Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Going around in circles: virulence plasmids in enteric pathogens

Abstract

Plasmids have a major role in the development of disease caused by enteric bacterial pathogens. Virulence plasmids are usually large (>40 kb) low copy elements and encode genes that promote host–pathogen interactions. Although virulence plasmids provide advantages to bacteria in specific conditions, they often impose fitness costs on their host. In this Review, we discuss virulence plasmids in Enterobacteriaceae that are important causes of diarrhoea in humans, Shigella spp., Salmonella spp., Yersinia spp and pathovars of Escherichia coli. We contrast these plasmids with those that are routinely used in the laboratory and outline the mechanisms by which virulence plasmids are maintained in bacterial populations. We highlight examples of virulence plasmids that encode multiple mechanisms for their maintenance (for example, toxin–antitoxin and partitioning systems) and speculate on how these might contribute to their propagation and success.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: General features of laboratory and virulence plasmids.
Fig. 2: The virulence plasmids of Shigella flexneri (pWR501) and Salmonella enterica subsp. enterica serovar Typhimurium (pSLT2).
Fig. 3: The genetic structure of replicons in virulence plasmids.
Fig. 4: Partitioning systems in virulence plasmids.
Fig. 5: Crosstalk between par1 and par2 in pB171.
Fig. 6: Summary of the principal elements that influence the biology of virulence plasmids.

Similar content being viewed by others

References

  1. Stone, A. B. R factors: plasmids conferring resistance to antibacterial agents. Sci. Prog. 62, 89–101 (1975).

    PubMed  CAS  Google Scholar 

  2. Yang, F. et al. Genome dynamics and diversity of Shigella species, the etiologic agents of bacillary dysentery. Nucleic Acids Res. 33, 6445–6458 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kaper, J. B., Nataro, J. P. & Mobley, H. L. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2, 123–140 (2004).

    Article  PubMed  CAS  Google Scholar 

  4. Sansonetti, P. J., d’Hauteville, H., Ecobichon, C. & Pourcel, C. Molecular comparison of virulence plasmids in Shigella and enteroinvasive Escherichia coli. Ann. Microbiol. 134A, 295–318 (1983).

    CAS  Google Scholar 

  5. Lan, R., Lumb, B., Ryan, D. & Reeves, P. R. Molecular evolution of large virulence plasmid in Shigella clones and enteroinvasive Escherichia coli. Infect. Immun. 69, 6303–6309 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Clements, A., Young, J. C., Constantinou, N. & Frankel, G. Infection strategies of enteric pathogenic Escherichia coli. Gut Microbes 3, 71–87 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Johnson, T. J. & Nolan, L. K. Pathogenomics of the virulence plasmids of Escherichia coli. Microbiol. Mol. Biol. Rev. 73, 750–774 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Burland, V. et al. The complete DNA sequence and analysis of the large virulence plasmid of Escherichia coli O157:H7. Nucleic Acids Res. 26, 4196–4204 (1998). This work provides insights on the structure of pO157 from EHEC E. coli O157:H7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Nguyen, Y. & Sperandio, V. Enterohemorrhagic E. coli (EHEC) pathogenesis. Front. Cell. Infect. Microbiol. 2, 90 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Tobe, T. et al. Complete DNA sequence and structural analysis of the enteropathogenic Escherichia coli adherence factor plasmid. Infect. Immun. 67, 5455–5462 (1999). In this paper, Tobe and colleagues analyse the structure of pB171 from EPEC E. coli B171.

    PubMed  PubMed Central  CAS  Google Scholar 

  11. Froehlich, B., Parkhill, J., Sanders, M., Quail, M. A. & Scott, J. R. The pCoo plasmid of enterotoxigenic Escherichia coli is a mosaic cointegrate. J. Bacteriol. 187, 6509–6516 (2005). This paper provides an analysis of the pCoo plasmid from ETEC E. coli, demonstrating that the plasmid is a result of co-integration of two independent replicons.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Jonsson, R. et al. A novel pAA virulence plasmid encoding toxins and two distinct variants of the fimbriae of enteroaggregative Escherichia coli. Front. Microbiol. 8, 263 (2017). This study analyses the sequence of a novel pAA plasmid from EAEC E. coli, which encodes two variants of fimbriae and other new virulence genes.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Benjelloun-Touimi, Z., Si Tahar, M., Montecucco, C., Sansonetti, P. J. & Parsot, C. SepA, the 110 kDa protein secreted by Shigella flexneri: two-domain structure and proteolytic activity. Microbiology 144, 1815–1822 (1998).

    Article  PubMed  CAS  Google Scholar 

  14. Eslava, C. et al. Pet, an autotransporter enterotoxin from enteroaggregative Escherichia coli. Infect. Immun. 66, 3155–3163 (1998).

    PubMed  PubMed Central  CAS  Google Scholar 

  15. Eng, S. et al. Salmonella: A review on pathogenesis, epidemiology and antibiotic resistance. Front. Life Sci. 8, 284–293 (2015).

    Article  CAS  Google Scholar 

  16. Rotger, R. & Casadesús, J. The virulence plasmids of Salmonella. Int. Microbiol. 2, 177–184 (1999).

    PubMed  CAS  Google Scholar 

  17. Mehigh, R. J., Sample, A. K. & Brubaker, R. R. Expression of the low calcium response in Yersinia pestis. Microb. Pathog. 6, 203–217 (1989).

    Article  PubMed  CAS  Google Scholar 

  18. Funnell, E. B. & Phillips, J. G. Plasmid Biology (American Society for Microbiology Press, 2004).

  19. Hu, P. et al. Structural organization of virulence-associated plasmids of Yersinia pestis. J. Bacteriol. 180, 5192–5202 (1998).

    PubMed  PubMed Central  CAS  Google Scholar 

  20. Nesbakken, T., Kapperud, G., Sorum, H. & Dommarsnes, K. Structural variability of 40–50 Mdal virulence plasmids from Yersinia enterocolitica. Geographical and ecological distribution of plasmid variants. Acta Pathol. Microbiol. Immunol. Scand. B 95, 167–173 (1987).

    PubMed  CAS  Google Scholar 

  21. Venkatesan, M. M. & Ranallo, R. T. Live-attenuated Shigella vaccines. Expert Rev. Vaccines 5, 669–686 (2006).

    Article  PubMed  CAS  Google Scholar 

  22. Visser, L. G., Annema, A. & van Furth, R. Role of Yops in inhibition of phagocytosis and killing of opsonized Yersinia enterocolitica by human granulocytes. Infect. Immun. 63, 2570–2575 (1995).

    PubMed  PubMed Central  CAS  Google Scholar 

  23. Pfeiffer, M. L., DuPont, H. L. & Ochoa, T. J. The patient presenting with acute dysentery — a systematic review. J. Infect. 64, 374–386 (2012).

    Article  PubMed  Google Scholar 

  24. GBD 2015 Mortality and Causes of Death Collaborators. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388, 1459–1544 (2016).

    Article  Google Scholar 

  25. Lima, I. F., Havt, A. & Lima, A. A. Update on molecular epidemiology of Shigella infection. Curr. Opin. Gastroenterol. 31, 30–37 (2015).

    Article  PubMed  Google Scholar 

  26. Kotloff, K. L. et al. Global burden of Shigella infections: implications for vaccine development and implementation of control strategies. Bull. World Health Organ. 77, 651–666 (1999).

    PubMed  PubMed Central  CAS  Google Scholar 

  27. Sansonetti, P. J., Kopecko, D. J. & Formal, S. B. Involvement of a plasmid in the invasive ability of Shigella flexneri. Infect. Immun. 35, 852–860 (1982).

    PubMed  PubMed Central  CAS  Google Scholar 

  28. Venkatesan, M. M. et al. Complete DNA sequence and analysis of the large virulence plasmid of Shigella flexneri. Infect. Immun. 69, 3271–3285 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Buchrieser, C. et al. The virulence plasmid pWR100 and the repertoire of proteins secreted by the type III secretion apparatus of Shigella flexneri. Mol. Microbiol. 38, 760–771 (2000).

    Article  PubMed  CAS  Google Scholar 

  30. Zychlinsky, A., Prevost, M. C. & Sansonetti, P. J. Shigella flexneri induces apoptosis in infected macrophages. Nature 358, 167–169 (1992).

    Article  PubMed  CAS  Google Scholar 

  31. Ogawa, M., Handa, Y., Ashida, H., Suzuki, M. & Sasakawa, C. The versatility of Shigella effectors. Nat. Rev. Microbiol. 6, 11–16 (2008).

    Article  PubMed  CAS  Google Scholar 

  32. Suzuki, T. et al. Differential regulation of caspase-1 activation, pyroptosis, and autophagy via Ipaf and ASC in Shigella-infected macrophages. PLoS Pathog. 3, e111 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Schuch, R. & Maurelli, A. T. Virulence plasmid instability in Shigella flexneri 2a is induced by virulence gene expression. Infect. Immun. 65, 3686–3692 (1997).

    PubMed  PubMed Central  CAS  Google Scholar 

  34. Pilla, G., McVicker, G. & Tang, C. M. Genetic plasticity of the Shigella virulence plasmid is mediated by intra- and inter-molecular events between insertion sequences. PLoS Genet. 13, e1007014 (2017). This work demonstrates that toxin–antitoxin systems on plasmids have local and global effects mediated by post-recombinational killing as well as PSK, respectively. Plasmid deletions and chromosomal integration are mediated by insertion sequences.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Brotcke Zumsteg, A., Goosmann, C., Brinkmann, V., Morona, R. & Zychlinsky, A. IcsA is a Shigella flexneri adhesin regulated by the type III secretion system and required for pathogenesis. Cell Host Microbe 15, 435–445 (2014).

    Article  PubMed  CAS  Google Scholar 

  36. Schroeder, G. N. & Hilbi, H. Molecular pathogenesis of Shigella spp.: controlling host cell signaling, invasion, and death by type III secretion. Clin. Microbiol. Rev. 21, 134–156 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Gulig, P. A. & Doyle, T. J. The Salmonella typhimurium virulence plasmid increases the growth rate of salmonellae in mice. Infect. Immun. 61, 504–511 (1993).

    PubMed  PubMed Central  CAS  Google Scholar 

  38. Fields, P. I., Swanson, R. V., Haidaris, C. G. & Heffron, F. Mutants of Salmonella typhimurium that cannot survive within the macrophage are avirulent. Proc. Natl Acad. Sci. USA 83, 5189–5193 (1986).

    Article  PubMed  CAS  Google Scholar 

  39. Gulig, P. A., Doyle, T. J., Clare-Salzler, M. J., Maiese, R. L. & Matsui, H. Systemic infection of mice by wild-type but not Spv- Salmonella typhimurium is enhanced by neutralization of gamma interferon and tumor necrosis factor alpha. Infect. Immun. 65, 5191–5197 (1997).

    PubMed  PubMed Central  CAS  Google Scholar 

  40. Zhu, Y. et al. Structural insights into the enzymatic mechanism of the pathogenic MAPK phosphothreonine lyase. Mol. Cell 28, 899–913 (2007).

    Article  PubMed  CAS  Google Scholar 

  41. Haneda, T. et al. Salmonella type III effector SpvC, a phosphothreonine lyase, contributes to reduction in inflammatory response during intestinal phase of infection. Cell. Microbiol. 14, 485–499 (2012).

    Article  PubMed  CAS  Google Scholar 

  42. Boyd, E. F. & Hartl, D. L. Salmonella virulence plasmid. Modular acquisition of the spv virulence region by an F-plasmid in Salmonella enterica subspecies I and insertion into the chromosome of subspecies II, IIIa, IV and VII isolates. Genetics 149, 1183–1190 (1998).

    PubMed  PubMed Central  CAS  Google Scholar 

  43. Baumler, A. J. et al. The pef fimbrial operon of Salmonella typhimurium mediates adhesion to murine small intestine and is necessary for fluid accumulation in the infant mouse. Infect. Immun. 64, 61–68 (1996).

    PubMed  PubMed Central  CAS  Google Scholar 

  44. Baumler, A. J., Tsolis, R. M. & Heffron, F. Contribution of fimbrial operons to attachment to and invasion of epithelial cell lines by Salmonella typhimurium. Infect. Immun. 64, 1862–1865 (1996).

    PubMed  PubMed Central  CAS  Google Scholar 

  45. Heffernan, E. J., Harwood, J., Fierer, J. & Guiney, D. The Salmonella typhimurium virulence plasmid complement resistance gene rck is homologous to a family of virulence-related outer membrane protein genes, including pagC and ail. J. Bacteriol. 174, 84–91 (1992).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Heffernan, E. J. et al. Mechanism of resistance to complement-mediated killing of bacteria encoded by the Salmonella typhimurium virulence plasmid gene rck. J. Clin. Invest. 90, 953–964 (1992).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Rosselin, M. et al. Rck of Salmonella enterica, subspecies enterica serovar enteritidis, mediates zipper-like internalization. Cell Res. 20, 647–664 (2010).

    Article  PubMed  CAS  Google Scholar 

  48. Vandenbosch, J. L., Rabert, D. K., Kurlandsky, D. R. & Jones, G. W. Sequence analysis of rsk, a portion of the 95-kilobase plasmid of Salmonella typhimurium associated with resistance to the bactericidal activity of serum. Infect. Immun. 57, 850–857 (1989).

    PubMed  PubMed Central  CAS  Google Scholar 

  49. Sengupta, M. & Austin, S. Prevalence and significance of plasmid maintenance functions in the virulence plasmids of pathogenic bacteria. Infect. Immun. 79, 2502–2509 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Chattoraj, D. K. Control of plasmid DNA replication by iterons: no longer paradoxical. Mol. Microbiol. 37, 467–476 (2000).

    Article  PubMed  CAS  Google Scholar 

  51. Helinski, D. R., Toukdarian, A. E. & Novick, R. in Escherichia coli and Salmonella: Cellular and Molecular Biology 2nd edn (eds Neidhardt, F. C. et al.) 2295–2324 (ASM Press, Washington, DC, 1996).

  52. Pinto, U. M., Pappas, K. M. & Winans, S. C. The ABCs of plasmid replication and segregation. Nat. Rev. Microbiol. 10, 755–765 (2012).

    Article  PubMed  CAS  Google Scholar 

  53. del Solar, G., Giraldo, R., Ruiz-Echevarria, M. J., Espinosa, M. & Diaz-Orejas, R. Replication and control of circular bacterial plasmids. Microbiol. Mol. Biol. Rev. 62, 434–464 (1998).

    PubMed  PubMed Central  Google Scholar 

  54. Nordstrom, K. Plasmid R1−-replication and its control. Plasmid 55, 1–26 (2006).

    Article  PubMed  CAS  Google Scholar 

  55. Cox, K. E. L. & Schildbach, J. F. Sequence of the R1 plasmid and comparison to F and R100. Plasmid 91, 53–60 (2017). This study provides a sequence analysis of prototypic plasmids, demonstrating the multiplicity of factors for replication and maintenance.

    Article  PubMed  CAS  Google Scholar 

  56. Masai, H., Kaziro, Y. & Arai, K. Definition of oriR, the minimum DNA segment essential for initiation of R1 plasmid replication in vitro. Proc. Natl Acad. Sci. USA 80, 6814–6818 (1983).

    Article  PubMed  CAS  Google Scholar 

  57. Trawick, J. D. & Kline, B. C. A two-stage molecular model for control of mini-F replication. Plasmid 13, 59–69 (1985).

    Article  PubMed  CAS  Google Scholar 

  58. Uga, H., Matsunaga, F. & Wada, C. Regulation of DNA replication by iterons: an interaction between the ori2 and incC regions mediated by RepE-bound iterons inhibits DNA replication of mini-F plasmid in Escherichia coli. EMBO J. 18, 3856–3867 (1999).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Willetts, N. & Skurray, R. in Escherichia coli and Salmonella: Cellular and Molecular Biology 2nd edn (eds Neidhardt, F. C. et al.) 1110–1133 (ASM Press, Washington, DC, 1996).

  60. Saadi, S., Maas, W. K., Hill, D. F. & Bergquist, P. L. Nucleotide sequence analysis of RepFIC, a basic replicon present in IncFI plasmids P307 and F, and its relation to the RepA replicon of IncFII plasmids. J. Bacteriol. 169, 1836–1846 (1987).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Kawasaki, Y., Matsunaga, F., Kano, Y., Yura, T. & Wada, C. The localized melting of mini-F origin by the combined action of the mini-F initiator protein (RepE) and HU and DnaA of Escherichia coli. Mol. Gen. Genet. 253, 42–49 (1996).

    Article  PubMed  CAS  Google Scholar 

  62. Muraiso, K., Tokino, T., Murotsu, T. & Matsubara, K. Replication of mini-F plasmid in vitro promoted by purified E protein. Mol. Gen. Genet. 206, 519–521 (1987).

    Article  PubMed  CAS  Google Scholar 

  63. Ishiai, M., Wada, C., Kawasaki, Y. & Yura, T. Replication initiator protein RepE of mini-F plasmid: functional differentiation between monomers (initiator) and dimers (autogenous repressor). Proc. Natl Acad. Sci. USA 91, 3839–3843 (1994).

    Article  PubMed  CAS  Google Scholar 

  64. Manwaring, N. P., Skurray, R. A. & Firth, N. Nucleotide sequence of the F plasmid leading region. Plasmid 41, 219–225 (1999).

    Article  PubMed  CAS  Google Scholar 

  65. Lilly, J. & Camps, M. Mechanisms of theta plasmid replication. Microbiol. Spectr. 3, PLAS-0029-2014 (2015).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  66. Lan, R., Alles, M. C., Donohoe, K., Martinez, M. B. & Reeves, P. R. Molecular evolutionary relationships of enteroinvasive Escherichia coli and Shigella spp. Infect. Immun. 72, 5080–5088 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Tinge, S. A. & Curtiss, R. Conservation of Salmonella typhimurium virulence plasmid maintenance regions among Salmonella serovars as a basis for plasmid curing. Infect. Immun. 58, 3084–3092 (1990).

    PubMed  PubMed Central  CAS  Google Scholar 

  68. Rodríguez-Peña, J. M., Buisan, M., Ibáñez, M. & Rotger, R. Genetic map of the virulence plasmid of Salmonella enteritidis and nucleotide sequence of its replicons. Gene 188, 53–61 (1997).

    Article  PubMed  Google Scholar 

  69. McNally, A., Thomson, N. R., Reuter, S. & Wren, B. W. ‘Add, stir and reduce’: Yersinia spp. as model bacteria for pathogen evolution. Nat. Rev. Microbiol. 14, 177–190 (2016).

    Article  PubMed  CAS  Google Scholar 

  70. Reuter, S. et al. Parallel independent evolution of pathogenicity within the genus Yersinia. Proc. Natl Acad. Sci. USA 111, 6768–6773 (2014).

    Article  PubMed  CAS  Google Scholar 

  71. Wang, H. et al. Increased plasmid copy number is essential for Yersinia T3SS function and virulence. Science 353, 492–495 (2016). This paper reveals that plasmid copy number and then virulence are shaped by host signals, such as the ambient temperature. The molecular mechanisms underlying this phenomenon are not known.

    Article  PubMed  CAS  Google Scholar 

  72. Ebersbach, G. & Gerdes, K. Plasmid segregation mechanisms. Annu. Rev. Genet. 39, 453–479 (2005).

    Article  PubMed  CAS  Google Scholar 

  73. Gerdes, K., Howard, M. & Szardenings, F. Pushing and pulling in prokaryotic DNA segregation. Cell 141, 927–942 (2010).

    Article  PubMed  CAS  Google Scholar 

  74. Brooks, A. C. & Hwang, L. C. Reconstitutions of plasmid partition systems and their mechanisms. Plasmid 91, 37–41 (2017).

    Article  PubMed  CAS  Google Scholar 

  75. Vecchiarelli, A. G., Mizuuchi, K. & Funnell, B. E. Surfing biological surfaces: exploiting the nucleoid for partition and transport in bacteria. Mol. Microbiol. 86, 513–523 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Vecchiarelli, A. G., Seol, Y., Neuman, K. C. & Mizuuchi, K. A moving ParA gradient on the nucleoid directs subcellular cargo transport via a chemophoresis force. Bioarchitecture 4, 154–159 (2014).

    Article  PubMed  Google Scholar 

  77. Møller-Jensen, J., Jensen, R. B., Löwe, J. & Gerdes, K. Prokaryotic DNA segregation by an actin-like filament. EMBO J. 21, 3119–3127 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Jensen, R. B. & Gerdes, K. Mechanism of DNA segregation in prokaryotes: ParM partitioning protein of plasmid R1 co-localizes with its replicon during the cell cycle. EMBO J. 18, 4076–4084 (1999).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Ebersbach, G. & Gerdes, K. The double par locus of virulence factor pB171: DNA segregation is correlated with oscillation of ParA. Proc. Natl Acad. Sci. USA 98, 15078–15083 (2001).

    Article  PubMed  CAS  Google Scholar 

  80. Ringgaard, S., Ebersbach, G., Borch, J. & Gerdes, K. Regulatory cross-talk in the double par locus of plasmid pB171. J. Biol. Chem. 282, 3134–3145 (2007). This paper reveals the regulation of the double partitioning locus of pB171 from EPEC E. coli B171.

    Article  PubMed  CAS  Google Scholar 

  81. Cerin, H. & Hackett, J. The parVP region of the Salmonella typhimurium virulence plasmid pSLT contains four loci required for incompatibility and partition. Plasmid 30, 30–38 (1993).

    Article  PubMed  CAS  Google Scholar 

  82. Chaudhuri, R. R. et al. Complete genome sequence and comparative metabolic profiling of the prototypical enteroaggregative Escherichia coli strain 042. PLoS ONE 5, e8801 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Brzozowska, I. & Zielenkiewicz, U. Regulation of toxin-antitoxin systems by proteolysis. Plasmid 70, 33–41 (2013).

    Article  PubMed  CAS  Google Scholar 

  84. Gerdes, K. & Maisonneuve, E. Bacterial persistence and toxin-antitoxin loci. Annu. Rev. Microbiol. 66, 103–123 (2012).

    Article  PubMed  CAS  Google Scholar 

  85. Harms, A., Brodersen, D. E., Mitarai, N. & Gerdes, K. Toxins, targets, and triggers: an overview of toxin-antitoxin biology. Mol. Cell. https://doi.org/10.1016/j.molcel.2018.01.003 (2018).

    Article  PubMed  Google Scholar 

  86. Dienemann, C., Bøggild, A., Winther, K. S., Gerdes, K. & Brodersen, D. E. Crystal structure of the VapBC toxin-antitoxin complex from Shigella flexneri reveals a hetero-octameric DNA-binding assembly. J. Mol. Biol. 414, 713–722 (2011). This work provides structural insights into the function of VapBC, the most common toxin–antitoxin system on virulence plasmids.

    Article  PubMed  CAS  Google Scholar 

  87. Winther, K. S. & Gerdes, K. Enteric virulence associated protein VapC inhibits translation by cleavage of initiator tRNA. Proc. Natl Acad. Sci. USA 108, 7403–7407 (2011).

    Article  PubMed  CAS  Google Scholar 

  88. McVicker, G. & Tang, C. M. Deletion of toxin-antitoxin systems in the evolution of Shigella sonnei as a host-adapted pathogen. Nat. Microbiol. 2, 16204 (2016).

    Article  PubMed  CAS  Google Scholar 

  89. Lobato-Márquez, D., Molina-García, L., Moreno-Córdoba, I., García-Del Portillo, F. & Díaz-Orejas, R. Stabilization of the virulence plasmid pSLT of Salmonella Typhimurium by three maintenance systems and its evaluation by using a new stability test. Front. Mol. Biosci. 3, 66 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Lobato-Márquez, D., Moreno-Córdoba, I., Figueroa, V., Díaz-Orejas, R. & García-del Portillo, F. Distinct type I and type II toxin-antitoxin modules control Salmonella lifestyle inside eukaryotic cells. Sci. Rep. 5, 9374 (2015). This paper reveals potential functions for plasmid toxin–antitoxin systems that are not concerned with plasmid maintenance.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Bernard, P. & Couturier, M. Cell killing by the F plasmid CcdB protein involves poisoning of DNA-topoisomerase II complexes. J. Mol. Biol. 226, 735–745 (1992).

    Article  PubMed  CAS  Google Scholar 

  92. Bahassi, E. M., Salmon, M. A., Van Melderen, L., Bernard, P. & Couturier, M. F plasmid CcdB killer protein: ccdB gene mutants coding for non-cytotoxic proteins which retain their regulatory functions. Mol. Microbiol. 15, 1031–1037 (1995).

    Article  PubMed  CAS  Google Scholar 

  93. Di Cesare, A. et al. Diverse distribution of toxin-antitoxin II systems in Salmonella enterica serovars. Sci. Rep. 6, 28759 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Christensen, S. K. & Gerdes, K. RelE toxins from bacteria and Archaea cleave mRNAs on translating ribosomes, which are rescued by tmRNA. Mol. Microbiol. 48, 1389–1400 (2003).

    Article  PubMed  CAS  Google Scholar 

  95. Pedersen, K. et al. The bacterial toxin RelE displays codon-specific cleavage of mRNAs in the ribosomal A site. Cell 112, 131–140 (2003).

    Article  PubMed  CAS  Google Scholar 

  96. Gerdes, K. et al. Mechanism of postsegregational killing by the hok gene product of the parB system of plasmid R1 and its homology with the relF gene product of the E. coli relB operon. EMBO J. 5, 2023–2029 (1986).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Loh, S. M., Cram, D. S. & Skurray, R. A. Nucleotide sequence and transcriptional analysis of a third function (Flm) involved in F-plasmid maintenance. Gene 66, 259–268 (1988).

    Article  PubMed  CAS  Google Scholar 

  98. Thisted, T. & Gerdes, K. Mechanism of post-segregational killing by the hok/sok system of plasmid R1. Sok antisense RNA regulates hok gene expression indirectly through the overlapping mok gene. J. Mol. Biol. 223, 41–54 (1992).

    Article  PubMed  CAS  Google Scholar 

  99. Thisted, T., Sorensen, N. S. & Gerdes, K. Mechanism of post-segregational killing: secondary structure analysis of the entire Hok mRNA from plasmid R1 suggests a fold-back structure that prevents translation and antisense RNA binding. J. Mol. Biol. 247, 859–873 (1995).

    Article  PubMed  CAS  Google Scholar 

  100. Jurenas, D. et al. AtaT blocks translation initiation by N-acetylation of the initiator tRNAfMet. Nat. Chem. Biol. 13, 640–646 (2017).

    Article  PubMed  CAS  Google Scholar 

  101. Cheverton, A. M. et al. A Salmonella toxin promotes persister formation through acetylation of tRNA. Mol. Cell 63, 86–96 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Jiang, Y., Pogliano, J., Helinski, D. R. & Konieczny, I. ParE toxin encoded by the broad-host-range plasmid RK2 is an inhibitor of Escherichia coli gyrase. Mol. Microbiol. 44, 971–979 (2002).

    Article  PubMed  CAS  Google Scholar 

  103. Gerdes, K. Toxin-antitoxin modules may regulate synthesis of macromolecules during nutritional stress. J. Bacteriol. 182, 561–572 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Kasari, V., Mets, T., Tenson, T. & Kaldalu, N. Transcriptional cross-activation between toxin-antitoxin systems of Escherichia coli. BMC Microbiol. 13, 45 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Wessner, F. et al. Regulatory crosstalk between type I and type II toxin-antitoxin systems in the human pathogen Enterococcus faecalis. RNA Biol. 12, 1099–1108 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Hyland, E. M., Wallace, E. W. & Murray, A. W. A model for the evolution of biological specificity: a cross-reacting DNA-binding protein causes plasmid incompatibility. J. Bacteriol. 196, 3002–3011 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Helaine, S. & Kugelberg, E. Bacterial persisters: formation, eradication, and experimental systems. Trends Microbiol. 22, 417–424 (2014).

    Article  PubMed  CAS  Google Scholar 

  108. Aviv, G. et al. A unique megaplasmid contributes to stress tolerance and pathogenicity of an emergent Salmonella enterica serovar Infantis strain. Environ. Microbiol. 16, 977–994 (2014).

    Article  PubMed  CAS  Google Scholar 

  109. Chen, C. L., Su, L. H., Janapatla, R. P., Lin, C. Y. & Chiu, C. H. Genetic analysis of virulence and antimicrobial-resistant plasmid pOU7519 in Salmonella enterica serovar Choleraesuis. J. Microbiol. Immunol. Infect. https://doi.org/10.1016/j.jmii.2017.11.004 (2017).

    Article  PubMed  Google Scholar 

  110. Barash, I. & Manulis-Sasson, S. Virulence mechanisms and host specificity of gall-forming Pantoea agglomerans. Trends Microbiol. 15, 538–545 (2007).

    Article  PubMed  CAS  Google Scholar 

  111. Koehler, T. M. Bacillus anthracis genetics and virulence gene regulation. Curr. Top. Microbiol. Immunol. 271, 143–164 (2002).

    PubMed  CAS  Google Scholar 

  112. Watson, B., Currier, T. C., Gordon, M. P., Chilton, M. D. & Nester, E. W. Plasmid required for virulence of Agrobacterium tumefaciens. J. Bacteriol. 123, 255–264 (1975).

    PubMed  PubMed Central  CAS  Google Scholar 

  113. Franco, A. et al. Emergence of a clonal lineage of multidrug-resistant ESBL-producing Salmonella Infantis transmitted from broilers and broiler meat to humans in Italy between 2011 and 2014. PLoS ONE 10, e0144802 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Aviv, G., Rahav, G. & Gal-Mor, O. Horizontal transfer of the Salmonella enterica serovar Infantis resistance and virulence plasmid pESI to the gut microbiota of warm-blooded hosts. mBio 7, e01395–16 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Hammerl, J. A., Freytag, B., Lanka, E., Appel, B. & Hertwig, S. The pYV virulence plasmids of Yersinia pseudotuberculosis and Y. pestis contain a conserved DNA region responsible for the mobilization by the self-transmissible plasmid pYE854. Environ. Microbiol. Rep 4, 433–438 (2012).

    Article  PubMed  CAS  Google Scholar 

  116. Bikard, D. & Barrangou, R. Using CRISPR-Cas systems as antimicrobials. Curr. Opin. Microbiol. 37, 155–160 (2017).

    Article  PubMed  CAS  Google Scholar 

  117. Brenner, D. J. in The Prokaryotes (eds Balows, A., Truper, H. G., Dworkin, M., Harder, W. & Shleifer, K. H.) 2673–2695 (Springer, New York, 1992).

  118. Eckburg, P. B. et al. Diversity of the human intestinal microbial flora. Science 308, 1635–1638 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Chow, J., Tang, H. & Mazmanian, S. K. Pathobionts of the gastrointestinal microbiota and inflammatory disease. Curr. Opin. Immunol. 23, 473–480 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Davin-Regli, A. & Pages, J. M. Enterobacter aerogenes and Enterobacter cloacae; versatile bacterial pathogens confronting antibiotic treatment. Front. Microbiol. 6, 392 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Zechner, E. L. Inflammatory disease caused by intestinal pathobionts. Curr. Opin. Microbiol. 35, 64–69 (2017).

    Article  PubMed  Google Scholar 

  122. Round, J. L. & Mazmanian, S. K. The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immunol. 9, 313–323 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Radosavljevic, V., Finke, E. J. & Belojevic, G. Escherichia coli O104:H4 outbreak in Germany — clarification of the origin of the epidemic. Eur. J. Publ. Health 25, 125–129 (2015).

    Article  Google Scholar 

  124. Pennington, T. H. E. coli O157 outbreaks in the United Kingdom: past, present, and future. Infect. Drug Resist 7, 211–222 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Heiman, K. E., Mody, R. K., Johnson, S. D., Griffin, P. M. & Gould, L. H. Escherichia coli O157 Outbreaks in the United States, 2003–2012. Emerg. Infect. Dis. 21, 1293–1301 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Yoder, J. S. et al. Outbreak of enterotoxigenic Escherichia coli infection with an unusually long duration of illness. Clin. Infect. Dis. 42, 1513–1517 (2006).

    Article  PubMed  Google Scholar 

  127. Croxen, M. A. et al. Recent advances in understanding enteric pathogenic Escherichia coli. Clin. Microbiol. Rev. 26, 822–880 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Pupo, G. M., Lan, R. & Reeves, P. R. Multiple independent origins of Shigella clones of Escherichia coli and convergent evolution of many of their characteristics. Proc. Natl Acad. Sci. USA 97, 10567–10572 (2000).

    Article  PubMed  CAS  Google Scholar 

  129. Lan, R. & Reeves, P. R. Escherichia coli in disguise: molecular origins of Shigella. Microbes Infect. 4, 1125–1132 (2002).

    Article  PubMed  CAS  Google Scholar 

  130. McClelland, M. et al. Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413, 852–856 (2001).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Work in C.M.T.’s laboratory is supported by the Wellcome Trust and the Biotechnology and Biological Sciences Research Council. G.P. is the recipient of a Medical Research Council PhD studentship and is supported by the E.P. Abraham Trust.

Author information

Authors and Affiliations

Authors

Contributions

G.P. researched the data for the article. G.P. and C.M.T. substantially contributed to discussion of content, wrote the article and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Christoph M. Tang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Plasmid copy number

Average number of plasmid copies per cell.

Enteropathogens

Pathogenic bacteria that infect the intestinal tract of humans and animals, causing diarrhoea, gastroenteritis and localized lymphadenitis.

Pathotypes

Classes of pathogenic bacteria belonging to the same species that are characterized by their capacity to cause specific diseases through a defined set of virulence factors.

Haemolytic uraemic syndrome

(HUS). A disease characterized by acute renal failure, haemolytic anaemia (that is, inappropriate destruction of erythrocytes) and thrombocytopenia (low levels of circulating platelets).

Prototypic plasmid

Some of the first discovered plasmids that were used as models to study plasmid biology.

Yersiniosis

An acute gastrointestinal infection caused by Yersinia enterocolitica or Yersinia pseudotuberculosis that is characterized by enteritis, diarrhoea and fever. It is occasionally associated with more severe complications, such as ileitis, septicaemia and acute arthritis.

Pathogenicity island

(PAI). A region on a chromosome or plasmid that contains clusters of virulence genes that are often flanked by mobile genetic elements or direct repeats that could mediate the mobility of the entire region.

Pyroptosis

A mechanism of inflammatory cell death characterized by a rapid disruption of the plasmalemma driven by stimulation of the pore-forming activity of gasdermin D and accompanied by the concomitant release of pro-inflammatory cytokines, such as IL-1β and IL-18, and chromatin fragmentation.

Insertion sequences

Short transposable DNA elements that can move within the same DNA molecule or between different DNA molecules. They are composed only of genes encoding proteins involved in mobility, such as transposases and regulatory elements. Distinct from transposons, insertion sequences do not carry any accessory genes (for example, those encoding antibiotic resistance).

Phosphothreonine lyase

An enzyme that catalyses the irreversible removal of a phosphate group from a phosphorylated threonine residue.

Plasmid incompatibility

A phenomenon whereby two plasmids cannot coexist in the same bacterial cell. It occurs when plasmids share one or more elements that control their replication, partitioning or copy number. On the basis of sequence homology, plasmids are classified into different incompatibility groups, so plasmids belonging to the same group are incompatible with each other but are compatible with plasmids in different incompatibility groups.

Replicon

A DNA region that includes genes that are sufficient for plasmid replication and copy number control and where replication is initiated. Depending on the sequence of the replicon, plasmids are classified into different replicon groups.

Theta replication

A mechanism of DNA replication in which the synthesis of the leading and lagging DNA strands is coupled, leading to the formation of theta-shaped intermediates.

DnaA boxes

Short stretches of DNA that are bound by the chromosomal replication initiator protein DnaA. The interaction between DnaA and DnaA boxes localized at the origin is essential to unwind DNA before the start of DNA replication.

Co-integration

A phenomenon that causes two circular plasmids to combine, maintaining the sequence of each plasmid intact, thus producing a single plasmid from two separate plasmids.

Nucleoside triphosphatase

(NTPase). A family of enzymes that catalyses the hydrolysis of a nucleoside triphosphate (NTP) to a nucleoside diphosphate (NDP). The reaction releases energy, often inducing a conformational change in protein structure that allows the protein to drive other chemical reactions.

DNA par sites

Centromere-like DNA sequences that often contain repeated sequences and are specifically bound by centromere-binding proteins (CBPs); they are required in cis for plasmid partitioning and form the partitioning complex when associated with CBP.

Centromere-binding protein

(CBP). A family of proteins that specifically bind to centromere-like DNA sites, which can contain multiple CBP-bound sequences and, therefore, be recognized by multiple CBPs, leading to the formation of nucleoprotein complexes.

Walker-type ATPases

Adenosine triphosphatases (ATPases) that are characterised by Walker motifs, amino acid sequences that have an important role in ATP binding and hydrolysis.

Actin-like ATPase

A family of ATPases that contain ATP-binding domains that are homologous to those present in actin. For ParM, the structure of the ATPase resembles that of actin, implying that, like actin, ParM can form filaments.

DNA gyrase

A group of essential enzymes defined as topoisomerases that are responsible for the ATP-dependent conversion of relaxed DNA into a negatively supercoiled form.

Poly-cistronic operon

An operon containing multiple genes that are transcribed as a single mRNA from which the proteins are translated.

Resolvase

A large family of site-specific recombinases. Resolvases have an essential role in resolving plasmid multimers into monomers.

mRNA interferase

A class of endoribonucleases that cleave mRNA at a specific site, blocking protein synthesis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pilla, G., Tang, C.M. Going around in circles: virulence plasmids in enteric pathogens. Nat Rev Microbiol 16, 484–495 (2018). https://doi.org/10.1038/s41579-018-0031-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41579-018-0031-2

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology