylquinoline). PLoS ONE 6, e24310 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Moore, J. D., Gerdt, J. P., Eibergen, N. R. & Blackwell, H. E. Active efflux influences the potency of quorum sensing inhibitors in Pseudomonas aeruginosa. Chembiochem 15, 435–442 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Sakhtah, H. et al. The Pseudomonas aeruginosa efflux pump MexGHI-OpmD transports a natural phenazine that controls gene expression and biofilm development. Proc. Natl Acad. Sci. USA 113, E3538–E3547 (2016).

    Article  PubMed  CAS  Google Scholar 

  169. Aoki, S. K. et al. Contact-dependent growth inhibition requires the essential outer membrane protein BamA (YaeT) as the receptor and the inner membrane transport protein AcrB. Mol. Microbiol. 70, 323–340 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Ruhe, Z. C., Wallace, A. B., Low, D. A. & Hayes, C. S. Receptor polymorphism restricts contact-dependent growth inhibition to members of the same species. mBio 4, e00480–13 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Yoshida, T., Qin, L., Egger, L. A. & Inouye, M. Transcription regulation of ompF and ompC by a single transcription factor, OmpR. J. Biol. Chem. 281, 17114–17123 (2006).

    Article  PubMed  CAS  Google Scholar 

  172. Dar, D. et al. Term-seq reveals abundant ribo-regulation of antibiotics resistance in bacteria. Science 352, aad9822 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Lin, M.-F., Lin, Y.-Y., Tu, C.-C. & Lan, C.-Y. Distribution of different efflux pump genes in clinical isolates of multidrug-resistant Acinetobacter baumannii and their correlation with antimicrobial resistance. J. Microbiol. Immunol. Infection 50, 224–231 (2017).

    Article  CAS  Google Scholar 

  174. Srinivasan, V. B., Rajamohan, G. & Gebreyes, W. A. Role of AbeS, a novel efflux pump of the SMR family of transporters, in resistance to antimicrobial agents in Acinetobacter baumannii. Antimicrob. Agents Chemother. 53, 5312–5316 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Podnecky, N. L., Wuthiekanun, V., Peacock, S. J. & Schweizer, H. P. The BpeEF-OprC efflux pump is responsible for widespread trimethoprim resistance in clinical and environmental Burkholderia pseudomallei isolates. Antimicrob. Agents Chemother. 57, 4381–4386 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Swick, M. C., Morgan-Linnell, S. K., Carlson, K. M. & Zechiedrich, L. Expression of multidrug efflux pump genes acrAB-tolC, mdfA, and norE in Escherichia coli clinical isolates as a function of fluoroquinolone and multidrug resistance. Antimicrob. Agents Chemother. 55, 921–924 (2011).

    Article  PubMed  CAS  Google Scholar 

  177. Hansen, L. H., Jensen, L. B., Sørensen, H. I. & Sørensen, S. J. Substrate specificity of the OqxAB multidrug resistance pump in Escherichia coli and selected enteric bacteria. J. Antimicrob. Chemother. 60, 145–147 (2007).

    Article  PubMed  CAS  Google Scholar 

  178. Doran, J. L. et al. Mycobacterium tuberculosis efpA encodes an efflux protein of the QacA transporter family. Clin. Diagn. Lab. Immunol. 4, 23–32 (1997).

    PubMed  PubMed Central  CAS  Google Scholar 

  179. Andries, K. et al. Acquired resistancxe of Mycobacterium tuberculosis to bedaquiline. PLoS ONE 9, e102135 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Rodrigues, L., Villellas, C., Bailo, R., Viveiros, M. & Aínsa, J. A. Role of the Mmr efflux pump in drug resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 57, 751–757 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Dreier, J. & Ruggerone, P. Interaction of antibacterial compounds with RND efflux pumps in Pseudomonas aeruginosa. Front. Microbiol. 6, 660 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Li, X.-Z., Poole, K. & Nikaido, H. Contributions of MexAB-OprM and an EmrE homolog to intrinsic resistance of Pseudomonas aeruginosa to aminoglycosides and dyes. Antimicrob. Agents Chemother. 47, 27–33 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Golparian, D., Shafer, W. M., Ohnishi, M. & Unemo, M. Importance of multidrug efflux pumps in the antimicrobial resistance property of clinical multidrug-resistant isolates of Neisseria gonorrhoeae. Antimicrob. Agents Chemother. 58, 3556–3559 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Schindler, B. D. & Kaatz, G. W. Multidrug efflux pumps of Gram-positive bacteria. Drug Resist. Updat. 27, 1–13 (2016).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank S. Murakami, B. Görke, J. Blaza, M. Welch, A. Vargiu, P. Ruggerone, L. Schmitt, and M. Osman for helpful discussions and the reviewers for helpful comments. B.F.L. and D.D. are supported by the Wellcome Trust and the European Research Council (742210). K.M.P. is supported by the German Research Foundation (DFG-SFB 807, ‘Transport and Communication across Biological Membranes’, and DFG-FOR2251, ‘Adaptation and Persistence of the Emerging Pathogen Acinetobacter baumannii), the DFG-EXC115 (Cluster of Excellence Frankfurt—Macromolecular Complexes), the Innovative Medicines Joint Undertaking (IMI-Translocation) under grant agreement no. 115525 and the National Institute of Allergy and Infectious Diseases (grant R44 AI100332). H.W.v.V., K.M.P. and B.F.L. are supported by a grant from the Human Frontier Science Program (RGP0034/2013). H.W.v.V. is also supported by the Biotechnology and Biological Sciences Research Council (grant BB/R00224X/1). A.N. is a recipient of a Herchel Smith Scholarship. X.W.-K. is supported by Consejo Nacional de Ciencia y Tecnología (CONACyT), Mexico. L.J.V.P. is supported by the Biotechnology and Biological Sciences Research Council (grant BB/N014200/1) and the Medical Research Council (MR/022596/1).

Reviewer information

Nature Reviews Microbiology thanks K. Beis, H. Schweizer and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

D.D., X.W.-K., A.N., H.W.v.V., K.M.P., L.J.V.P. and B.F.L. researched data for the article, made substantial contributions to discussions of the content, wrote the article, and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Ben F. Luisi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Transporter classification database: http://www.tcdb.org

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, D., Wang-Kan, X., Neuberger, A. et al. Multidrug efflux pumps: structure, function and regulation. Nat Rev Microbiol 16, 523–539 (2018). https://doi.org/10.1038/s41579-018-0048-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41579-018-0048-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing