Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Fluorination in advanced battery design

Abstract

The increasing demand for high-performance rechargeable batteries, particularly in energy storage applications such as electric vehicles, has driven the development of advanced battery technologies with improved energy density, safety and cycling stability. Fluorine has emerged as a crucial element in achieving these goals, owing to its hydrophobicity, robust bond strength and stability, exceptional dielectric properties and strong electronegativity and polarization. These attributes provide fluorinated battery components with high thermal and oxidative stability, chemical inertness and non-flammability. Importantly, fluorinated materials also facilitate the formation of a thin, protective film of corrosion products at the metal–electrolyte interface, which serves as a barrier against further chemical reactions with the electrolyte. Fluorinated species are now used in a wide range of battery components, including solid and liquid electrolytes, electrolyte additives, solvents, binders and protective layers for electrodes. This Review explores the design and utilization of fluorine-containing species in advanced batteries, focusing on the relationship between the chemical structure of the species and its impact on battery performance. Additionally, given the regulatory landscape surrounding the use of fluorinated compounds, we discuss the current challenges and future directions related to the responsible reuse and recycling of fluorinated materials in battery-related components.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Performance benefits of fluorinated battery components.
Fig. 2: Advanced all-solid-state electrolyte chemistries and performance.
Fig. 3: Design and performance of fluorinated electrolyte solvents in batteries.
Fig. 4: Fluorinated electrolyte additives in batteries.
Fig. 5: Ex situ and in situ formation of fluoride-rich protection layer on the surface of anodes.

Similar content being viewed by others

References

  1. Liu, Y., Zhu, Y. & Cui, Y. Challenges and opportunities towards fast-charging battery materials. Nat. Energy 4, 540–550 (2019).

    Article  ADS  Google Scholar 

  2. Masias, A., Marcicki, J. & Paxton, W. A. Opportunities and challenges of lithium ion batteries in automotive applications. ACS Energy Lett. 6, 621–630 (2021).

    Article  CAS  Google Scholar 

  3. Huo, S. et al. Challenges of polymer electrolyte with wide electrochemical window for high energy solid-state lithium batteries. InfoMat 5, e12394 (2023).

    Article  CAS  Google Scholar 

  4. Shiga, T., Kato, Y., Kondo, H. & Okuda, C.-A. Self-extinguishing electrolytes using fluorinated alkyl phosphates for lithium batteries. J. Mater. Chem. A 5, 5156–5162 (2017).

    Article  CAS  Google Scholar 

  5. von Aspern, N., Röschenthaler, G.-V., Winter, M. & Cekic-Laskovic, I. Fluorine and lithium: ideal partners for high-performance rechargeable battery electrolytes. Angew. Chem. Int. Ed. 58, 15978–16000 (2019).

    Article  Google Scholar 

  6. Richards, W. D., Miara, L. J., Wang, Y., Kim, J. C. & Ceder, G. Interface stability in solid-state batteries. Chem. Mater. 28, 266–273 (2016).

    Article  CAS  Google Scholar 

  7. Suo, L. et al. Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries. Proc. Natl Acad. Sci. USA 115, 1156–1161 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang, Y. et al. Emerging electrolytes with fluorinated solvents for rechargeable lithium-based batteries. Chem. Soc. Rev. 52, 2713–2763 (2023).

    Article  CAS  PubMed  Google Scholar 

  9. Li, Z. et al. Critical review of fluorinated electrolytes for high-performance lithium metal batteries. Adv. Funct. Mater. 33, 2300502 (2023).

    Article  CAS  Google Scholar 

  10. Haregewoin, A. M., Wotango, A. S. & Hwang, B.-J. Electrolyte additives for lithium ion battery electrodes: progress and perspectives. Energy Environ. Sci. 9, 1955–1988 (2016).

    Article  CAS  Google Scholar 

  11. Jin, M. et al. Fluorinated solid-state electrolytes for lithium batteries: interface design and ion conduction mechanisms. Adv. Eng. Mater. 25, 2201390 (2023).

    Article  CAS  Google Scholar 

  12. Zhao, Q., Stalin, S., Zhao, C.-Z. & Archer, L. A. Designing solid-state electrolytes for safe, energy-dense batteries. Nat. Rev. Mater. 5, 229–252 (2020).

    Article  ADS  CAS  Google Scholar 

  13. Jokhakar, D. A. et al. All-solid-state Li-metal batteries: role of blending PTFE with PEO and LiTFSI salt as a composite electrolyte with enhanced thermal stability. Sustain. Energy Fuels 4, 2229–2235 (2020).

    Article  CAS  Google Scholar 

  14. Gao, H., Zhou, W., Park, K. & Goodenough, J. B. A sodium-ion battery with a low-cost cross-linked gel–polymer electrolyte. Adv. Energy Mater. 6, 1600467 (2016).

    Article  Google Scholar 

  15. Zhao, C. et al. Solid-state sodium batteries. Adv. Energy Mater. 8, 1703012 (2018).

    Article  Google Scholar 

  16. Fan, L.-Z., He, H. & Nan, C.-W. Tailoring inorganic–polymer composites for the mass production of solid-state batteries. Nat. Rev. Mater. 6, 1003–1019 (2021).

    Article  ADS  CAS  Google Scholar 

  17. Jia, M. et al. Fluorinated bifunctional solid polymer electrolyte synthesized under visible light for stable lithium deposition and dendrite-free all-solid-state batteries. Adv. Funct. Mater. 31, 2101736 (2021).

    Article  CAS  Google Scholar 

  18. Wang, X. et al. Ultra-stable all-solid-state sodium metal batteries enabled by perfluoropolyether-based electrolytes. Nat. Mater. 21, 1057–1065 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Zhang, X. et al. Self-suppression of lithium dendrite in all-solid-state lithium metal batteries with poly(vinylidene difluoride)-based solid electrolytes. Adv. Mater. 31, 1806082 (2019).

    Article  Google Scholar 

  20. Stephan, A. M., Nahm, K. S., Anbu Kulandainathan, M., Ravi, G. & Wilson, J. Poly(vinylidene fluoride-hexafluoropropylene) (PVdF-HFP) based composite electrolytes for lithium batteries. Eur. Polym. J. 42, 1728–1734 (2006).

    Article  CAS  Google Scholar 

  21. Liu, J. et al. Nonflammable and high-voltage-tolerated polymer electrolyte achieving high stability and safety in 4.9 V-class lithium metal battery. ACS Appl. Mater. Interfaces 11, 45048–45056 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. Tang, L. et al. Polyfluorinated crosslinker-based solid polymer electrolytes for long-cycling 4.5 V lithium metal batteries. Nat. Commun. 14, 2301 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Banerjee, A., Wang, X., Fang, C., Wu, E. A. & Meng, Y. S. Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes. Chem. Rev. 120, 6878–6933 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Wang, Q. et al. A fluorinated polycarbonate based all solid state polymer electrolyte for lithium metal batteries. Electrochim. Acta 337, 135843 (2020).

    Article  CAS  Google Scholar 

  25. Sun, H. et al. Fluorinated poly‐oxalate electrolytes stabilizing both anode and cathode interfaces for all‐solid‐state Li/NMC811 batteries. Angew. Chem. Int. Ed. 133, 18483–18491 (2021).

    Article  ADS  Google Scholar 

  26. Sun, Y. et al. Fluorine-containing triblock copolymers as solid-state polymer electrolytes for lithium metal batteries. J. Power Sources 516, 230686 (2021).

    Article  CAS  Google Scholar 

  27. Huang, Y.-F. et al. Conformational regulation of dielectric poly(vinylidene fluoride)-based solid-state electrolytes for efficient lithium salt dissociation and lithium-ion transportation. Adv. Energy Mater. 13, 2203888 (2023).

    Article  CAS  Google Scholar 

  28. Yang, F. et al. Fluorinated strategies among all-solid-state lithium metal batteries from microperspective. Small Struct. 4, 2200122 (2023).

    Article  CAS  Google Scholar 

  29. Cabañero Martínez, M. A. et al. Are polymer-based electrolytes ready for high-voltage lithium battery applications? An overview of degradation mechanisms and battery performance. Adv. Energy Mater. 12, 2201264 (2022).

    Article  Google Scholar 

  30. Lopez, J., Mackanic, D. G., Cui, Y. & Bao, Z. Designing polymers for advanced battery chemistries. Nat. Rev. Mater. 4, 312–330 (2019).

    Article  ADS  CAS  Google Scholar 

  31. Zhao, Y. et al. Fluorinated ether electrolyte with controlled solvation structure for high voltage lithium metal batteries. Nat. Commun. 13, 2575 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xie, X. et al. Influencing factors on Li-ion conductivity and interfacial stability of solid polymer electrolytes, exampled by polycarbonates, polyoxalates and polymalonates. Angew. Chem. Int. Ed. 62, e202218229 (2023).

    Article  CAS  Google Scholar 

  33. Wang, Y. et al. In-situ generation of fluorinated polycarbonate copolymer solid electrolytes for high-voltage Li-metal batteries. Energy Stor. Mater. 45, 474–483 (2022).

    Google Scholar 

  34. Su, Y. et al. Rational design of a topological polymeric solid electrolyte for high-performance all-solid-state alkali metal batteries. Nat. Commun. 13, 4181 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wong, D. H. C. et al. Nonflammable perfluoropolyether-based electrolytes for lithium batteries. Proc. Natl Acad. Sci. USA 111, 3327–3331 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Murphy, E. A. et al. Efficient creation and morphological analysis of ABC triblock terpolymer libraries. Macromolecules 55, 8875–8882 (2022).

    Article  ADS  CAS  Google Scholar 

  37. Barbon, S. M. et al. Architecture effects in complex spherical assemblies of (AB) n-type block copolymers. ACS Macro Lett. 9, 1745–1752 (2020).

    Article  CAS  PubMed  Google Scholar 

  38. Bates, M. W. et al. Synthesis and self-assembly of ABn miktoarm star polymers. ACS Macro Lett. 9, 396–403 (2020).

    Article  CAS  PubMed  Google Scholar 

  39. Zhang, C. et al. Emergence of hexagonally close-packed spheres in linear block copolymer melts. J. Am. Chem. Soc. 143, 14106–14114 (2021).

    Article  CAS  PubMed  Google Scholar 

  40. Zhang, C. et al. Rapid generation of block copolymer libraries using automated chromatographic separation. J. Am. Chem. Soc. 142, 9843–9849 (2020).

    CAS  PubMed  Google Scholar 

  41. Min, J. et al. Enhancing ion transport in charged block copolymers by stabilizing low symmetry morphology: electrostatic control of interfaces. Proc. Natl Acad. Sci. USA 118, e2107987118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Min, J., Barpuzary, D., Ham, H., Kang, G.-C. & Park, M. J. Charged block copolymers: from fundamentals to electromechanical applications. Acc. Chem. Res. 54, 4024–4035 (2021).

    Article  CAS  PubMed  Google Scholar 

  43. Young, W.-S., Kuan, W.-F., Epps, I. & Thomas, H. Block copolymer electrolytes for rechargeable lithium batteries. J. Polym. Sci. B Polym. Phys. 52, 1–16 (2014).

    Article  ADS  CAS  Google Scholar 

  44. Irwin, M. T. et al. Structure–conductivity relationships in ordered and disordered salt-doped diblock copolymer/homopolymer blends. Macromolecules 49, 6928–6939 (2016).

    Article  ADS  CAS  Google Scholar 

  45. Kim, J.-S. et al. Surface engineering of inorganic solid-state electrolytes via interlayers strategy for developing long-cycling quasi-all-solid-state lithium batteries. Nat. Commun. 14, 782 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tian, H.-K. et al. Electron and ion transfer across interfaces of the NASICON-type LATP solid electrolyte with electrodes in all-solid-state batteries: a density functional theory study via an explicit interface model. ACS Appl. Mater. Interfaces 12, 54752–54762 (2020).

    Article  CAS  PubMed  Google Scholar 

  47. Zuo, T.-T. et al. A mechanistic investigation of the Li10GeP2S12|LiNi1-x-yCoxMnyO2 interface stability in all-solid-state lithium batteries. Nat. Commun. 12, 6669 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  48. Asano, T. et al. Solid halide electrolytes with high lithium-ion conductivity for application in 4 V class bulk-type all-solid-state batteries. Adv. Mater. 30, 1803075 (2018).

    Article  Google Scholar 

  49. Zhao, F. et al. Ultrastable anode interface achieved by fluorinating electrolytes for all-solid-state Li metal batteries. ACS Energy Lett. 5, 1035–1043 (2020).

    Article  CAS  Google Scholar 

  50. Jin, Y. et al. Fluorinated Li10GeP2S12 enables stable all-solid-state lithium batteries. Adv. Mater. 35, e202211047 (2020).

    Google Scholar 

  51. Zhang, Q. et al. Sulfide‐based solid‐state electrolytes: synthesis, stability, and potential for all‐solid‐state batteries. Adv. Mater. 31, 1901131 (2019).

    Article  CAS  Google Scholar 

  52. Xu, L. et al. Interfaces in solid-state lithium batteries. Joule 2, 1991–2015 (2018).

    Article  CAS  Google Scholar 

  53. Liu, J., Wang, S., Qie, Y. & Sun, Q. Identifying lithium fluorides for promising solid-state electrolyte and coating material of high-voltage cathode. Mater. Today Energy 21, 100719 (2021).

    Article  CAS  Google Scholar 

  54. Lu, Y., Meng, X., Alonso, J. A., Fernández-Díaz, M. T. & Sun, C. Effects of fluorine doping on structural and electrochemical properties of Li6.25Ga0.25La3Zr2O12 as electrolytes for solid-state lithium batteries. ACS Appl. Mater. Interfaces 11, 2042–2049 (2019).

    Article  CAS  PubMed  Google Scholar 

  55. Chen, X. et al. Improved stability against moisture and lithium metal by doping F into Li3InCl6. J. Power Sources 545, 231939 (2022).

    Article  CAS  Google Scholar 

  56. Yu, T. et al. Superionic fluorinated halide solid electrolytes for highly stable Li-metal in all-solid-state Li batteries. Adv. Energy Mater. 11, 2101915 (2021).

    Article  CAS  Google Scholar 

  57. Liu, L. et al. In situ formation of a stable interface in solid-state batteries. ACS Energy Lett. 4, 1650–1657 (2019).

    Article  CAS  Google Scholar 

  58. Zhai, P., Yang, Z., Wei, Y., Guo, X. & Gong, Y. Two‐dimensional fluorinated graphene reinforced solid polymer electrolytes for high‐performance solid‐state lithium batteries. Adv. Energy Mater. 12, 2200967 (2022).

    Article  CAS  Google Scholar 

  59. Lei, M. et al. Polymer electrolytes reinforced by 2D fluorinated filler for all-solid-state Li-Fe-F conversion-type lithium metal batteries. Nano Res. 16, 8469–8477 (2023).

    Article  ADS  CAS  Google Scholar 

  60. Hu, J. et al. Dual fluorination of polymer electrolyte and conversion-type cathode for high-capacity all-solid-state lithium metal batteries. Nat. Commun. 13, 7914 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  61. Xu, Z. et al. Physicochemically dendrite-suppressed three-dimensional fluoridation solid-state electrolyte for high-rate lithium metal battery. Cell Rep. Phys. Sci. 2, 100644 (2021).

    Article  CAS  Google Scholar 

  62. Zhang, X. et al. Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes. J. Am. Chem. Soc. 139, 13779–13785 (2017).

    Article  CAS  PubMed  Google Scholar 

  63. Deng, T. et al. In situ formation of polymer-inorganic solid-electrolyte interphase for stable polymeric solid-state lithium-metal batteries. Chem 7, 3052–3068 (2021).

    Article  CAS  Google Scholar 

  64. Pazhaniswamy, S., Joshi, S. A., Hou, H., Parameswaran, A. K. & Agarwal, S. Hybrid polymer electrolyte encased cathode particles interface-based core–shell structure for high-performance room temperature all-solid-state batteries. Adv. Energy Mater. 13, 2202981 (2023).

    Article  CAS  Google Scholar 

  65. Yao, P. et al. PVDF/palygorskite nanowire composite electrolyte for 4 V rechargeable lithium batteries with high energy density. Nano Lett. 18, 6113–6120 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  66. Wang, S. et al. High-conductivity free-standing Li6PS5Cl/poly(vinylidene difluoride) composite solid electrolyte membranes for lithium-ion batteries. J. Materiomics 6, 70–76 (2020).

    Article  Google Scholar 

  67. Zhao, Y., Zhou, T., Mensi, M., Choi, J. W. & Coskun, A. Electrolyte engineering via ether solvent fluorination for developing stable non-aqueous lithium metal batteries. Nat. Commun. 14, 299 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  68. Balbuena, P. B. Electrolyte materials — issues and challenges. AIP Conf. Proc. 1597, 82–97 (2014).

    Article  ADS  CAS  Google Scholar 

  69. Zhang, J.-G., Xu, W., Xiao, J., Cao, X. & Liu, J. Lithium metal anodes with nonaqueous electrolytes. Chem. Rev. 120, 13312–13348 (2020).

    Article  CAS  PubMed  Google Scholar 

  70. Xing, J., Bliznakov, S., Bonville, L., Oljaca, M. & Maric, R. A review of nonaqueous electrolytes, binders, and separators for lithium-ion batteries. Electrochem. Energy Rev. 5, 14 (2022).

    Article  CAS  Google Scholar 

  71. Amanchukwu, C. V. et al. A new class of ionically conducting fluorinated ether electrolytes with high electrochemical stability. J. Am. Chem. Soc. 142, 7393–7403 (2020).

    Article  CAS  PubMed  Google Scholar 

  72. Jiao, S. et al. Stable cycling of high-voltage lithium metal batteries in ether electrolytes. Nat. Energy 3, 739–746 (2018).

    Article  ADS  CAS  Google Scholar 

  73. Lavi, O. et al. Electrolyte solutions for rechargeable li-ion batteries based on fluorinated solvents. ACS Appl. Energy Mater. 3, 7485–7499 (2020).

    Article  CAS  Google Scholar 

  74. Yu, Z. et al. Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries. Nat. Energy 5, 526–533 (2020).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  75. Yu, Z. et al. Rational solvent molecule tuning for high-performance lithium metal battery electrolytes. Nat. Energy 7, 94–106 (2022).

    Article  ADS  CAS  Google Scholar 

  76. Bolloli, M. et al. Fluorinated carbamates as suitable solvents for LiTFSI-based lithium-ion electrolytes: physicochemical properties and electrochemical characterization. J. Phys. Chem. C 119, 22404–22414 (2015).

    Article  CAS  Google Scholar 

  77. Chen, L. et al. Achieving high energy density through increasing the output voltage: a highly reversible 5.3 V battery. Chem 5, 896–912 (2019).

    Article  CAS  Google Scholar 

  78. Yi, Q. et al. Fluorinated ether based electrolyte enabling sodium-metal batteries with exceptional cycling stability. ACS Appl. Mater. Interfaces 11, 46965–46972 (2019).

    Article  CAS  PubMed  Google Scholar 

  79. Zheng, J. et al. High-fluorinated electrolytes for Li–S batteries. Adv. Energy Mater. 9, 1803774 (2019).

    Article  Google Scholar 

  80. Cao, X. et al. Monolithic solid–electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization. Nat. Energy 4, 796–805 (2019).

    Article  ADS  CAS  Google Scholar 

  81. Yamada, Y., Wang, J., Ko, S., Watanabe, E. & Yamada, A. Advances and issues in developing salt-concentrated battery electrolytes. Nat. Energy 4, 269–280 (2019).

    Article  ADS  CAS  Google Scholar 

  82. Yamada, Y. et al. Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries. J. Am. Chem. Soc. 136, 5039–5046 (2014).

    Article  CAS  PubMed  Google Scholar 

  83. Ma, P., Mirmira, P. & Amanchukwu, C. V. Effect of building block connectivity and ion solvation on electrochemical stability and ionic conductivity in novel fluoroether electrolytes. ACS Cent. Sci. 7, 1232–1244 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhang, G. et al. A monofluoride ether-based electrolyte solution for fast-charging and low-temperature non-aqueous lithium metal batteries. Nat. Commun. 14, 1081 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhao, H. et al. Film-forming electrolyte additives for rechargeable lithium-ion batteries: progress and outlook. J. Mater. Chem. A 7, 8700–8722 (2019).

    Article  CAS  Google Scholar 

  86. Zhang, H. et al. Electrolyte additives for lithium metal anodes and rechargeable lithium metal batteries: progress and perspectives. Angew. Chem. Int. Ed. 57, 15002–15027 (2018).

    Article  ADS  CAS  Google Scholar 

  87. Zhang, S. S. A review on electrolyte additives for lithium-ion batteries. J. Power Sources 162, 1379–1394 (2006).

    Article  ADS  CAS  Google Scholar 

  88. Mosallanejad, B. et al. Cycling degradation and safety issues in sodium-ion batteries: promises of electrolyte additives. J. Electroanal. Chem. 895, 115505 (2021).

    Article  CAS  Google Scholar 

  89. Huang, Z.-X. et al. Electrode/electrolyte additives for practical sodium-ion batteries: a mini review. Inorg. Chem. Front. 10, 37–48 (2023).

    Article  CAS  Google Scholar 

  90. Hou, T. et al. The influence of FEC on the solvation structure and reduction reaction of LiPF6/EC electrolytes and its implication for solid electrolyte interphase formation. Nano Energy 64, 103881 (2019).

    Article  CAS  Google Scholar 

  91. Guo, S. et al. Fundamentals and perspectives of electrolyte additives for aqueous zinc-ion batteries. Energy Storage Mater. 34, 545–562 (2021).

    Article  ADS  Google Scholar 

  92. Zhang, X. Q., Cheng, X. B., Chen, X., Yan, C. & Zhang, Q. Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries. Adv. Funct. Mater. 27, 1605989 (2017).

    Article  Google Scholar 

  93. Jin, Y. et al. Identifying the structural basis for the increased stability of the solid electrolyte interphase formed on silicon with the additive fluoroethylene carbonate. J. Am. Chem. Soc. 139, 14992–15004 (2017).

    Article  CAS  PubMed  Google Scholar 

  94. Qiao, Y. et al. A high-energy-density and long-life initial-anode-free lithium battery enabled by a Li2O sacrificial agent. Nat. Energy 6, 653–662 (2021).

    Article  ADS  CAS  Google Scholar 

  95. Xie, J. et al. Fluorinating the solid electrolyte interphase by rational molecular design for practical lithium-metal batteries. Angew. Chem. Int. Ed. 61, e202204776 (2022).

    Article  ADS  CAS  Google Scholar 

  96. Liu, J. et al. Amide‐functional, Li3N/LiF‐rich heterostructured electrode electrolyte interphases for 4.6 V Li|| LiCoO2 batteries. Adv. Energy Mater. 13, 2300084 (2023).

    Article  CAS  Google Scholar 

  97. Li, S. et al. Synergistic dual‐additive electrolyte enables practical lithium‐metal batteries. Angew. Chem. Int. Ed. 59, 14935–14941 (2020).

    Article  CAS  Google Scholar 

  98. Xiaozhen, Z. et al. Enhancing cycle life of nickel-rich LiNi0.9Co0.05Mn0.05O2 via a highly fluorinated electrolyte additive — pentafluoropyridine. Energy Mater. 1, 100005 (2021).

    Google Scholar 

  99. Zhang, L. et al. Practical 4.4 V Li||NCM811 batteries enabled by a thermal stable and HF free carbonate-based electrolyte. Nano Energy 96, 107122 (2022).

    Article  CAS  Google Scholar 

  100. Dong, Q. et al. Insights into the dual role of lithium difluoro (oxalato) borate additive in improving the electrochemical performance of NMC811||Graphite cells. ACS Appl. Energy Mater. 3, 695–704 (2019).

    Article  Google Scholar 

  101. Zhu, Y., Li, Y., Bettge, M. & Abraham, D. P. Positive electrode passivation by LiDFOB electrolyte additive in high-capacity lithium-ion cells. J. Electrochem. Soc. 159, A2109 (2012).

    Article  CAS  Google Scholar 

  102. Hu, M., Wei, J., Xing, L. & Zhou, Z. Effect of lithium difluoro (oxalate) borate (LiDFOB) additive on the performance of high-voltage lithium-ion batteries. J. Appl. Electrochem. 42, 291–296 (2012).

    Article  CAS  Google Scholar 

  103. Fu, M., Huang, K., Liu, S., Liu, J. & Li, Y. Lithium difluoro (oxalato) borate/ethylene carbonate+ propylene carbonate+ ethyl (methyl) carbonate electrolyte for LiMn2O4 cathode. J. Power Sources 195, 862–866 (2010).

    Article  ADS  CAS  Google Scholar 

  104. Xu, M. et al. Investigation and application of lithium difluoro (oxalate) borate (LiDFOB) as additive to improve the thermal stability of electrolyte for lithium-ion batteries. J. Power Sources 196, 6794–6801 (2011).

    Article  ADS  CAS  Google Scholar 

  105. Liu, M., Dai, F., Ma, Z., Ruthkosky, M. & Yang, L. Improved electrolyte and its application in LiNi1/3Mn1/3Co1/3O2–graphite full cells. J. Power Sources 268, 37–44 (2014).

    Article  ADS  CAS  Google Scholar 

  106. Chang, C.-C. & Chen, T.-K. Tris(pentafluorophenyl) borane as an electrolyte additive for LiFePO4 battery. J. Power Sources 193, 834–840 (2009).

    Article  ADS  CAS  Google Scholar 

  107. Zhou, X. et al. Anion receptor weakens ClO4 solvation for high-temperature sodium-ion batteries. Adv. Funct. Mater. https://doi.org/10.1002/adfm.202302281 (2023).

  108. Xu, N. et al. Research progress of fluorine-containing electrolyte additives for lithium ion batteries. J. Power Sources Adv. 7, 100043 (2021).

    Article  CAS  Google Scholar 

  109. Chen, S. et al. A novel flame retardant and film-forming electrolyte additive for lithium ion batteries. J. Power Sources 187, 229–232 (2009).

    Article  ADS  CAS  Google Scholar 

  110. Li, Y. et al. Stable and safe lithium metal batteries with Ni-rich cathodes enabled by a high efficiency flame retardant additive. J. Electrochem. Soc. 166, A2736 (2019).

    Article  CAS  Google Scholar 

  111. Xu, K., Ding, M. S., Zhang, S., Allen, J. L. & Jow, T. R. Evaluation of fluorinated alkyl phosphates as flame retardants in electrolytes for Li-ion batteries: I. Physical and electrochemical properties. J. Electrochem. Soc. 150, A161 (2003).

    Article  CAS  Google Scholar 

  112. Liu, J. et al. Fluorinated phosphazene derivative — a promising electrolyte additive for high voltage lithium ion batteries: from electrochemical performance to corrosion mechanism. Nano Energy 46, 404–414 (2018).

    Article  CAS  Google Scholar 

  113. Luo, Z. et al. Interfacial challenges towards stable Li metal anode. Nano Energy 79, 105507 (2021).

    Article  CAS  Google Scholar 

  114. Zhao, J. et al. Surface fluorination of reactive battery anode materials for enhanced stability. J. Am. Chem. Soc. 139, 11550–11558 (2017).

    Article  CAS  PubMed  Google Scholar 

  115. He, M., Guo, R., Hobold, G. M., Gao, H. & Gallant, B. M. The intrinsic behavior of lithium fluoride in solid electrolyte interphases on lithium. Proc. Natl Acad. Sci. USA 117, 73–79 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  116. Pathak, R. et al. Fluorinated hybrid solid-electrolyte-interphase for dendrite-free lithium deposition. Nat. Commun. 11, 93 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  117. Cui, C. et al. A highly reversible, dendrite-free lithium metal anode enabled by a lithium-fluoride-enriched interphase. Adv. Mater. 32, 1906427 (2020).

    Article  CAS  Google Scholar 

  118. Tao, S. et al. A hydrophobic and fluorophilic coating layer for stable and reversible aqueous zinc metal anodes. Chem. Eng. J. 446, 136607 (2022).

    Article  CAS  Google Scholar 

  119. Xie, M. et al. Oxygen selective membrane based on perfluoropolyether for Li-air battery with long cycle life. Energy Storage Mater. 20, 307–314 (2019).

    Article  Google Scholar 

  120. Yang, S.-J. et al. Thermally stable polymer-rich solid electrolyte interphase for safe lithium metal pouch cells. Angew. Chem. Int. Ed. 61, e202214545 (2022).

    Article  CAS  Google Scholar 

  121. Fan, X. et al. Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery. Sci. Adv. 4, eaau9245 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  122. Wang, D. et al. Construction of polyvinylidene fluoride buffer layers for Li1.3Al0.3Ti1.7(PO4)3 solid-state electrolytes toward stable dendrite-free lithium metal batteries. Ind. Eng. Chem. Res. 61, 14891–14897 (2022).

    Article  CAS  Google Scholar 

  123. Fan, X. et al. Highly fluorinated interphases enable high-voltage Li-metal batteries. Chem 4, 174–185 (2018).

    Article  CAS  Google Scholar 

  124. Tian, Z. et al. Electrolyte solvation structure design for sodium ion batteries. Adv. Sci. 9, 2201207 (2022).

    Article  CAS  Google Scholar 

  125. Lee, J. et al. Room-temperature anode-less all-solid-state batteries via the conversion reaction of metal fluorides. Adv. Mater. 34, 2203580 (2022).

    Article  CAS  Google Scholar 

  126. Wang, F. et al. Conversion reaction mechanisms in lithium ion batteries: study of the binary metal fluoride electrodes. J. Am. Chem. Soc. 133, 18828–18836 (2011).

    Article  CAS  PubMed  Google Scholar 

  127. Sharma, L., Yi, M., Jo, E., Celio, H. & Manthiram, A. Surface stabilization with fluorine of layered ultrahigh-nickel oxide cathodes for lithium-ion batteries. Chem. Mater. 34, 4514–4522 (2022).

    Article  CAS  Google Scholar 

  128. Tiurin, O., Solomatin, N., Auinat, M. & Ein-Eli, Y. Atomic layer deposition (ALD) of lithium fluoride (LiF) protective film on Li-ion battery LiMn1.5Ni0.5O4 cathode powder material. J. Power Sources 448, 227373 (2020).

    Article  CAS  Google Scholar 

  129. Wu, Q. et al. Improved electrochemical performance of spinel LiMn1.5Ni0.5O4 through MgF2 nano-coating. Nanoscale 7, 15609–15617 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  130. Zheng, J. et al. Functioning mechanism of AlF3 coating on the Li- and Mn-rich cathode materials. Chem. Mater. 26, 6320–6327 (2014).

    Article  CAS  Google Scholar 

  131. Zhu, Q. et al. Improved cycle performance of LiMn2O4 cathode material for aqueous rechargeable lithium battery by LaF3 coating. J. Alloy Compd. 654, 384–391 (2016).

    Article  CAS  Google Scholar 

  132. Guan, P. et al. Recent progress of surface coating on cathode materials for high-performance lithium-ion batteries. J. Energy Chem. 43, 220–235 (2020).

    Article  Google Scholar 

  133. Advanced Rechargeable and Lithium Batteries Association. PFAS restriction proposal: RECHARGE statement for 2nd call for evidence (RECHARGE, 2022).

  134. Lohmann, R. et al. Are fluoropolymers really of low concern for human and environmental health and separate from other PFAS. Environ. Sci. Technol. 54, 12820–12828 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  135. Rensmo, A. et al. Lithium-ion battery recycling: a source of per- and polyfluoroalkyl substances (PFAS) to the environment. Environ. Sci. Process. Impacts 25, 1015–1030 (2023).

    Article  CAS  PubMed  Google Scholar 

  136. Hernández, G. et al. Elimination of fluorination: the influence of fluorine-free electrolytes on the performance of LiNi1/3Mn1/3Co1/3O2/silicon–graphite Li-ion battery cells. ACS Sustain. Chem. Eng. 8, 10041–10052 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Zhou, T., Zhao, Y., Choi, J. W. & Coskun, A. Ionic liquid functionalized gel polymer electrolytes for stable lithium metal batteries. Angew. Chem. Int. Ed. 60, 22791–22796 (2021).

    Article  CAS  Google Scholar 

  138. Han, J.-G. et al. Unsymmetrical fluorinated malonatoborate as an amphoteric additive for high-energy-density lithium-ion batteries. Energy Environ. Sci. 11, 1552–1562 (2018).

    Article  CAS  Google Scholar 

  139. Xu, C. et al. Improved performance of the silicon anode for Li-ion batteries: understanding the surface modification mechanism of fluoroethylene carbonate as an effective electrolyte additive. Chem. Mater. 27, 2591–2599 (2015).

    Article  CAS  Google Scholar 

  140. Huang, J. et al. Optimizing electrode/electrolyte interphases and Li-ion flux/solvation for lithium-metal batteries with qua-functional heptafluorobutyric anhydride. Angew. Chem. Int. Ed. 60, 20717–20722 (2021).

    Article  CAS  Google Scholar 

  141. Cao, L. et al. Fluorinated interphase enables reversible aqueous zinc battery chemistries. Nat. Nanotechnol. 16, 902–910 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

C.Z. acknowledges support from the National Health and Medical Research Council for the CJ Martin Fellowship (APP1157440) and the Australian Research Council Discovery Early Career Researcher Awards (DECRA) Fellowship (DE230101105). L.W. appreciates the financial support from the Australian Research Council through its Linkage (LP170100392) and Laureate Fellowship (FL190100139) schemes. C.J.H. acknowledges partial support by the US Army Research Office under Cooperative Agreement W911NF-19-2-0026 for the Institute for Collaborative Biotechnologies. A.K.W. acknowledges support from the Australian Research Council (CE140100036, DP210101496 and CE230100017).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the discussion of content and edited the paper before submission. Y.W., Z.W., F.M.A., Y.Z. and C.Z. researched data for the article and wrote the article. L.W., C.J.H., A.K.W. and M.F. revised the paper.

Corresponding author

Correspondence to Cheng Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wu, Z., Azad, F.M. et al. Fluorination in advanced battery design. Nat Rev Mater 9, 119–133 (2024). https://doi.org/10.1038/s41578-023-00623-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-023-00623-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing