Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Observation of quadrupolar and dipolar excitons in a semiconductor heterotrilayer

Abstract

Van der Waals (vdW) materials have opened up many avenues for discovery through layer assembly, as epitomized by interlayer dipolar excitons that exhibit electrically tunable luminescence, lasing and exciton condensation. Extending interlayer excitons to more vdW layers, however, raises fundamental questions concerning coherence within excitons and coupling between moiré superlattices at multiple interfaces. Here, by assembling angle-aligned WSe2/WS2/WSe2 heterotrilayers, we demonstrate the emergence of quadrupolar excitons. We confirm the exciton’s quadrupolar nature by the decrease in its energy of 12 meV from coherent hole tunnelling between the two outer layers, its tunable static dipole moment under an external electric field and the reduced exciton–exciton interactions. At high exciton density, we also see signatures of a phase of oppositely aligned dipolar excitons, consistent with a staggered dipolar phase predicted to be driven by attractive dipolar interactions. Our demonstration paves the way for discovering emergent exciton orderings for three vdW layers and beyond.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Device structure and electric-field control of different exciton species.
Fig. 2: Electrical-field tuning of dipolar and quadrupolar interlayer excitons observed in the PL.
Fig. 3: Density-dependent spectra showing the interactions between excitons.
Fig. 4: PFM images of heterobilayers and heterotrilayers.
Fig. 5: Signatures of dipolar exciton ordering in a heterotrilayer at elevated exciton densities.

Similar content being viewed by others

Data availability

Source data are provided with this paper. All other datasets generated during and/or analysed during this study are available from the corresponding authors upon reasonable request.

References

  1. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article  CAS  Google Scholar 

  2. Rivera, P. et al. Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures. Nat. Commun. 6, 6242 (2015).

    Article  CAS  Google Scholar 

  3. Jauregui, L. A. et al. Electrical control of interlayer exciton dynamics in atomically thin heterostructures. Science 366, 870–875 (2019).

    Article  CAS  Google Scholar 

  4. Karni, O. et al. Infrared interlayer exciton emission in MoS2/WSe2 heterostructures. Phys. Rev. Lett. 123, 247402 (2019).

    Article  CAS  Google Scholar 

  5. Seyler, K. L. et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 567, 66–70 (2019).

    Article  CAS  Google Scholar 

  6. Tran, K. et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 567, 71–75 (2019).

    Article  CAS  Google Scholar 

  7. Jin, C. et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature 567, 76–80 (2019).

    Article  CAS  Google Scholar 

  8. Alexeev, E. M. et al. Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures. Nature 567, 81–86 (2019).

    Article  CAS  Google Scholar 

  9. Park, J. M., Cao, Y., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene. Nature 590, 249–255 (2021).

    Article  CAS  Google Scholar 

  10. Slobodkin, Y. et al. Quantum phase transitions of trilayer excitons in atomically thin heterostructures. Phys. Rev. Lett. 125, 255301 (2020).

    Article  CAS  Google Scholar 

  11. Astrakharchik, G. E., Kurbakov, I. L., Sychev, D. V., Fedorov, A. K. & Lozovik, Y. E. Quantum phase transition of a two-dimensional quadrupolar system. Phys. Rev. B 103, L140101 (2021).

    Article  CAS  Google Scholar 

  12. Tong, Q., Chen, M., Xiao, F., Yu, H. & Yao, W. Interferences of electrostatic moiré potentials and bichromatic superlattices of electrons and excitons in transition metal dichalcogenides. 2D Mater. 8, 025007 (2020).

    Article  Google Scholar 

  13. Choi, C. et al. Enhanced interlayer neutral excitons and trions in trilayer van der Waals heterostructures. npj 2D Mater. Appl. 2, 30 (2018).

    Article  Google Scholar 

  14. Baranowski, M. et al. Probing the interlayer exciton physics in a MoS2/MoSe2/MoS2 van der Waals heterostructure. Nano Lett. 17, 6360–6365 (2017).

    Article  CAS  Google Scholar 

  15. Ceballos, F., Ju, M. G., Lane, S. D., Zeng, X. C. & Zhao, H. Highly efficient and anomalous charge transfer in van der Waals trilayer semiconductors. Nano Lett. 17, 1623–1628 (2017).

    Article  CAS  Google Scholar 

  16. Leisgang, N. et al. Giant Stark splitting of an exciton in bilayer MoS2. Nat. Nanotechnol. 15, 901–907 (2020).

    Article  CAS  Google Scholar 

  17. Sun, D. et al. Observation of rapid exciton–exciton annihilation in monolayer molybdenum disulfide. Nano Lett. 14, 5625–5629 (2014).

    Article  CAS  Google Scholar 

  18. Choi, J. et al. Moiré potential impedes interlayer exciton diffusion in van der Waals heterostructures. Sci. Adv. 6, eaba8866 (2020).

    Article  CAS  Google Scholar 

  19. Zhang, L. et al. Highly valley-polarized singlet and triplet interlayer excitons in van der Waals heterostructure. Phys. Rev. B 100, 041402 (2019).

    Article  CAS  Google Scholar 

  20. Wang, T. et al. Giant valley-Zeeman splitting from spin-singlet and spin-triplet interlayer excitons in WSe2/MoSe2 heterostructure. Nano Lett. 20, 694–700 (2020).

    Article  CAS  Google Scholar 

  21. Yu, J. et al. Observation of double indirect interlayer exciton in WSe2/WS2 heterostructure. Opt. Express 28, 13260 (2020).

    Article  CAS  Google Scholar 

  22. Laikhtman, B. & Rapaport, R. Exciton correlations in coupled quantum wells and their luminescence blue shift. Phys. Rev. B 80, 195313 (2009).

    Article  Google Scholar 

  23. McGilly, L. J. et al. Visualization of moiré superlattices. Nat. Nanotechnol. 15, 580–584 (2020).

    Article  CAS  Google Scholar 

  24. Li, X., Wu, F. & Macdonald, A. H. Electronic structure of single-twist trilayer graphene. Preprint at http://arxiv.org/abs/1907.12338 (2019).

  25. Zhang, Y. H., Sheng, D. N. & Vishwanath, A. SU(4) chiral spin liquid, exciton supersolid, and electric detection in moiré bilayers. Phys. Rev. Lett. 127, 247701 (2021).

    Article  CAS  Google Scholar 

  26. Miao, S. et al. Strong interaction between interlayer excitons and correlated electrons in WSe2/WS2 moiré superlattice. Nat. Commun. 12, 8–13 (2021).

    Article  Google Scholar 

  27. Bai, Y. et al. Evidence for exciton crystals in a 2D semiconductor heterotrilayer. Preprint at http://arxiv.org/abs/2207.09601 (2022).

  28. Li, W. et al. Quadrupolar–dipolar excitonic transition in a tunnel-coupled van der Waals heterotrilayer. Nat. Mater. https://doi.org/10.1038/s41563-023-01667-1 (2023).

  29. Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    Article  CAS  Google Scholar 

  30. Jain, A. et al. One-dimensional edge contacts to a monolayer semiconductor. Nano Lett. 19, 6914–6923 (2019).

    Article  CAS  Google Scholar 

  31. Li, H. et al. Imaging moiré flat bands in three-dimensional reconstructed WSe2/WS2 superlattices. Nat. Mater. 20, 945–950 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division under award number DE-SC0020115 and, for sample preparation, under SLAC FWP 100459. Additional support was provided for sample preparation and analysis by the Betty and Gordon Moore Foundation EPiQS Initiative through Grant No. GBMF9462 and for a graduate fellowship for J.H. by NTT Research. Sample fabrication and the PFM characterization were performed at the Stanford Nano Shared Facilities, supported by the National Science Foundation under award ECCS-2026822. K.W. and T.T. acknowledge support from the Japan Society for the Promotion of Science (KAKENHI Grant Numbers 21H05233 and 23H02052) and the World Premier International Research Center Initiative, Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Contributions

L.Y. conceived the project. K.P. and L.Y. fabricated the samples. L.Y. and K.P. performed the optical measurements. K.P. and J.H. performed the PFM measurements. T.T. and K.W. synthesized the h-BN crystals. T.F.H. supervised the project. L.Y., T.F.H. and K.P. wrote the paper with input from all authors.

Corresponding authors

Correspondence to Leo Yu or Tony F. Heinz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–8 and Figs. 1–8.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, L., Pistunova, K., Hu, J. et al. Observation of quadrupolar and dipolar excitons in a semiconductor heterotrilayer. Nat. Mater. 22, 1485–1491 (2023). https://doi.org/10.1038/s41563-023-01678-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-023-01678-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing