Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Solution-processed memristors: performance and reliability

Abstract

Memristive devices are gaining importance in the semiconductor industry for applications in information storage, artificial intelligence cryptography and telecommunication. Memristive devices fabricated by solution-processing methods can be integrated into a wide variety of large-area substrates, which has motivated their use in applications requiring flexible, stretchable, transparent and biocompatible devices. Several studies on solution-processed memristors have claimed excellent electrical performance; however, in many cases such claims are based on scarce measurements conducted on only one device, using unreliable testing protocols or using device structures that are too large for the target applications. Understanding the reliability of a memristive structure is important to avoid hyped expectations, attract potential investments in such technology, and realistically understand its potential impact on society and on the market. In this Perspective, we analyse which solution-processed memristors have so far exhibited the highest and most reliable electronic performance, irrespective of the type of material used and the application targeted. For that group of memristors, we also discuss the switching mechanism and potential applications, as well as possible improvements in terms of device technology. We describe the outlook of this field with aims of increasing the impact and technology readiness of solution-processed memristors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: General overview of the structure, electrical behaviour and application of memristors.
Fig. 2: Figures-of-merit of solution-processed memristors.
Fig. 3: Fabrication methods and switching mechanism assessment in best-performance solution-processed memristors.
Fig. 4: Device integration and consistency with intended applications for solution-processed memristors.

Similar content being viewed by others

References

  1. Ielmini, D. & Waser, R. Resistive Switching: From Fundamentals of Nanoionic Redox Processes to Memristive Device Applications (Wiley, 2016).

  2. Pearson, A. D., Northover, W., Dewald, J. F. & Peck, W. Jr Chemical, physical, and electrical properties of some unusual inorganic glasses. Adv. Glas. Technol. 2, 357–365 (1962).

    Google Scholar 

  3. Molas, G. & Nowak, E. Advances in emerging memory technologies: from data storage to artificial intelligence. Appl. Sci. 11, 11254 (2021).

    Article  CAS  Google Scholar 

  4. Lammers, D. MRAM debut cues memory transition. EE Times https://www.eetimes.com/mram-debut-cues-memory-transition (2006).

  5. Yole Group. Memory: keep your semiconductor memories alive. Yole Group https://www.yolegroup.com/thematic/semiconductor-memory (2024).

  6. Kim, M. et al. Monolayer molybdenum disulfide switches for 6G communication systems. Nat. Electron. 5, 367–373 (2022).

    Article  CAS  Google Scholar 

  7. Wainstein, N., Adam, G., Yalon, E. & Kvatinsky, S. Radiofrequency switches based on emerging resistive memory technologies — a survey. Proc. IEEE 109, 77–95 (2021).

    Article  CAS  Google Scholar 

  8. Pazos, S. et al. Hardware implementation of a true random number generator integrating a hexagonal boron nitride memristor with a commercial microcontroller. Nanoscale 15, 2171–2180 (2023).

    Article  CAS  PubMed  Google Scholar 

  9. Zhu, K. et al. Inkjet-printed h-BN memristors for hardware security. Nanoscale 15, 9985–9992 (2023).

    Article  CAS  PubMed  Google Scholar 

  10. Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nat. Nanotechnol. 15, 529–544 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Rao, M. et al. Thousands of conductance levels in memristors integrated on CMOS. Nature 615, 823–829 (2023).

    Article  CAS  PubMed  Google Scholar 

  12. Lanza, M., Molas, G. & Naveh, I. The gap between academia and industry in resistive switching research. Nat. Electron. 6, 260–263 (2023).

    Article  Google Scholar 

  13. JEDEC. Global standards for the microelectronics industry. JEDEC https://www.jedec.org/standards-documents (2024).

  14. Xu, X. et al. High-yield Ti3C2Tx MXene–MoS2 integrated circuits. Adv. Mater. 34, 2107370 (2021).

    Article  Google Scholar 

  15. Zhang, Y. et al. MXene printing and patterned coating for device applications. Adv. Mater. 32, 1908486 (2020).

    Article  CAS  Google Scholar 

  16. Wiefels, S. et al. Reliability aspects of 28 nm BEOL-integrated resistive switching random access memory. Phys. Status Solidi A https://doi.org/10.1002/pssa.202300401 (2023).

  17. Pinilla, S., Coelho, J., Li, K., Liu, J. & Nicolosi, V. Two-dimensional material inks. Nat. Rev. Mater. 7, 717–735 (2022).

    Article  Google Scholar 

  18. Yang, R. et al. Synthesis of atomically thin sheets by the intercalation-based exfoliation of layered materials. Nat. Synth. 2, 101–118 (2023).

    Article  Google Scholar 

  19. Lu, K. et al. Solution-processed electronics for artificial synapses. Mater. Horiz. 8, 447–470 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. van de Burgt, Y., Melianas, A., Keene, S. T., Malliaras, G. & Salleo, A. Organic electronics for neuromorphic computing. Nat. Electron. 1, 386–397 (2018).

    Article  Google Scholar 

  21. Liu, Q. et al. Nanostructured perovskites for nonvolatile memory devices. Chem. Soc. Rev. 51, 3341–3379 (2022).

    Article  CAS  PubMed  Google Scholar 

  22. Lian, H. et al. Metal-containing organic compounds for memory and data storage applications. Chem. Soc. Rev. 51, 1926–1982 (2022).

    Article  CAS  PubMed  Google Scholar 

  23. Xu, X., Guo, T., Lanza, M. & Alshareef, H. N. Status and prospects of MXene-based nanoelectronic devices. Matter 6, 800–837 (2023).

    Article  CAS  Google Scholar 

  24. Fujitsu Semiconductor Memory Solution. Non-volatile memory with very small operating current — ReRAM (resistive random access memory). Fujitsu https://www.fujitsu.com/jp/group/fsm/en/products/reram (2024).

  25. AnandTech. Analyzing intel-micron 3D XPoint: the next generation non-volatile memory. AnandTech https://www.anandtech.com/show/9470/intel-and-micron-announce-3d-xpoint-nonvolatile-memory-technology-1000x-higher-performance-endurance-than-nand (2015).

  26. Lanza, M. et al. Memristive technologies for data storage, computation, encryption, and radio-frequency communication. Science 376, eabj9979 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. Ang, D. S., Zhou, Y., Yew, K. S. & Berco, D. On the area scalability of valence-change memristors for neuromorphic computing. Appl. Phys. Lett. 115, 173501 (2019).

    Article  Google Scholar 

  28. Tower Semiconductor. Mixed-signal/CMOS. Tower Semiconductor https://towersemi.com/technology/mixed-signal-cmos (2018).

  29. Goswami, S. et al. Robust resistive memory devices using solution-processable metal-coordinated azo aromatics. Nat. Mater. 16, 1216–1224 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Fuller, E. J. et al. Parallel programming of an ionic floating-gate memory array for scalable neuromorphic computing. Science 364, 570–574 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Zhang, B. et al. Redox gated polymer memristive processing memory unit. Nat. Commun. 10, 736 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tang, B. et al. Wafer-scale solution-processed 2D material analog resistive memory array for memory-based computing. Nat. Commun. 13, 3037 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ivanov, A. I., Gutakovskii, A. K., Kotin, I. A., Soots, R. A. & Antonova, I. V. Resistive switching effect with ON/OFF current relation up to 109 in 2D printed composite films of fluorinated graphene with V2O5 nanoparticles. Adv. Electron. Mater. 5, 1900310 (2019).

    Article  CAS  Google Scholar 

  34. Zhang, Y. et al. Three-dimensional perovskite nanowire array-based ultrafast resistive RAM with ultralong data retention. Sci. Adv. 7, eabg3788 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang, K., Chen, J. & Yan, X. MXene Ti3C2 memristor for neuromorphic behavior and decimal arithmetic operation applications. Nano Energy 79, 105453 (2021).

    Article  CAS  Google Scholar 

  36. Lanza, M. et al. Standards for the characterization of endurance in resistive switching devices. ACS Nano 15, 17214–17231 (2021).

    Article  CAS  PubMed  Google Scholar 

  37. Chua, L. Resistance switching memories are memristors. Appl. Phys. A 102, 765–783 (2011).

    Article  CAS  Google Scholar 

  38. Cheng, P., Sun, K. & Hu, Y. H. Memristive behavior and ideal memristor of 1T phase MoS2 nanosheets. Nano Lett. 16, 572–576 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Wang, Y. et al. MXene‐ZnO memristor for multimodal in‐sensor computing. Adv. Funct. Mater. 31, 2100144 (2021).

    Article  CAS  Google Scholar 

  40. Kang, K. et al. High‐performance solution‐processed organo‐metal halide perovskite unipolar resistive memory devices in a cross‐bar array structure. Adv. Mater. 31, 1804841 (2019).

    Article  Google Scholar 

  41. Wang, Y. et al. Memristor-based biomimetic compound eye for real-time collision detection. Nat. Commun. 12, 5979 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li, T. et al. On-chip integrated process-programmable sub-10 nm thick molecular devices switching between photomultiplication and memristive behaviour. Nat. Commun. 13, 2875 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Son, D. et al. Colloidal synthesis of uniform-sized molybdenum disulfide nanosheets for wafer-scale flexible nonvolatile memory. Adv. Mater. 28, 9326–9332 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Wu, C., Kim, T. W., Choi, H. Y., Strukov, D. B. & Yang, J. J. Flexible three-dimensional artificial synapse networks with correlated learning and trainable memory capability. Nat. Commun. 8, 752 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  45. John, R. A. et al. Reconfigurable halide perovskite nanocrystal memristors for neuromorphic computing. Nat. Commun. 13, 2074 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yoo, E. J. et al. Resistive switching behavior in organic-inorganic hybrid CH3NH3PbI3−xClx perovskite for resistive random access memory devices. Adv. Mater. 27, 6170–6175 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Zhao, B. et al. Reproducible and low‐power multistate bio‐memristor from interpenetrating network electrolyte design. InfoMat 4, e12350 (2022).

    Article  CAS  Google Scholar 

  48. Liang, L. et al. Vacancy associates-rich ultrathin nanosheets for high performance and flexible nonvolatile memory device. J. Am. Chem. Soc. 137, 3102–3108 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Jang, J., Pan, F., Braam, K. & Subramanian, V. Resistance switching characteristics of solid electrolyte chalcogenide Ag2Se nanoparticles for flexible nonvolatile memory applications. Adv. Mater. 24, 3573–3576 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Yan, X. et al. Vacancy‐induced synaptic behavior in 2D WS2 nanosheet-based memristor for low‐power neuromorphic computing. Small 15, 1901423 (2019).

    Article  Google Scholar 

  51. Yan, X. et al. A new memristor with 2D Ti3C2Tx MXene flakes as an artificial bio‐synapse. Small 15, 1900107 (2019).

    Article  Google Scholar 

  52. Yan, X. et al. Self-assembled networked PbS distribution quantum dots for resistive switching and artificial synapse performance boost of memristors. Adv. Mater. 31, 1805284 (2019).

    Article  Google Scholar 

  53. Yi, S. et al. Energy and space efficient parallel adder using molecular memristors. Adv. Mater. 35, 2206128 (2022).

    Article  Google Scholar 

  54. Goswami, S. et al. Charge disproportionate molecular redox for discrete memristive and memcapacitive switching. Nat. Nanotechnol. 15, 380–389 (2020).

    Article  CAS  PubMed  Google Scholar 

  55. Goswami, S. et al. Decision trees within a molecular memristor. Nature 597, 51–56 (2021).

    Article  CAS  PubMed  Google Scholar 

  56. Zhang, B. et al. 90% yield production of polymer nano-memristor for in-memory computing. Nat. Commun. 12, 1984 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bhatti, S. et al. Spintronics based random access memory: a review. Mater. Today 20, 530–548 (2017).

    Article  Google Scholar 

  58. Chen, Y. Y. et al. Postcycling LRS retention analysis in HfO2/Hf RRAM 1T1R device. IEEE Electron Device Lett. 34, 626–628 (2013).

    Article  CAS  Google Scholar 

  59. Infineon Technologies. Endurance and data retention characterization of Infineon flash memory (Infineon Technologies, 2021).

  60. Kim, H.-D., Yun, M. J., Lee, J. H., Kim, K. H. & Kim, T. G. Transparent multi-level resistive switching phenomena observed in ITO/RGO/ITO memory cells by the sol-gel dip-coating method. Sci. Rep. 4, 4614 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Xiong, T. et al. Neuromorphic functions with a polyelectrolyte-confined fluidic memristor. Science 379, 156–161 (2023).

    Article  CAS  PubMed  Google Scholar 

  62. Zucker, R. S. & Regehr, W. G. Short-term synaptic plasticity. Annu. Rev. Physiol. 64, 355–405 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Choi, Y., Oh, S., Qian, C., Park, J.-H. & Cho, J. H. Vertical organic synapse expandable to 3D crossbar array. Nat. Commun. 11, 4595 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kim, M.-K. & Lee, J.-S. Ferroelectric analog synaptic transistors. Nano Lett. 19, 2044–2050 (2019).

    Article  CAS  PubMed  Google Scholar 

  65. Le Gallo, M. et al. Mixed-precision in-memory computing. Nat. Electron. 1, 246–253 (2018).

    Article  Google Scholar 

  66. Melianas, A. et al. High-speed ionic synaptic memory based on 2D titanium carbide MXene. Adv. Funct. Mater. 32, 2109970 (2022).

    Article  CAS  Google Scholar 

  67. Yoon, J. H. et al. Pt/Ta2O5/HfO2x/Ti resistive switching memory competing with multilevel NAND flash. Adv. Mater. 27, 3811–3816 (2015).

    Article  CAS  PubMed  Google Scholar 

  68. Wang, C. et al. Neuromorphic device based on silicon nanosheets. Nat. Commun. 13, 5216 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Xu, W., Min, S.-Y., Hwang, H. & Lee, T.-W. Organic core–sheath nanowire artificial synapses with femtojoule energy consumption. Sci. Adv. 2, e1501326 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Nagareddy, V. K. et al. Multilevel ultrafast flexible nanoscale nonvolatile hybrid graphene oxide–titanium oxide memories. ACS Nano 11, 3010–3021 (2017).

    Article  CAS  PubMed  Google Scholar 

  71. Park, H., Kim, M. & Lee, S. Introduction of interfacial load polymeric layer to organic flexible memristor for regulating conductive filament growth. Adv. Electron. Mater. 6, 2000582 (2020).

    Article  CAS  Google Scholar 

  72. Feng, X. et al. A fully printed flexible MoS2 memristive artificial synapse with femtojoule switching energy. Adv. Electron. Mater. 5, 1900740 (2019).

    Article  CAS  Google Scholar 

  73. Sivan, M. et al. All WSe2 1T1R resistive RAM cell for future monolithic 3D embedded memory integration. Nat. Commun. 10, 5201 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Yan, X. et al. Graphene oxide quantum dots based memristors with progressive conduction tuning for artificial synaptic learning. Adv. Funct. Mater. 28, 1803728 (2018).

    Article  Google Scholar 

  75. Park, Y., Kim, S. H., Lee, D. & Lee, J.-S. Designing zero-dimensional dimer-type all-inorganic perovskites for ultra-fast switching memory. Nat. Commun. 12, 3527 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Yen, M.-C. et al. All-inorganic perovskite quantum dot light-emitting memories. Nat. Commun. 12, 4460 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chiu, F. C. A review on conduction mechanisms in dielectric films. Adv. Mater. Sci. Eng. 2014, 1–18 (2014).

    Google Scholar 

  78. Bessonov, A. A. et al. Layered memristive and memcapacitive switches for printable electronics. Nat. Mater. 14, 199–204 (2015).

    Article  CAS  PubMed  Google Scholar 

  79. Waser, R., Dittmann, R., Staikov, G. & Szot, K. Redox-based resistive switching memories - nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21, 2632–2663 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. Palumbo, F. et al. A review on dielectric breakdown in thin dielectrics: silicon dioxide, high‐k, and layered dielectrics. Adv. Funct. Mater. 30, 1900657 (2019).

    Article  Google Scholar 

  81. Pazos, S., Aguirre, F., Miranda, E., Lombardo, S. & Palumbo, F. Comparative study of the breakdown transients of thin Al2O3 and HfO2 films in MIM structures and their connection with the thermal properties of materials. J. Appl. Phys. 121, 094102 (2017).

    Article  Google Scholar 

  82. Pazos, S. M. et al. Impact of bilayered oxide stacks on the breakdown transients of metal–oxide–semiconductor devices: an experimental study. J. Appl. Phys. 127, 174101 (2020).

    Article  CAS  Google Scholar 

  83. Aguirre, F. L. et al. Study on the connection between the set transient in RRAMs and the progressive breakdown of thin oxides. IEEE Trans. Electron. Devices 66, 3349–3355 (2019).

    Article  CAS  Google Scholar 

  84. Lanza, M. et al. Temperature of conductive nanofilaments in hexagonal boron nitride based memristors showing threshold resistive switching. Adv. Electron. Mater. 8, 2100580 (2021).

    Article  Google Scholar 

  85. Guo, L. et al. Stacked two-dimensional MXene composites for an energy-efficient memory and digital comparator. ACS Appl. Mater. Interfaces 13, 39595–39605 (2021).

    Article  CAS  PubMed  Google Scholar 

  86. Pan, C. et al. Coexistence of grain-boundaries-assisted bipolar and threshold resistive switching in multilayer hexagonal boron nitride. Adv. Funct. Mater. 27, 1604811 (2017).

    Article  Google Scholar 

  87. Sun, W. et al. Understanding memristive switching via in situ characterization and device modeling. Nat. Commun. 10, 3453 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Chen, J.-Y. et al. Dynamic evolution of conducting nanofilament in resistive switching memories. Nano Lett. 13, 3671–3677 (2013).

    Article  CAS  PubMed  Google Scholar 

  89. Cheng, S. et al. Operando characterization of conductive filaments during resistive switching in Mott VO2. Proc. Natl Acad. Sci. 118, e2013676118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yang, Y. et al. Probing electrochemistry at the nanoscale: in situ TEM and STM characterizations of conducting filaments in memristive devices. J. Electroceram. 39, 73–93 (2017).

    Article  Google Scholar 

  91. Pazos, S. et al. High-temporal-resolution characterization reveals outstanding random telegraph noise and the origin of dielectric breakdown in h-BN memristors. Adv. Funct. Mater. https://doi.org/10.1002/adfm.202213816 (2023).

  92. Li, J. et al. Room-temperature logic-in-memory operations in single-metallofullerene devices. Nat. Mater. 21, 917–923 (2022).

    Article  CAS  PubMed  Google Scholar 

  93. Younis, A. et al. Halide perovskites: a new era of solution‐processed electronics. Adv. Mater. 33, 2005000 (2021).

    Article  CAS  Google Scholar 

  94. Leydecker, T. et al. Flexible non-volatile optical memory thin-film transistor device with over 256 distinct levels based on an organic bicomponent blend. Nat. Nanotechnol. 11, 769–775 (2016).

    Article  CAS  PubMed  Google Scholar 

  95. van de Burgt, Y. et al. A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. Nat. Mater. 16, 414–418 (2017).

    Article  PubMed  Google Scholar 

  96. Wang, S. et al. An organic electrochemical transistor for multi-modal sensing, memory and processing. Nat. Electron. 6, 281–291 (2023).

    Article  CAS  Google Scholar 

  97. Gkoupidenis, P., Schaefer, N., Garlan, B. & Malliaras, G. G. Neuromorphic functions in PEDOT:PSS organic electrochemical transistors. Adv. Mater. 27, 7176–7180 (2015).

    Article  CAS  PubMed  Google Scholar 

  98. Alibart, F. et al. A memristive nanoparticle/organic hybrid synapstor for neuroinspired computing. Adv. Funct. Mater. 22, 609–616 (2012).

    Article  CAS  Google Scholar 

  99. Zhang, X. et al. Programmable neuronal-synaptic transistors based on 2D MXene for a high-efficiency neuromorphic hardware network. Matter 5, 3023–3040 (2022).

    Article  CAS  Google Scholar 

  100. Aguirre, F. L., Pazos, S. M., Palumbo, F., Sune, J. & Miranda, E. Application of the quasi-static memdiode model in cross-point arrays for large dataset pattern recognition. IEEE Access. 8, 202174–202193 (2020).

    Article  Google Scholar 

  101. Abunahla, H., Humood, K., Alazzam, A. & Mohammad, B. SecureMem: efficient flexible Pt/GO/Cu memristor for true random number generation. Flex. Print. Electron. 6, 035004 (2021).

    Article  CAS  Google Scholar 

  102. Chen, L. et al. in Near-sensor and In-sensor Computing (eds Chai, Y. & Liao, F.) 143–197 (Springer, 2022).

  103. Fu, X. et al. Graphene/MoS2−xOx/graphene photomemristor with tunable non-volatile responsivities for neuromorphic vision processing. Light. Sci. Appl. 12, 39 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ren, Y. et al. Synaptic plasticity in self-powered artificial striate cortex for binocular orientation selectivity. Nat. Commun. 13, 5585 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Wang, J. et al. Optically modulated threshold switching in core–shell quantum dot based memristive device. Adv. Funct. Mater. 30, 1909114 (2020).

    Article  CAS  Google Scholar 

  106. Zhai, Y. et al. Infrared-sensitive memory based on direct-grown MoS2-upconversion-nanoparticle heterostructure. Adv. Mater. 30, 1803563 (2018).

    Article  Google Scholar 

  107. Hu, L. et al. Phosphorene/ZnO nano-heterojunctions for broadband photonic nonvolatile memory applications. Adv. Mater. 30, 1801232 (2018).

    Article  Google Scholar 

  108. Nguyen, D. A. et al. Electrically and optically controllable p–n junction memtransistor based on an Al2O3 encapsulated 2D Te/ReS2 van der Waals heterostructure. Small Methods 5, 2101303 (2021).

    Article  CAS  Google Scholar 

  109. Cai, S.-Y. et al. Hybrid optical/electric memristor for light-based logic and communication. ACS Appl. Mater. Interfaces 11, 4649–4653 (2019).

    Article  CAS  PubMed  Google Scholar 

  110. Sun, L. et al. In-sensor reservoir computing for language learning via two-dimensional memristors. Sci. Adv. 7, eabg1455 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Zhang, C. et al. Bioinspired artificial sensory nerve based on nafion memristor. Adv. Funct. Mater. 29, 1808783 (2019).

    Article  Google Scholar 

  112. Wang, X. et al. Multifunctional polymer memory via bi‐interfacial topography for pressure perception recognition. Adv. Sci. 7, 1902864 (2020).

    Article  CAS  Google Scholar 

  113. Tan, H. et al. Tactile sensory coding and learning with bio-inspired optoelectronic spiking afferent nerves. Nat. Commun. 11, 1369 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Ji, Y. et al. Flexible and twistable non-volatile memory cell array with all-organic one diode–one resistor architecture. Nat. Commun. 4, 2707 (2013).

    Article  PubMed  Google Scholar 

  115. Han, Y. et al. Electric-field-driven dual-functional molecular switches in tunnel junctions. Nat. Mater. 19, 843–848 (2020).

    Article  CAS  PubMed  Google Scholar 

  116. Stimberg, M., Brette, R. & Goodman, D. F. Brian 2, an intuitive and efficient neural simulator. eLife 8, e47314 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Plesser, H. E., Diesmann, M., Gewaltig, M.-O. & Morrison, A. in Encyclopedia of Computational Neuroscience (eds Jaeger, D. & Jung, R.) 1849–1852 (Springer, 2015).

  118. Roldan, J. B. et al. Spiking neural networks based on two-dimensional materials. npj 2D Mater. Appl. 6, 1–7 (2022).

    Article  Google Scholar 

  119. Langenegger, J. et al. In-memory factorization of holographic perceptual representations. Nat. Nanotechnol. 18, 479–485 (2023).

    Article  CAS  PubMed  Google Scholar 

  120. Aguirre, F. et al. Hardware implementation of memristor-based artificial neural networks. Nat Commun 15, 1974 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nat. Rev. Mater. 7, 575–591 (2022).

    Article  Google Scholar 

  122. Chaurasiya, R., Shih, L.-C., Chen, K.-T. & Chen, J.-S. Emerging higher-order memristors for bio-realistic neuromorphic computing: a review. Mater. Today 68, 356–376 (2023).

    Article  CAS  Google Scholar 

  123. Zhu, K. et al. Hybrid 2D–CMOS microchips for memristive applications. Nature 618, 57–62 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Foster, P. et al. An FPGA-based system for generalised electron devices testing. Sci. Rep. 12, 13912 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Hu, M. et al. Dot-product engine for neuromorphic computing: programming 1T1M crossbar to accelerate matrix-vector multiplication. Proc. Des. Autom. Conf. https://doi.org/10.1145/2897937.2898010 (2016).

  126. LeCun, Y., Cortes, C., & Burges, C. MNIST handwritten digit database. AT&T Labs https://yann.lecun.com/exdb/mnist/index.html (2010).

  127. Biggs, J. et al. A natively flexible 32-bit Arm microprocessor. Nature 595, 532–536 (2021).

    Article  CAS  PubMed  Google Scholar 

  128. Yao, P. et al. Fully hardware-implemented memristor convolutional neural network. Nature 577, 641–646 (2020).

    Article  CAS  PubMed  Google Scholar 

  129. Valentian, A. et al. in 2019 IEEE Int. Electron Devices Meeting (IEEE, 2019).

  130. Adekoya, G. J., Sadiku, R. E. & Ray, S. S. Nanocomposites of PEDOT:PSS with graphene and its derivatives for flexible electronic applications: a review. Macromol. Mater. Eng. 306, 2000716 (2021).

    Article  CAS  Google Scholar 

  131. Chen, C., Wang, K. & Luo, L. AuNPs and 2D functional nanomaterial-assisted SPR development for the cancer detection: a critical review. Cancer Nanotechnol. 13, 29 (2022).

    Article  Google Scholar 

  132. Jiang, X. et al. Two-dimensional MXenes: from morphological to optical, electric, and magnetic properties and applications. Phys. Rep. 848, 1–58 (2020).

    Article  CAS  Google Scholar 

  133. Leung, T. L. et al. Stability of 2D and quasi-2D perovskite materials and devices. Commun. Mater. 3, 63 (2022).

    Article  Google Scholar 

  134. Torres, F., Basaran, A. C. & Schuller, I. K. Thermal management in neuromorphic materials, devices, and networks. Adv. Mater. 35, e2205098 (2023).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Baseline funding scheme of the King Abdullah University of Science and Technology for support, as well as F. Aguirre from the company Intrinsic for discussions and literature about memristive neural networks. M.L. acknowledges the platform Web of Talents (https://weboftalents.com) for support in the recruitment of talented students and postdocs.

Author information

Authors and Affiliations

Authors

Contributions

M.L. conceptualized the article. S.P., X.X., T.G. and K.Z. did the literature search. S.P., X.X., T.G. and M.L. wrote the manuscript. H.N.A. contributed discussions on technical aspects of the fabrication process of the devices and revised the manuscript. All authors discussed the structure and revised the final version of the text.

Corresponding author

Correspondence to Mario Lanza.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pazos, S., Xu, X., Guo, T. et al. Solution-processed memristors: performance and reliability. Nat Rev Mater (2024). https://doi.org/10.1038/s41578-024-00661-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41578-024-00661-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing