Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Rapid advances enabling high-performance inverted perovskite solar cells

Abstract

Perovskite solar cells (PSCs) that have a positive–intrinsic–negative (p–i–n, or often referred to as inverted) structure are becoming increasingly attractive for commercialization owing to their rapid increase in power conversion efficiency, easily scalable fabrication, reliable operation and compatibility with various perovskite-based tandem device configurations. Here, we review key material and device considerations for making highly efficient and stable p–i–n PSCs. First, we summarize key advances in charge transport materials, which were critical to the rapid power conversion efficiency progress. Second, we discuss promising perovskite compositions and fabrication methods. We highlight various additive engineering approaches to improve the perovskite layer as well as interface engineering strategies that target either the buried or top perovskite surface layer. Third, we review progress in tandem devices, focusing on optimization of the interconnection layer. Next, we summarize the status and strategies for improving p–i–n PSC stability, especially considering the challenges of outdoor applications. We also provide prospects for future research directions and challenges.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Typical perovskite solar cells structure and notable device efficiency progress.
Fig. 2: Representative charge transport materials for efficient p–i–n perovskite solar cells.
Fig. 3: Additive engineering of the perovskite layer.
Fig. 4: Perovskite–electron transport layer interface engineering.
Fig. 5: Hole transport layer–perovskite bottom surface engineering.
Fig. 6: Interconnection layer and top transparent electrode contact designs.
Fig. 7: Perovskite solar cells stability.
Fig. 8: Bifacial perovskite solar cells.

Similar content being viewed by others

References

  1. Green, M. A. et al. Solar cell efficiency tables (version 62). Prog. Photos. Res. Appl. 31, 651–663 (2023).

    Article  Google Scholar 

  2. Jiang, Q. et al. Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nat. Energy 2, 16177 (2017).

    Article  CAS  Google Scholar 

  3. Anaraki, E. H. et al. Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide. Energy Environ. Sci. 9, 3128–3134 (2016).

    Article  CAS  Google Scholar 

  4. Yoo, J. J. et al. Efficient perovskite solar cells via improved carrier management. Nature 590, 587–593 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Park, S. Y. & Zhu, K. Advances in SnO2 for efficient and stable n–i–p perovskite solar cells. Adv. Mater. 34, 2110438 (2022).

    Article  CAS  Google Scholar 

  6. Jiang, Q., Zhang, X. & You, J. SnO2: a wonderful electron transport layer for perovskite solar cells. Small 14, 1801154 (2018).

    Article  Google Scholar 

  7. Ren, G. et al. Strategies of modifying spiro-OMeTAD materials for perovskite solar cells: a review. J. Mater. Chem. A 9, 4589–4625 (2021).

    Article  CAS  Google Scholar 

  8. Liu, M., Johnston, M. B. & Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Lin, X. et al. Efficiency progress of inverted perovskite solar cells. Energy Environ. Sci. 13, 3823–3847 (2020).

    Article  CAS  Google Scholar 

  10. Li, D. et al. Recent progress of inverted organic–inorganic halide perovskite solar cells. J. Energy Chem. 79, 168–191 (2023).

    Article  CAS  Google Scholar 

  11. Li, B. & Zhang, W. Improving the stability of inverted perovskite solar cells towards commercialization. Commun. Mater. 3, 65 (2022).

    Article  Google Scholar 

  12. Li, X. et al. Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar cells. Science 375, 434–437 (2022).

    Article  CAS  PubMed  Google Scholar 

  13. Jiang, Q. et al. Surface reaction for efficient and stable inverted perovskite solar cells. Nature 611, 278–283 (2022).

    Article  CAS  PubMed  Google Scholar 

  14. Chen, H. et al. Quantum-size-tuned heterostructures enable efficient and stable inverted perovskite solar cells. Nat. Photon. 16, 352–358 (2022).

    Article  CAS  Google Scholar 

  15. Al-Ashouri, A. et al. Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells. Energy Environ. Sci. 12, 3356–3369 (2019).

    Article  CAS  Google Scholar 

  16. Li, F. et al. Regulating surface termination for efficient inverted perovskite solar cells with greater than 23% efficiency. J. Am. Chem. Soc. 142, 20134–20142 (2020).

    Article  CAS  PubMed  Google Scholar 

  17. Luo, D., Su, R., Zhang, W., Gong, Q. & Zhu, R. Minimizing non-radiative recombination losses in perovskite solar cells. Nat. Rev. Mater. 5, 44–60 (2020).

    Article  CAS  Google Scholar 

  18. Jeng, J.-Y. et al. CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Adv. Mater. 25, 3727–3732 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Zheng, X. et al. Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells. Nat. Energy 5, 131–140 (2020).

    Article  CAS  Google Scholar 

  20. Mariotti, S. et al. Interface engineering for high-performance, triple-halide perovskite–silicon tandem solar cells. Science 381, 63–69 (2023).

    Article  CAS  PubMed  Google Scholar 

  21. Chin, X. Y. et al. Interface passivation for 31.25%-efficient perovskite/silicon tandem solar cells. Science 381, 59–63 (2023).

    Article  CAS  PubMed  Google Scholar 

  22. Tan, Q. et al. Inverted perovskite solar cells using dimethylacridine-based dopants. Nature 620, 545–551 (2023).

    Article  CAS  PubMed  Google Scholar 

  23. Park, S. M. et al. Engineering ligand reactivity enables high-temperature operation of stable perovskite solar cells. Science 381, 209–215 (2023).

    Article  CAS  PubMed  Google Scholar 

  24. Li, F. et al. Hydrogen-bond-bridged intermediate for perovskite solar cells with enhanced efficiency and stability. Nat. Photon. 17, 478–484 (2023).

    Article  CAS  Google Scholar 

  25. Yu, S. et al. Homogenized NiOx nanoparticles for improved hole transport in inverted perovskite solar cells. Science 382, 1399–1404 (2023).

    Article  CAS  PubMed  Google Scholar 

  26. Aydin, E. et al. Enhanced optoelectronic coupling for perovskite/silicon tandem solar cells. Nature 623, 732–738 (2023).

    Article  CAS  PubMed  Google Scholar 

  27. Liu, C. et al. Bimolecularly passivated interface enables efficient and stable inverted perovskite solar cells. Science 382, 810–815 (2023).

    Article  CAS  PubMed  Google Scholar 

  28. Chin, Y.-C., Daboczi, M., Henderson, C., Luke, J. & Kim, J.-S. Suppressing PEDOT:PSS doping-induced interfacial recombination loss in perovskite solar cells. ACS Energy Lett. 7, 560–568 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kapil, G. et al. Tin–lead perovskite solar cells fabricated on hole selective monolayers. ACS Energy Lett. 7, 966–974 (2022).

    Article  CAS  Google Scholar 

  30. Zheng, X. et al. Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations. Nat. Energy 2, 17102 (2017).

    Article  CAS  Google Scholar 

  31. Fei, C. et al. Lead-chelating hole-transport layers for efficient and stable perovskite minimodules. Science 380, 823–829 (2023).

    Article  CAS  PubMed  Google Scholar 

  32. Wang, Y. et al. PTAA as efficient hole transport materials in perovskite solar cells: a review. Sol. RRL 6, 2200234 (2022).

    Article  CAS  Google Scholar 

  33. Deng, Y. et al. Defect compensation in formamidinium–caesium perovskites for highly efficient solar mini-modules with improved photostability. Nat. Energy 6, 633–641 (2021).

    Article  CAS  Google Scholar 

  34. Li, Z. et al. Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells. Science 376, 416–420 (2022).

    Article  CAS  PubMed  Google Scholar 

  35. Chen, Z. et al. Thin single crystal perovskite solar cells to harvest below-bandgap light absorption. Nat. Commun. 8, 1890 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Chen, Z. et al. Single-crystal MAPbI3 perovskite solar cells exceeding 21% power conversion efficiency. ACS Energy Lett. 4, 1258–1259 (2019).

    Article  CAS  Google Scholar 

  37. Degani, M. et al. 23.7% Efficient inverted perovskite solar cells by dual interfacial modification. Sci. Adv. 7, eabj7930 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yang, X. et al. Buried interfaces in halide perovskite photovoltaics. Adv. Mater. 33, 2006435 (2021).

    Article  CAS  Google Scholar 

  39. Xu, X. et al. Improving contact and passivation of buried interface for high-efficiency and large-area inverted perovskite solar cells. Adv. Funct. Mater. 32, 2109968 (2022).

    Article  CAS  Google Scholar 

  40. Xu, G. et al. Reducing energy disorder of hole transport layer by charge transfer complex for high performance p–i–n perovskite solar cells. Adv. Mater. 33, 2006753 (2021).

    Article  CAS  Google Scholar 

  41. Sun, X. et al. Efficient inverted perovskite solar cells with low voltage loss achieved by a pyridine-based dopant-free polymer semiconductor. Angew. Chem. Int. Ed. 60, 7227–7233 (2021).

    Article  CAS  Google Scholar 

  42. Chen, R. et al. Robust hole transport material with interface anchors enhances the efficiency and stability of inverted formamidinium–cesium perovskite solar cells with a certified efficiency of 22.3%. Energy Environ. Sci. 15, 2567–2580 (2022).

    Article  CAS  Google Scholar 

  43. Wu, S. et al. Modulation of defects and interfaces through alkylammonium interlayer for efficient inverted perovskite solar cells. Joule 4, 1248–1262 (2020).

    Article  CAS  Google Scholar 

  44. Li, J. et al. Universal bottom contact modification with diverse 2D spacers for high-performance inverted perovskite solar cells. Adv. Funct. Mater. 31, 2104036 (2021).

    Article  CAS  Google Scholar 

  45. Zhang, C. et al. Thermally crosslinked hole conductor enables stable inverted perovskite solar cells with 23.9% efficiency. Adv. Mater. 35, 2209422 (2023).

    Article  CAS  Google Scholar 

  46. Li, R., Liu, X. & Chen, J. Opportunities and challenges of hole transport materials for high-performance inverted hybrid-perovskite solar cells. Exploration 3, 20220027 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Magomedov, A. et al. Self-assembled hole transporting monolayer for highly efficient perovskite solar cells. Adv. Energy Mater. 8, 1801892 (2018).

    Article  Google Scholar 

  48. Yalcin, E. et al. Semiconductor self-assembled monolayers as selective contacts for efficient PiN perovskite solar cells. Energy Environ. Sci. 12, 230–237 (2019).

    Article  CAS  Google Scholar 

  49. Al-Ashouri, A. et al. Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science 370, 1300–1309 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Ulman, A. Formation and structure of self-assembled monolayers. Chem. Rev. 96, 1533–1554 (1996).

    Article  CAS  PubMed  Google Scholar 

  51. Ruiz-Preciado, M. A. et al. Monolithic two-terminal perovskite/CIS tandem solar cells with efficiency approaching 25%. ACS Energy Lett. 7, 2273–2281 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jošt, M. et al. Perovskite/CIGS tandem solar cells: from certified 24.2% toward 30% and beyond. ACS Energy Lett. 7, 1298–1307 (2022).

    Article  Google Scholar 

  53. Tong, J. et al. Carrier control in Sn–Pb perovskites via 2D cation engineering for all-perovskite tandem solar cells with improved efficiency and stability. Nat. Energy 7, 642–651 (2022).

    Article  CAS  Google Scholar 

  54. Jiang, Q. et al. Compositional texture engineering for highly stable wide-bandgap perovskite solar cells. Science 378, 1295–1300 (2022).

    Article  CAS  PubMed  Google Scholar 

  55. Al-Ashouri, A. et al. Wettability improvement of a carbazole-based hole-selective monolayer for reproducible perovskite solar cells. ACS Energy Lett. 8, 898–900 (2023).

    Article  CAS  Google Scholar 

  56. Jiang, Q. et al. Towards linking lab and field lifetimes of perovskite solar cells. Nature 623, 313–318 (2023).

    Article  CAS  PubMed  Google Scholar 

  57. Farag, A. et al. Evaporated self-assembled monolayer hole transport layers: lossless interfaces in p–i–n perovskite solar cells. Adv. Energy Mater. 13, 2203982 (2023).

    Article  CAS  Google Scholar 

  58. Zheng, X. et al. Co-deposition of hole-selective contact and absorber for improving the processability of perovskite solar cells. Nat. Energy 8, 462–472 (2023).

    Article  CAS  Google Scholar 

  59. Deng, X. et al. Co-assembled monolayers as hole-selective contact for high-performance inverted perovskite solar cells with optimized recombination loss and long-term stability. Angew. Chem. Int. Ed. 61, e202203088 (2022).

    Article  CAS  Google Scholar 

  60. Zhang, S. et al. Minimizing buried interfacial defects for efficient inverted perovskite solar cells. Science 380, 404–409 (2023).

    Article  CAS  PubMed  Google Scholar 

  61. Jiang, W. et al. π-Expanded carbazoles as hole-selective self-assembled monolayers for high-performance perovskite solar cells. Angew. Chem. Int. Ed. 61, e202213560 (2022).

    Article  CAS  Google Scholar 

  62. He, R. et al. Improving interface quality for 1-cm2 all-perovskite tandem solar cells. Nature 618, 80–86 (2023).

    Article  CAS  PubMed  Google Scholar 

  63. Rao, H. et al. A 19.0% efficiency achieved in CuOx-based inverted CH3NH3PbI3−xClx solar cells by an effective Cl doping method. Nano Energy 27, 51–57 (2016).

    Article  CAS  Google Scholar 

  64. Xu, P. et al. Coordination strategy driving the formation of compact CuSCN hole-transporting layers for efficient perovskite solar cells. Sol. RRL 5, 2000777 (2021).

    Article  CAS  Google Scholar 

  65. Liang, J.-W. et al. Cl2-doped CuSCN hole transport layer for organic and perovskite solar cells with improved stability. ACS Energy Lett. 7, 3139–3148 (2022).

    Article  CAS  Google Scholar 

  66. Ye, S. et al. A breakthrough efficiency of 19.9% obtained in inverted perovskite solar cells by using an efficient trap state passivator Cu(thiourea)I. J. Am. Chem. Soc. 139, 7504–7512 (2017).

    Article  CAS  PubMed  Google Scholar 

  67. Tavakoli, M. M., Yadav, P., Prochowicz, D. & Tavakoli, R. Efficient, hysteresis-free, and flexible inverted perovskite solar cells using all-vacuum processing. Sol. RRL 5, 2000552 (2021).

    Article  CAS  Google Scholar 

  68. Papadas, I. T. et al. Employing surfactant-assisted hydrothermal synthesis to control CuGaO2 nanoparticle formation and improved carrier selectivity of perovskite solar cells. Mater. Today Energy 8, 57–64 (2018).

    Article  Google Scholar 

  69. Chen, Y. et al. Thermally stable methylammonium-free inverted perovskite solar cells with Zn2+ doped CuGaO2 as efficient mesoporous hole-transporting layer. Nano Energy 61, 148–157 (2019).

    Article  CAS  Google Scholar 

  70. Sung, H. et al. Transparent conductive oxide-free graphene-based perovskite solar cells with over 17% efficiency. Adv. Energy Mater. 6, 1501873 (2016).

    Article  Google Scholar 

  71. Pérez-del-Rey, D. et al. Molecular passivation of MoO3: band alignment and protection of charge transport layers in vacuum-deposited perovskite solar cells. Chem. Mater. 31, 6945–6949 (2019).

    Article  Google Scholar 

  72. Jing, X., Zhang, Z., Chen, T. & Luo, J. Review of inorganic hole transport materials for perovskite solar cells. Energy Technol. 11, 2201005 (2023).

    Article  CAS  Google Scholar 

  73. Wu, Y. et al. Thermally stable MAPbI3 perovskite solar cells with efficiency of 19.19% and area over 1 cm2 achieved by additive engineering. Adv. Mater. 29, 1701073 (2017).

    Article  Google Scholar 

  74. Wu, Y. et al. Perovskite solar cells with 18.21% efficiency and area over 1 cm2 fabricated by heterojunction engineering. Nat. Energy 1, 16148 (2016).

    Article  CAS  Google Scholar 

  75. You, J. et al. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat. Nanotechnol. 11, 75–81 (2016).

    Article  PubMed  Google Scholar 

  76. Chen, W. et al. Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 350, 944–948 (2015).

    Article  CAS  PubMed  Google Scholar 

  77. Boyd, C. C. et al. Overcoming redox reactions at perovskite–nickel oxide interfaces to boost voltages in perovskite solar cells. Joule 4, 1759–1775 (2020).

    Article  CAS  Google Scholar 

  78. Wu, T. et al. Elimination of light-induced degradation at the nickel oxide—perovskite heterojunction by aprotic sulfonium layers towards long-term operationally stable inverted perovskite solar cells. Energy Environ. Sci. 15, 4612–4624 (2022).

    Article  CAS  Google Scholar 

  79. Zhu, X. et al. Inverted planar heterojunction perovskite solar cells with high ultraviolet stability. Nano Energy 103, 107849 (2022).

    Article  CAS  Google Scholar 

  80. Li, C. et al. Rational design of Lewis base molecules for stable and efficient inverted perovskite solar cells. Science 379, 690–694 (2023).

    Article  CAS  PubMed  Google Scholar 

  81. Thampy, S., Xu, W. & Hsu, J. W. P. Metal oxide-induced instability and its mitigation in halide perovskite solar cells. J. Phys. Chem. Lett. 12, 8495–8506 (2021).

    Article  CAS  PubMed  Google Scholar 

  82. Hu, Y. et al. Construction of charge transport channels at the NiOx/perovskite interface through moderate dipoles toward highly efficient inverted solar cells. ACS Appl. Mater. Interfaces 14, 13431–13439 (2022).

    Article  CAS  PubMed  Google Scholar 

  83. Ma, F. et al. Nickel oxide for inverted structure perovskite solar cells. J. Energy Chem. 52, 393–411 (2021).

    Article  CAS  Google Scholar 

  84. Ru, P. et al. High electron affinity enables fast hole extraction for efficient flexible inverted perovskite solar cells. Adv. Energy Mater. 10, 1903487 (2020).

    Article  CAS  Google Scholar 

  85. Bai, S. et al. Planar perovskite solar cells with long-term stability using ionic liquid additives. Nature 571, 245–250 (2019).

    Article  CAS  PubMed  Google Scholar 

  86. Chen, W. et al. Monolithic perovskite/organic tandem solar cells with 23.6% efficiency enabled by reduced voltage losses and optimized interconnecting layer. Nat. Energy 7, 229–237 (2022).

    Article  CAS  Google Scholar 

  87. Chen, B. et al. Passivation of the buried interface via preferential crystallization of 2D perovskite on metal oxide transport layers. Adv. Mater. 33, 2103394 (2021).

    Article  CAS  Google Scholar 

  88. Jiang, Q. et al. Highly efficient bifacial single-junction perovskite solar cells. Joule 7, 1543–1555 (2023).

    Article  CAS  Google Scholar 

  89. Shao, Y., Xiao, Z., Bi, C., Yuan, Y. & Huang, J. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat. Commun. 5, 5784 (2014).

    Article  CAS  PubMed  Google Scholar 

  90. Jiang, X. et al. Ultra-high open-circuit voltage of tin perovskite solar cells via an electron transporting layer design. Nat. Commun. 11, 1245 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Liang, P.-W., Chueh, C.-C., Williams, S. T. & Jen, A. K.-Y. Roles of fullerene-based interlayers in enhancing the performance of organometal perovskite thin-film solar cells. Adv. Energy Mater. 5, 1402321 (2015).

    Article  Google Scholar 

  92. Liu, Z., Siekmann, J., Klingebiel, B., Rau, U. & Kirchartz, T. Interface optimization via fullerene blends enables open-circuit voltages of 1.35 V in CH3NH3Pb(I0.8Br0.2)3 solar cells. Adv. Energy Mater. 11, 2003386 (2021).

    Article  CAS  Google Scholar 

  93. Chen, C. et al. Effect of BCP buffer layer on eliminating charge accumulation for high performance of inverted perovskite solar cells. RSC Adv. 7, 35819–35826 (2017).

    Article  CAS  Google Scholar 

  94. Troughton, J. et al. A universal solution processed interfacial bilayer enabling ohmic contact in organic and hybrid optoelectronic devices. Energy Environ. Sci. 13, 268–276 (2020).

    Article  CAS  Google Scholar 

  95. Hu, X. et al. 22% Efficiency inverted perovskite photovoltaic cell using cation-doped brookite TiO2 top buffer. Adv. Sci. 7, 2001285 (2020).

    Article  CAS  Google Scholar 

  96. Zhu, Z. et al. Enhanced efficiency and stability of inverted perovskite solar cells using highly crystalline SnO2 nanocrystals as the robust electron-transporting layer. Adv. Mater. 28, 6478–6484 (2016).

    Article  CAS  PubMed  Google Scholar 

  97. Fang, R. et al. [6,6]-phenyl-C61-butyric acid methyl ester/cerium oxide bilayer structure as efficient and stable electron transport layer for inverted perovskite solar cells. ACS Nano 12, 2403–2414 (2018).

    Article  CAS  PubMed  Google Scholar 

  98. Xiao, K. et al. Scalable processing for realizing 21.7%-efficient all-perovskite tandem solar modules. Science 376, 762–767 (2022).

    Article  CAS  PubMed  Google Scholar 

  99. Jungbluth, A., Kaienburg, P. & Riede, M. Charge transfer state characterization and voltage losses of organic solar cells. J. Phys. Mater. 5, 024002 (2022).

    Article  Google Scholar 

  100. Palmstrom, A. F. et al. Interfacial effects of tin oxide atomic layer deposition in metal halide perovskite photovoltaics. Adv. Energy Mater. 8, 1800591 (2018).

    Article  Google Scholar 

  101. Azzopardi, B. et al. Economic assessment of solar electricity production from organic-based photovoltaic modules in a domestic environment. Energy Environ. Sci. 4, 3741–3753 (2011).

    Article  Google Scholar 

  102. Song, Z. et al. A technoeconomic analysis of perovskite solar module manufacturing with low-cost materials and techniques. Energy Environ. Sci. 10, 1297–1305 (2017).

    Article  CAS  Google Scholar 

  103. Conings, B. et al. Intrinsic thermal instability of methylammonium lead trihalide perovskite. Adv. Energy Mater. 5, 1500477 (2015).

    Article  Google Scholar 

  104. Bryant, D. et al. Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells. Energy Environ. Sci. 9, 1655–1660 (2016).

    Article  CAS  Google Scholar 

  105. Chen, R. et al. Reduction of bulk and surface defects in inverted methylammonium- and bromide-free formamidinium perovskite solar cells. Nat. Energy 8, 839–849 (2023).

    Article  CAS  Google Scholar 

  106. Li, H. et al. 2D/3D heterojunction engineering at the buried interface towards high-performance inverted methylammonium-free perovskite solar cells. Nat. Energy 8, 946–955 (2023).

    Article  CAS  Google Scholar 

  107. Li, C. et al. Low-bandgap mixed tin–lead iodide perovskites with reduced methylammonium for simultaneous enhancement of solar cell efficiency and stability. Nat. Energy 5, 768–776 (2020).

    Article  CAS  Google Scholar 

  108. Chi, D. et al. Composition and interface engineering for efficient and thermally stable Pb–Sn mixed low-bandgap perovskite solar cells. Adv. Funct. Mater. 28, 1804603 (2018).

    Article  Google Scholar 

  109. Wu, P. et al. Efficient and thermally stable all-perovskite tandem solar cells using all-FA narrow-bandgap perovskite and metal-oxide-based tunnel junction. Adv. Energy Mater. 12, 2202948 (2022).

    Article  CAS  Google Scholar 

  110. Prasanna, R. et al. Design of low bandgap tin–lead halide perovskite solar cells to achieve thermal, atmospheric and operational stability. Nat. Energy 4, 939–947 (2019).

    Article  CAS  Google Scholar 

  111. Tong, J. et al. High-performance methylammonium-free ideal-band-gap perovskite solar cells. Matter 4, 1365–1376 (2021).

    Article  CAS  Google Scholar 

  112. Ji, S. G. et al. Stable pure-iodide wide-band-gap perovskites for efficient Si tandem cells via kinetically controlled phase evolution. Joule 6, 2390–2405 (2022).

    Article  CAS  Google Scholar 

  113. Eperon, G. E. et al. The role of dimethylammonium in bandgap modulation for stable halide perovskites. ACS Energy Lett. 5, 1856–1864 (2020).

    Article  CAS  Google Scholar 

  114. Palmstrom, A. F. et al. Enabling flexible all-perovskite tandem solar cells. Joule 3, 2193–2204 (2019).

    Article  CAS  Google Scholar 

  115. Wang, Z. et al. Suppressed phase segregation for triple-junction perovskite solar cells. Nature 618, 74–79 (2023).

    Article  CAS  PubMed  Google Scholar 

  116. Zhu, J. et al. A donor–acceptor-type hole-selective contact reducing non-radiative recombination losses in both subcells towards efficient all-perovskite tandems. Nat. Energy 8, 714–724 (2023).

    Article  CAS  Google Scholar 

  117. Chen, H. et al. Regulating surface potential maximizes voltage in all-perovskite tandems. Nature 613, 676–681 (2023).

    Article  CAS  PubMed  Google Scholar 

  118. Ramadan, A. J., Oliver, R. D. J., Johnston, M. B. & Snaith, H. J. Methylammonium-free wide-bandgap metal halide perovskites for tandem photovoltaics. Nat. Rev. Mater. 8, 822–838 (2023).

    Article  CAS  Google Scholar 

  119. Oliver, R. D. J. et al. Understanding and suppressing non-radiative losses in methylammonium-free wide-bandgap perovskite solar cells. Energy Environ. Sci. 15, 714–726 (2022).

    Article  CAS  Google Scholar 

  120. Xu, F., Zhang, M., Li, Z., Yang, X. & Zhu, R. Challenges and perspectives toward future wide-bandgap mixed-halide perovskite photovoltaics. Adv. Energy Mater. 13, 2203911 (2023).

    Article  CAS  Google Scholar 

  121. Kim, S.-G. et al. How antisolvent miscibility affects perovskite film wrinkling and photovoltaic properties. Nat. Commun. 12, 1554 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Ghosh, S., Mishra, S. & Singh, T. Antisolvents in perovskite solar cells: importance, issues, and alternatives. Adv. Mater. Interfaces 7, 2000950 (2020).

    Article  CAS  Google Scholar 

  123. Li, Z. et al. Scalable fabrication of perovskite solar cells. Nat. Rev. Mater. 3, 18017 (2018).

    Article  CAS  Google Scholar 

  124. Wu, C.-G. et al. High efficiency stable inverted perovskite solar cells without current hysteresis. Energy Environ. Sci. 8, 2725–2733 (2015).

    Article  CAS  Google Scholar 

  125. Chiang, C.-H., Nazeeruddin, M. K., Grätzel, M. & Wu, C.-G. The synergistic effect of H2O and DMF towards stable and 20% efficiency inverted perovskite solar cells. Energy Environ. Sci. 10, 808–817 (2017).

    Article  CAS  Google Scholar 

  126. Zhou, L. et al. Highly efficient and stable planar perovskite solar cells with modulated diffusion passivation toward high power conversion efficiency and ultrahigh fill factor. Sol. RRL 3, 1900293 (2019).

    Article  CAS  Google Scholar 

  127. Xiao, Z. et al. Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement. Adv. Mater. 26, 6503–6509 (2014).

    Article  CAS  PubMed  Google Scholar 

  128. Chen, P. et al. Efficient inverted perovskite solar cells via improved sequential deposition. Adv. Mater. 35, 2206345 (2023).

    Article  CAS  Google Scholar 

  129. Song, D., Narra, S., Li, M.-Y., Lin, J.-S. & Diau, E. W.-G. Interfacial engineering with a hole-selective self-assembled monolayer for tin perovskite solar cells via a two-step fabrication. ACS Energy Lett. 6, 4179–4186 (2021).

    Article  CAS  Google Scholar 

  130. Chen, B. et al. A two-step solution-processed wide-bandgap perovskite for monolithic silicon-based tandem solar cells with >27% efficiency. ACS Energy Lett. 7, 2771–2780 (2022).

    Article  CAS  Google Scholar 

  131. Sahli, F. et al. Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nat. Mater. 17, 820–826 (2018).

    Article  CAS  PubMed  Google Scholar 

  132. Yuan, G. et al. Inhibited crack development by compressive strain in perovskite solar cells with improved mechanical stability. Adv. Mater. 35, 2211257 (2023).

    Article  CAS  Google Scholar 

  133. Liu, K. et al. Zwitterionic-surfactant-assisted room-temperature coating of efficient perovskite solar cells. Joule 4, 2404–2425 (2020).

    Article  CAS  Google Scholar 

  134. Li, M. et al. Stabilizing perovskite precursor by synergy of functional groups for NiOx-based inverted solar cells with 23.5% efficiency. Angew. Chem. Int. Ed. 61, e202206914 (2022).

    Article  CAS  Google Scholar 

  135. Chen, S., Xiao, X., Gu, H. & Huang, J. Iodine reduction for reproducible and high-performance perovskite solar cells and modules. Sci. Adv. 7, eabe8130 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Dai, X. et al. Efficient monolithic all-perovskite tandem solar modules with small cell-to-module derate. Nat. Energy 7, 923–931 (2022).

    Article  CAS  Google Scholar 

  137. Hu, S. et al. Optimized carrier extraction at interfaces for 23.6% efficient tin–lead perovskite solar cells. Energy Environ. Sci. 15, 2096–2107 (2022).

    Article  CAS  Google Scholar 

  138. Lin, Y.-H. et al. A piperidinium salt stabilizes efficient metal-halide perovskite solar cells. Science 369, 96–102 (2020).

    Article  CAS  PubMed  Google Scholar 

  139. Cao, Q. et al. Efficient and stable inverted perovskite solar cells with very high fill factors via incorporation of star-shaped polymer. Sci. Adv. 7, eabg0633 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Aydin, E., De Bastiani, M. & De Wolf, S. Defect and contact passivation for perovskite solar cells. Adv. Mater. 31, 1900428 (2019).

    Article  Google Scholar 

  141. Xiao, K. et al. All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant. Nat. Energy 5, 870–880 (2020).

    Article  Google Scholar 

  142. Tong, J. et al. Carrier lifetimes of >1 μs in Sn–Pb perovskites enable efficient all-perovskite tandem solar cells. Science 364, 475–479 (2019).

    Article  CAS  PubMed  Google Scholar 

  143. Lin, R. et al. All-perovskite tandem solar cells with improved grain surface passivation. Nature 603, 73–78 (2022).

    Article  CAS  PubMed  Google Scholar 

  144. Ye, J. Y. et al. Enhancing charge transport of 2D perovskite passivation agent for wide-bandgap perovskite solar cells beyond 21%. Sol. RRL 4, 2000082 (2020).

    Article  CAS  Google Scholar 

  145. Shen, X. et al. Chloride-based additive engineering for efficient and stable wide-bandgap perovskite solar cells. Adv. Mater. 35, 2211742 (2023).

    Article  CAS  Google Scholar 

  146. Isikgor, F. H. et al. Concurrent cationic and anionic perovskite defect passivation enables 27.4% perovskite/silicon tandems with suppression of halide segregation. Joule 5, 1566–1586 (2021).

    Article  CAS  Google Scholar 

  147. Luo, X. et al. Efficient perovskite/silicon tandem solar cells on industrially compatible textured silicon. Adv. Mater. 35, 2207883 (2023).

    Article  CAS  Google Scholar 

  148. Liu, J. et al. 28.2%-Efficient, outdoor-stable perovskite/silicon tandem solar cell. Joule 5, 3169–3186 (2021).

    Article  CAS  Google Scholar 

  149. Zheng, Y. et al. Downward homogenized crystallization for inverted wide-bandgap mixed-halide perovskite solar cells with 21% efficiency and suppressed photo-induced halide segregation. Adv. Funct. Mater. 32, 2200431 (2022).

    Article  CAS  Google Scholar 

  150. Su, G. et al. Crystallization regulation and defect passivation for efficient inverted wide-bandgap perovskite solar cells with over 21% efficiency. Adv. Energy Mater. 14, 2303344 (2024).

    Article  CAS  Google Scholar 

  151. Guan, H. et al. Regulating crystal orientation via ligand anchoring enables efficient wide-bandgap perovskite solar cells and tandems. Adv. Mater. 36, 2307987 (2024).

    Article  CAS  Google Scholar 

  152. Qiao, L. et al. Freezing halide segregation under intense light for photostable perovskite/silicon tandem solar cells. Adv. Energy Mater. 14, 2302983 (2024).

    Article  CAS  Google Scholar 

  153. Kim, D. et al. Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites. Science 368, 155–160 (2020).

    Article  CAS  PubMed  Google Scholar 

  154. Kim, D. H. et al. Bimolecular additives improve wide-band-gap perovskites for efficient tandem solar cells with CIGS. Joule 3, 1734–1745 (2019).

    Article  CAS  Google Scholar 

  155. Akman, E., Shalan, A. E., Sadegh, F. & Akin, S. Moisture-resistant FAPbI3 perovskite solar cell with 22.25% power conversion efficiency through pentafluorobenzyl phosphonic acid passivation. ChemSusChem 14, 1176–1183 (2021).

    Article  CAS  PubMed  Google Scholar 

  156. Yang, S. et al. Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts. Science 365, 473–478 (2019).

    Article  CAS  PubMed  Google Scholar 

  157. Azmi, R. et al. Damp heat-stable perovskite solar cells with tailored-dimensionality 2D/3D heterojunctions. Science 376, 73–77 (2022).

    Article  CAS  PubMed  Google Scholar 

  158. Lin, R. et al. All-perovskite tandem solar cells with 3D/3D bilayer perovskite heterojunction. Nature 620, 994–1000 (2023).

    Article  CAS  PubMed  Google Scholar 

  159. Luo, D. et al. Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. Science 360, 1442–1446 (2018).

    Article  CAS  PubMed  Google Scholar 

  160. Chen, C. et al. Achieving a high open-circuit voltage in inverted wide-bandgap perovskite solar cells with a graded perovskite homojunction. Nano Energy 61, 141–147 (2019).

    Article  CAS  Google Scholar 

  161. Gharibzadeh, S. et al. Two birds with one stone: dual grain-boundary and interface passivation enables >22% efficient inverted methylammonium-free perovskite solar cells. Energy Environ. Sci. 14, 5875–5893 (2021).

    Article  CAS  Google Scholar 

  162. Li, T. et al. Inorganic wide-bandgap perovskite subcells with dipole bridge for all-perovskite tandems. Nat. Energy 8, 610–620 (2023).

    Article  CAS  Google Scholar 

  163. Kapil, G. et al. Tin-lead perovskite fabricated via ethylenediamine interlayer guides to the solar cell efficiency of 21.74%. Adv. Energy Mater. 11, 2101069 (2021).

    Article  CAS  Google Scholar 

  164. Haider, M. I. et al. Ethylenediamine vapors-assisted surface passivation of perovskite films for efficient inverted solar cells. Sol. RRL 7, 2201092 (2023).

    Article  CAS  Google Scholar 

  165. Liang, Z. et al. A selective targeting anchor strategy affords efficient and stable ideal-bandgap perovskite solar cells. Adv. Mater. 34, 2110241 (2022).

    Article  CAS  Google Scholar 

  166. Wang, X. et al. Highly efficient perovskite/organic tandem solar cells enabled by mixed-cation surface modulation. Adv. Mater. 35, 2305946 (2023).

    Article  CAS  Google Scholar 

  167. Ni, Z. et al. Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells. Science 367, 1352–1358 (2020).

    Article  CAS  PubMed  Google Scholar 

  168. Zhu, R. Inverted devices are catching up. Nat. Energy 5, 123–124 (2020).

    Article  Google Scholar 

  169. Chen, S. et al. Identifying the soft nature of defective perovskite surface layer and its removal using a facile mechanical approach. Joule 4, 2661–2674 (2020).

    Article  CAS  Google Scholar 

  170. Peng, W. et al. Reducing nonradiative recombination in perovskite solar cells with a porous insulator contact. Science 379, 683–690 (2023).

    Article  CAS  PubMed  Google Scholar 

  171. Zhang, J. et al. Elimination of interfacial lattice mismatch and detrimental reaction by self-assembled layer dual-passivation for efficient and stable inverted perovskite solar cells. Adv. Energy Mater. 12, 2103674 (2022).

    Article  CAS  Google Scholar 

  172. Wang, S. et al. Critical role of removing impurities in nickel oxide on high-efficiency and long-term stability of inverted perovskite solar cells. Angew. Chem. Int. Ed. 61, e202116534 (2022).

    Article  CAS  Google Scholar 

  173. Chen, W. et al. Molecule-doped nickel oxide: verified charge transfer and planar inverted mixed cation perovskite solar cell. Adv. Mater. 30, 1800515 (2018).

    Article  Google Scholar 

  174. Phung, N. et al. Enhanced self-assembled monolayer surface coverage by ALD NiO in p–i–n perovskite solar cells. ACS Appl. Mater. Interfaces 14, 2166–2176 (2022).

    Article  CAS  PubMed  Google Scholar 

  175. Li, Z. et al. Stabilized hole-selective layer for high-performance inverted p–i–n perovskite solar cells. Science 382, 284–289 (2023).

    Article  CAS  PubMed  Google Scholar 

  176. Li, L. et al. Flexible all-perovskite tandem solar cells approaching 25% efficiency with molecule-bridged hole-selective contact. Nat. Energy 7, 708–717 (2022).

    Article  CAS  Google Scholar 

  177. Alghamdi, A. R. M., Yanagida, M., Shirai, Y., Andersson, G. G. & Miyano, K. Surface passivation of sputtered NiOx using a SAM interface layer to enhance the performance of perovskite solar cells. ACS Omega 7, 12147–12157 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Hörantner, M. T. et al. The potential of multijunction perovskite solar cells. ACS Energy Lett. 2, 2506–2513 (2017).

    Article  Google Scholar 

  179. Werner, J., Boyd, C. C. & McGehee, M. D. in Perovskite Photovoltaics and Optoelectronics: From Fundamentals to Advanced Applications (ed. Miyasaka, T.) 433–453 (Wiley-VCH, 2021).

  180. Brinkmann, K. O. et al. Perovskite–organic tandem solar cells with indium oxide interconnect. Nature 604, 280–286 (2022).

    Article  CAS  PubMed  Google Scholar 

  181. Chen, X. et al. Efficient and reproducible monolithic perovskite/organic tandem solar cells with low-loss interconnecting layers. Joule 4, 1594–1606 (2020).

    Article  CAS  Google Scholar 

  182. Gu, S. et al. Tin and mixed lead–tin halide perovskite solar cells: progress and their application in tandem solar cells. Adv. Mater. 32, 1907392 (2020).

    Article  CAS  Google Scholar 

  183. Bush, K. A. et al. Thermal and environmental stability of semi-transparent perovskite solar cells for tandems enabled by a solution-processed nanoparticle buffer layer and sputtered ITO electrode. Adv. Mater. 28, 3937–3943 (2016).

    Article  CAS  PubMed  Google Scholar 

  184. Yu, Z. et al. Simplified interconnection structure based on C60/SnO2−x for all-perovskite tandem solar cells. Nat. Energy 5, 657–665 (2020).

    Article  CAS  Google Scholar 

  185. Kothandaraman, R. K., Jiang, Y., Feurer, T., Tiwari, A. N. & Fu, F. Near-infrared-transparent perovskite solar cells and perovskite-based tandem photovoltaics. Small Methods 4, 2000395 (2020).

    Article  CAS  Google Scholar 

  186. Khan, F., Rezgui, B. D., Khan, M. T. & Al-Sulaiman, F. Perovskite-based tandem solar cells: device architecture, stability, and economic perspectives. Renew. Sustain. Energy Rev. 165, 112553 (2022).

    Article  CAS  Google Scholar 

  187. Han, W. et al. Highly conductive and broadband transparent Zr-doped In2O3 as the front electrode for monolithic perovskite/silicon tandem solar cells. Prog. Photos. Res. Appl. 31, 1032–1041 (2023).

    Article  CAS  Google Scholar 

  188. Schultes, M. et al. Sputtered transparent electrodes (IO:H and IZO) with low parasitic near-infrared absorption for perovskite–Cu(In,Ga)Se2 tandem solar cells. ACS Appl. Energy Mater. 2, 7823–7831 (2019).

    Article  CAS  Google Scholar 

  189. Bati, A. S. R. et al. Next-generation applications for integrated perovskite solar cells. Commun. Mater. 4, 2 (2023).

    Article  CAS  Google Scholar 

  190. Peng, Z.-W. et al. Upscaling of perovskite/c-Si tandem solar cells by using industrial adaptable processes. AIP Conf. Proc. 2826, 090003 (2023).

    Article  CAS  Google Scholar 

  191. Rehman, A. U. et al. Electrode metallization for scaled perovskite/silicon tandem solar cells: challenges and opportunities. Prog. Photos. Res. Appl. 31, 429–442 (2023).

    Article  CAS  Google Scholar 

  192. Gaulding, E. A. et al. Package development for reliability testing of perovskites. ACS Energy Lett. 7, 2641–2645 (2022).

    Article  CAS  Google Scholar 

  193. Babics, M. et al. One-year outdoor operation of monolithic perovskite/silicon tandem solar cells. Cell Rep. Phys. Sci. 4, 101280 (2023).

    Article  CAS  Google Scholar 

  194. Emery, Q. et al. Encapsulation and outdoor testing of perovskite solar cells: comparing industrially relevant process with a simplified lab procedure. ACS Appl. Mater. Interfaces 14, 5159–5167 (2022).

    Article  CAS  PubMed  Google Scholar 

  195. Pescetelli, S. et al. Integration of two-dimensional materials-based perovskite solar panels into a stand-alone solar farm. Nat. Energy 7, 597–607 (2022).

    Article  Google Scholar 

  196. Gu, H. et al. Design optimization of bifacial perovskite minimodules for improved efficiency and stability. Nat. Energy 8, 675–684 (2023).

    Article  CAS  Google Scholar 

  197. Park, S. M. et al. Low-loss contacts on textured substrates for inverted perovskite solar cells. Nature 624, 289–294 (2023).

    Article  CAS  PubMed  Google Scholar 

  198. Feng, M. et al. Rational buried interface engineering of inorganic NiOx layer toward efficient inverted perovskite solar cells. Sol. RRL 36, 2300712 (2023).

    Google Scholar 

  199. Yang, Y. et al. Inverted perovskite solar cells with over 2,000 h operational stability at 85 °C using fixed charge passivation. Nat. Energy 9, 1–10 (2023).

    Article  Google Scholar 

  200. Park, B.-w & Seok, S. I. Intrinsic instability of inorganic–organic hybrid halide perovskite materials. Adv. Mater. 31, 1805337 (2019).

    Article  Google Scholar 

  201. Wu, Z. et al. Highly efficient and stable perovskite solar cells via modification of energy levels at the perovskite/carbon electrode interface. Adv. Mater. 31, 1804284 (2019).

    Article  Google Scholar 

  202. Bush, K. A. et al. 23.6%-Efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat. Energy 2, 17009 (2017).

    Article  CAS  Google Scholar 

  203. Ito, N. et al. Electrical and optical properties of amorphous indium zinc oxide films. Thin Solid Films 496, 99–103 (2006).

    Article  CAS  Google Scholar 

  204. Wu, S. et al. A chemically inert bismuth interlayer enhances long-term stability of inverted perovskite solar cells. Nat. Commun. 10, 1161 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Kaltenbrunner, M. et al. Flexible high power-per-weight perovskite solar cells with chromium oxide–metal contacts for improved stability in air. Nat. Mater. 14, 1032–1039 (2015).

    Article  CAS  PubMed  Google Scholar 

  206. Song, Z., Li, C., Chen, L. & Yan, Y. Perovskite solar cells go bifacial — mutual benefits for efficiency and durability. Adv. Mater. 34, 2106805 (2022).

    Article  CAS  Google Scholar 

  207. De Bastiani, M. et al. Bifacial perovskite/silicon tandem solar cells. Joule 6, 1431–1445 (2022).

    Article  Google Scholar 

  208. Li, H. et al. Revealing the output power potential of bifacial monolithic all-perovskite tandem solar cells. eLight 2, 21 (2022).

    Article  CAS  Google Scholar 

  209. Chen, B. et al. Bifacial all-perovskite tandem solar cells. Sci. Adv. 8, eadd0377 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Khenkin, M. V. et al. Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. Nat. Energy 5, 35–49 (2020).

    Article  Google Scholar 

  211. Holzhey, P. & Saliba, M. A full overview of international standards assessing the long-term stability of perovskite solar cells. J. Mater. Chem. A 6, 21794–21808 (2018).

    Article  CAS  Google Scholar 

  212. Jošt, M. et al. Perovskite solar cells go outdoors: field testing and temperature effects on energy yield. Adv. Energy Mater. 10, 2000454 (2020).

    Article  Google Scholar 

  213. Li, J. et al. Ink design enabling slot-die coated perovskite solar cells with >22% power conversion efficiency, micro-modules, and 1 year of outdoor performance evaluation. Adv. Energy Mater. 13, 2203898 (2023).

    Article  CAS  Google Scholar 

  214. Domanski, K., Alharbi, E. A., Hagfeldt, A., Grätzel, M. & Tress, W. Systematic investigation of the impact of operation conditions on the degradation behaviour of perovskite solar cells. Nat. Energy 3, 61–67 (2018).

    Article  CAS  Google Scholar 

  215. Paek, S. et al. Cation optimization for burn-in loss-free perovskite solar devices. J. Mater. Chem. A 9, 5374–5380 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the US Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. The authors acknowledge the support from the Advanced Perovskite Cells and Modules programme of the National Center for Photovoltaics, funded by the US Department of Energy, Office of Energy Efficiency and Renewable Energy, Solar Energy Technologies Office. The views expressed in the article do not necessarily represent the views of the DOE or the US Government. The US Government retains and the publisher, by accepting the article for publication, acknowledges that the US Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for US Government purposes.

Author information

Authors and Affiliations

Authors

Contributions

Q.J. researched data for the article. Q.J. and K.Z. wrote the article.

Corresponding authors

Correspondence to Qi Jiang or Kai Zhu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Liyuan Han, Nam-Gyu Park and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Q., Zhu, K. Rapid advances enabling high-performance inverted perovskite solar cells. Nat Rev Mater 9, 399–419 (2024). https://doi.org/10.1038/s41578-024-00678-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-024-00678-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing