Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Methylammonium-free wide-bandgap metal halide perovskites for tandem photovoltaics

Abstract

Over the past decade, the performance of solar cells based on metal halide perovskite semiconductors has skyrocketed, now rivalling established technologies such as crystalline silicon. The most promising implementation of these perovskites is in tandem solar cells, which have delivered far higher power conversion efficiencies than single-junction devices alone. Given their tunable bandgap, perovskites are uniquely placed to act as both narrow-bandgap and wide-bandgap absorbers in tandem devices. Methylammonium-free wide-bandgap perovskites perform particularly poorly in tandem devices compared with their methylammonium-containing and narrower bandgap counterparts, illustrating considerable scope for improvement. In this Review, we highlight the challenges related to methylammonium-free perovskites, including the energy-loss pathways that currently constrain their open-circuit voltage and efficiency well below their thermodynamic limits. We discuss recent progress in their material development and performance in tandem photovoltaics, and we highlight research trends that seem particularly promising. Finally, we suggest future avenues to expedite the development of wide-bandgap perovskites and, in turn, the deployment of tandem solar cells based on these materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Tandem device physics.
Fig. 2: Halide segregation and voltage losses.
Fig. 3: Single-junction performance for methylammonium-free perovskite solar cells as a function of their bandgap.
Fig. 4: Compositional engineering.
Fig. 5: Interfacial passivation.
Fig. 6: Novel charge transport layers.

Similar content being viewed by others

References

  1. Green, M. A. et al. Solar cell efficiency tables (version 60). Prog. Photovolt. Res. Appl. 30, 687–701 (2022).

    Article  Google Scholar 

  2. Mitzi, D. B., Wang, S., Feild, C. A., Chess, C. A. & Guloy, A. M. Conducting layered organic–inorganic halides containing <110>-oriented perovskite sheets. Science 267, 1473–1476 (1995).

    Article  CAS  Google Scholar 

  3. Wehrenfennig, C., Eperon, G. E., Johnston, M. B., Snaith, H. J. & Herz, L. M. High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 26, 1584–1589 (2014).

    Article  CAS  Google Scholar 

  4. Herz, L. M. Charge-carrier mobilities in metal halide perovskites: fundamental mechanisms and limits. ACS Energy Lett. 2, 1539–1548 (2017).

    Article  CAS  Google Scholar 

  5. Stranks, S. D. et al. Electron–hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013).

    Article  CAS  Google Scholar 

  6. Yang, Z. et al. Enhancing electron diffusion length in narrow-bandgap perovskites for efficient monolithic perovskite tandem solar cells. Nat. Commun. 10, 4498 (2019).

    Article  Google Scholar 

  7. Green, M. A., Jiang, Y., Soufiani, A. M. & Ho-Baillie, A. Optical properties of photovoltaic organic–inorganic lead halide perovskites. J. Phys. Chem. Lett. 6, 4774–4785 (2015).

    Article  CAS  Google Scholar 

  8. De Wolf, S. et al. Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett. 5, 1035–1039 (2014).

    Article  Google Scholar 

  9. Liang, J. et al. Defect-engineering-enabled high-efficiency all-inorganic perovskite solar cells. Adv. Mater. 31, 1903448 (2019).

    Article  CAS  Google Scholar 

  10. Ledinsky, M. et al. Temperature dependence of the Urbach energy in lead iodide perovskites. J. Phys. Chem. Lett. 10, 1368–1373 (2019).

    Article  CAS  Google Scholar 

  11. Mehdizadeh-Rad, H. & Singh, J. Influence of Urbach energy, temperature, and longitudinal position in the active layer on carrier diffusion length in perovskite solar cells. ChemPhysChem 20, 2712–2717 (2019).

    Article  CAS  Google Scholar 

  12. Subedi, B. et al. Urbach energy and open-circuit voltage deficit for mixed anion–cation perovskite solar cells. ACS Appl. Mater. Interfaces 14, 7796–7804 (2022).

    Article  CAS  Google Scholar 

  13. Unger, E. L. et al. Roadmap and roadblocks for the band gap tunability of metal halide perovskites. J. Mater. Chem. A 5, 11401–11409 (2017).

    Article  CAS  Google Scholar 

  14. Hörantner, M. T. et al. The potential of multijunction perovskite solar cells. ACS Energy Lett. 2, 2506–2513 (2017).

    Article  Google Scholar 

  15. Lal, N. N., White, T. P. & Catchpole, K. R. Optics and light trapping for tandem solar cells on silicon. IEEE J. Photovolt. 4, 1380–1386 (2014).

    Article  Google Scholar 

  16. Tong, J. et al. Carrier lifetimes of >1 ms in Sn–Pb perovskites enable efficient all-perovskite tandem solar cells. Science 364, 475–479 (2019).

    Article  CAS  Google Scholar 

  17. Hu, S. et al. Optimized carrier extraction at interfaces for 23.6% efficient tin–lead perovskite solar cells. Energy Environ. Sci. 15, 2096–2107 (2022).

    Article  CAS  Google Scholar 

  18. Slotcavage, D. J., Karunadasa, H. I. & McGehee, M. D. Light-induced phase segregation in halide-perovskite absorbers. ACS Energy Lett. 1, 1199–1205 (2016).

    Article  CAS  Google Scholar 

  19. Conings, B. et al. Structure–property relations of methylamine vapor treated hybrid perovskite CH3NH3PbI3 films and solar cells. ACS Appl. Mater. Interfaces 9, 8092–8099 (2017).

    Article  CAS  Google Scholar 

  20. Tan, H. et al. Dipolar cations confer defect tolerance in wide-bandgap metal halide perovskites. Nat. Commun. 9, 3100 (2018).

    Article  Google Scholar 

  21. Jaysankar, M. et al. Minimizing voltage loss in wide-bandgap perovskites for tandem solar cells. ACS Energy Lett. 4, 259–264 (2019).

    Article  CAS  Google Scholar 

  22. Tan, W., Bowring, A. R., Meng, A. C., McGehee, M. D. & McIntyre, P. C. Thermal stability of mixed cation metal halide perovskites in air. ACS Appl. Mater. Interfaces 10, 5485–5491 (2018).

    Article  CAS  Google Scholar 

  23. Ji, K., Anaya, M., Abfalterer, A. & Stranks, S. D. Halide perovskite light-emitting diode technologies. Adv. Opt. Mater. 9, 2002128 (2021).

    Article  CAS  Google Scholar 

  24. Ren, Z., Wang, K., Sun, X. W. & Choy, W. C. H. Strategies toward efficient blue perovskite light-emitting diodes. Adv. Funct. Mater. 31, 2100516 (2021).

    Article  CAS  Google Scholar 

  25. Yang, D. et al. Toward stable and efficient perovskite light-emitting diodes. Adv. Funct. Mater. 32, 2109495 (2022).

    Article  CAS  Google Scholar 

  26. Liang, X. et al. Promoting energy transfer between quasi-2D perovskite layers toward highly efficient red light-emitting diodes. Small 18, 2204638 (2022).

    Article  CAS  Google Scholar 

  27. Liu, Y. et al. Boosting the efficiency of quasi-2D perovskites light-emitting diodes by using encapsulation growth method. Nano Energy 80, 105511 (2021).

    Article  CAS  Google Scholar 

  28. Warby, J. H. et al. Revealing factors influencing the operational stability of perovskite light-emitting diodes. ACS Nano 14, 8855–8865 (2020).

    Article  CAS  Google Scholar 

  29. Stranks, S. D., Hoye, R. L. Z., Di, D., Friend, R. H. & Deschler, F. The physics of light emission in halide perovskite devices. Adv. Mater. 31, 1803336 (2019).

    Article  CAS  Google Scholar 

  30. Wang, Z. et al. Manipulating the trade-off between quantum yield and electrical conductivity for high-brightness quasi-2D perovskite light-emitting diodes. Adv. Funct. Mater. 28, 1804187 (2018).

    Article  Google Scholar 

  31. Caprioglio, P. et al. On the relation between the open‐circuit voltage and quasi‐fermi level splitting in efficient perovskite solar cells. Adv. Energy Mater. 9, 1901631 (2019).

    Article  Google Scholar 

  32. Krückemeier, L., Rau, U., Stolterfoht, M. & Kirchartz, T. How to report record open‐circuit voltages in lead‐halide perovskite solar cells. Adv. Energy Mater. 10, 1902573 (2020).

    Article  Google Scholar 

  33. Nayak, P. K., Mahesh, S., Snaith, H. J. & Cahen, D. Photovoltaic solar cell technologies: analysing the state of the art. Nat. Rev. Mater. 4, 269–285 (2019).

    Article  CAS  Google Scholar 

  34. Rau, U., Blank, B., Müller, T. C. M. & Kirchartz, T. Efficiency potential of photovoltaic materials and devices unveiled by detailed-balance analysis. Phys. Rev. Appl. 7, 044016 (2017).

    Article  Google Scholar 

  35. Green, M. A. & Ho-Baillie, A. W. Y. Pushing to the limit: radiative efficiencies of recent mainstream and emerging solar cells. ACS Energy Lett. 4, 1639–1644 (2019).

    Article  CAS  Google Scholar 

  36. Almora, O. et al. Quantifying the absorption onset in the quantum efficiency of emerging photovoltaic devices. Adv. Energy Mater. 11, 2100022 (2021).

    Article  CAS  Google Scholar 

  37. Chen, H. et al. Regulating surface potential maximizes voltage in all-perovskite tandems. Nature 613, 676–681 (2023).

    Article  CAS  Google Scholar 

  38. Jiang, Q. et al. Compositional texture engineering for highly stable wide-bandgap perovskite solar cells. Science 378, 1295–1300 (2022).

    Article  CAS  Google Scholar 

  39. Lin, R. et al. All-perovskite tandem solar cells with 3D/3D bilayer perovskite heterojunction. Nature https://doi.org/10.1038/s41586-023-06278-z (2023).

    Article  Google Scholar 

  40. Knight, A. J. & Herz, L. M. Preventing phase segregation in mixed-halide perovskites: a perspective. Energy Environ. Sci. 13, 2024–2046 (2020).

    Article  CAS  Google Scholar 

  41. Barker, A. J. et al. Defect-assisted photoinduced halide segregation in mixed-halide perovskite thin films. ACS Energy Lett. 2, 1416–1424 (2017).

    Article  CAS  Google Scholar 

  42. Yoon, S. J. et al. Tracking iodide and bromide ion segregation in mixed halide lead perovskites during photoirradiation. ACS Energy Lett. 1, 290–296 (2016).

    Article  CAS  Google Scholar 

  43. Motti, S. G. et al. Phase segregation in mixed-halide perovskites affects charge-carrier dynamics while preserving mobility. Nat. Commun. 12, 6955 (2021).

    Article  CAS  Google Scholar 

  44. Mahesh, S. et al. Revealing the origin of voltage loss in mixed-halide perovskite solar cells. Energy Environ. Sci. 13, 258–267 (2020).

    Article  CAS  Google Scholar 

  45. Caprioglio, P. et al. Nano-emitting heterostructures violate optical reciprocity and enable efficient photoluminescence in halide-segregated methylammonium-free wide bandgap perovskites. ACS Energy Lett. 6, 419–428 (2021).

    Article  CAS  Google Scholar 

  46. Peña-Camargo, F. et al. Halide segregation versus interfacial recombination in bromide-rich wide-gap perovskite solar cells. ACS Energy Lett. 5, 2728–2736 (2020).

    Article  Google Scholar 

  47. Wang, Z. et al. Suppressed phase segregation for triple-junction perovskite solar cells. Nature https://doi.org/10.1038/s41586-023-06006-7 (2023).

    Article  Google Scholar 

  48. Zhou, Y., Poli, I., Meggiolaro, D., De Angelis, F. & Petrozza, A. Defect activity in metal halide perovskites with wide and narrow bandgap. Nat. Rev. Mater. 6, 986–1002 (2021).

    Article  Google Scholar 

  49. J. Oliver, R. D. et al. Understanding and suppressing non-radiative losses in methylammonium-free wide-bandgap perovskite solar cells. Energy Environ. Sci. 15, 714–726 (2022).

    Article  Google Scholar 

  50. Motti, S. G. et al. Defect activity in lead halide perovskites. Adv. Mater. 31, 1901183 (2019).

    Article  CAS  Google Scholar 

  51. Long, M. et al. Abnormal synergetic effect of organic and halide ions on the stability and optoelectronic properties of a mixed perovskite via in situ characterizations. Adv. Mater. 30, 1801562 (2018).

    Article  Google Scholar 

  52. Fu, F. et al. I2 vapor-induced degradation of formamidinium lead iodide based perovskite solar cells under heat–light soaking conditions. Energy Environ. Sci. 12, 3074–3088 (2019).

    Article  CAS  Google Scholar 

  53. Motti, S. G. et al. Controlling competing photochemical reactions stabilizes perovskite solar cells. Nat. Photon. 13, 532–539 (2019).

    Article  CAS  Google Scholar 

  54. Cho, H. et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 350, 1222–1225 (2015).

    Article  CAS  Google Scholar 

  55. Meggiolaro, D., Mosconi, E. & De Angelis, F. Formation of surface defects dominates ion migration in lead-halide perovskites. ACS Energy Lett. 4, 779–785 (2019).

    Article  CAS  Google Scholar 

  56. Albrecht, S. et al. Towards optical optimization of planar monolithic perovskite/silicon-heterojunction tandem solar cells. J. Opt. 18, 064012 (2016).

    Article  Google Scholar 

  57. Filipič, M. et al. CH3NH3PbI3 perovskite/silicon tandem solar cells: characterization based optical simulations. Opt. Express 23, A263–A278 (2015).

    Article  Google Scholar 

  58. Werner, J. et al. Efficient near-infrared-transparent perovskite solar cells enabling direct comparison of 4-terminal and monolithic perovskite/silicon tandem cells. ACS Energy Lett. 1, 474–480 (2016).

    Article  CAS  Google Scholar 

  59. Hörantner, M. T. & Snaith, H. J. Predicting and optimising the energy yield of perovskite-on-silicon tandem solar cells under real world conditions. Energy Environ. Sci. 10, 1983–1993 (2017).

    Article  Google Scholar 

  60. Ho-Baillie, A. W. Y. et al. Recent progress and future prospects of perovskite tandem solar cells. Appl. Phys. Rev. 8, 041307 (2021).

    Article  CAS  Google Scholar 

  61. Sahli, F. et al. Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nat. Mater. 17, 820–826 (2018).

    Article  CAS  Google Scholar 

  62. Li, Y. et al. Wide bandgap interface layer induced stabilized perovskite/silicon tandem solar cells with stability over ten thousand hours. Adv. Energy Mater. 11, 2102046 (2021).

    Article  CAS  Google Scholar 

  63. Al-Ashouri, A. et al. Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science 370, 1300–1309 (2020).

    Article  CAS  Google Scholar 

  64. Lin, Y.-H. et al. A piperidinium salt stabilizes efficient metal-halide perovskite solar cells. Science 369, 96–102 (2020).

    Article  CAS  Google Scholar 

  65. Mazzarella, L. et al. Infrared light management using a nanocrystalline silicon oxide interlayer in monolithic perovskite/silicon heterojunction tandem solar cells with efficiency above 25%. Adv. Energy Mater. 9, 1803241 (2019).

    Article  Google Scholar 

  66. Eperon, G. E., Hörantner, M. T. & Snaith, H. J. Metal halide perovskite tandem and multiple-junction photovoltaics. Nat. Rev. Chem. 1, 1–18 (2017).

    Article  Google Scholar 

  67. Im, J., Stoumpos, C. C., Jin, H., Freeman, A. J. & Kanatzidis, M. G. Antagonism between spin–orbit coupling and steric effects causes anomalous band gap evolution in the perovskite photovoltaic materials CH3NH3Sn1–xPbxI3. J. Phys. Chem. Lett. 6, 3503–3509 (2015).

    Article  CAS  Google Scholar 

  68. Eperon, G. E. et al. Perovskite–perovskite tandem photovoltaics with optimized band gaps. Science 354, 861–865 (2016).

    Article  CAS  Google Scholar 

  69. Yang, Z. et al. Stable low-bandgap Pb–Sn binary perovskites for tandem solar cells. Adv. Mater. 28, 8990–8997 (2016).

    Article  CAS  Google Scholar 

  70. Lin, R. et al. Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(II) oxidation in precursor ink. Nat. Energy 4, 864–873 (2019).

    Article  CAS  Google Scholar 

  71. Moot, T. et al. Choose your own adventure: fabrication of monolithic all-perovskite tandem photovoltaics. Adv. Mater. 32, 2003312 (2020).

    Article  CAS  Google Scholar 

  72. Zhang, M. et al. Single-layered organic photovoltaics with double cascading charge transport pathways: 18% efficiencies. Nat. Commun. 12, 309 (2021).

    Article  CAS  Google Scholar 

  73. Yao, H., Wang, J., Xu, Y., Zhang, S. & Hou, J. Recent progress in chlorinated organic photovoltaic materials. Acc. Chem. Res. 53, 822–832 (2020).

    Article  CAS  Google Scholar 

  74. Yuan, J. et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 3, 1140–1151 (2019).

    Article  CAS  Google Scholar 

  75. McMeekin, D. P. et al. Solution-processed all-perovskite multi-junction solar cells. Joule 3, 387–401 (2019).

    Article  CAS  Google Scholar 

  76. Chen, W. et al. Monolithic perovskite/organic tandem solar cells with 23.6% efficiency enabled by reduced voltage losses and optimized interconnecting layer. Nat. Energy 7, 229–237 (2022).

    Article  CAS  Google Scholar 

  77. Brinkmann, K. O. et al. Perovskite–organic tandem solar cells with indium oxide interconnect. Nature 604, 280–286 (2022).

    Article  CAS  Google Scholar 

  78. Xiao, K. et al. Solution-processed monolithic all-perovskite triple-junction solar cells with efficiency exceeding 20%. ACS Energy Lett. 5, 2819–2826 (2020).

    Article  CAS  Google Scholar 

  79. Zheng, J. et al. Monolithic perovskite–perovskite–silicon triple-junction tandem solar cell with an efficiency of over 20%. ACS Energy Lett. 7, 3003–3005 (2022).

    Article  CAS  Google Scholar 

  80. Werner, J. et al. Perovskite/perovskite/silicon monolithic triple-junction solar cells with a fully textured design. ACS Energy Lett. 3, 2052–2058 (2018).

    Article  CAS  Google Scholar 

  81. Vaynzof, Y. The future of perovskite photovoltaics — thermal evaporation or solution processing? Adv. Energy Mater. 10, 2003073 (2020).

    Article  CAS  Google Scholar 

  82. McMeekin, D. P. et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 351, 151–155 (2016).

    Article  CAS  Google Scholar 

  83. Yu, F. et al. Efficient and stable wide‐bandgap perovskite solar cells derived from a thermodynamic phase‐pure intermediate. Sol. RRL 6, 2100906 (2022).

    Article  CAS  Google Scholar 

  84. Zhou, Y. et al. Composition-tuned wide bandgap perovskites: from grain engineering to stability and performance improvement. Adv. Funct. Mater. 28, 1803130 (2018).

    Article  Google Scholar 

  85. Yu, Y. et al. Synergistic effects of lead thiocyanate additive and solvent annealing on the performance of wide-bandgap perovskite solar cells. ACS Energy Lett. 2, 1177–1182 (2017).

    Article  CAS  Google Scholar 

  86. Wen, J. et al. Steric engineering enables efficient and photostable wide-bandgap perovskites for all-perovskite tandem solar cells. Adv. Mater. 34, 2110356 (2022).

    Article  CAS  Google Scholar 

  87. Bush, K. A. et al. Compositional engineering for efficient wide band gap perovskites with improved stability to photoinduced phase segregation. ACS Energy Lett. 3, 428–435 (2018).

    Article  CAS  Google Scholar 

  88. Bush, K. A. et al. Minimizing current and voltage losses to reach 25% efficient monolithic two-terminal perovskite–silicon tandem solar cells. ACS Energy Lett. 3, 2173–2180 (2018).

    Article  CAS  Google Scholar 

  89. Li, R. et al. CsPbCl3-cluster-widened bandgap and inhibited phase segregation in a wide-bandgap perovskite and its application to NiOx-based perovskite/silicon tandem solar cells. Adv. Mater. 34, 2201451 (2022).

    Article  CAS  Google Scholar 

  90. Noel, N. K. et al. Unveiling the influence of pH on the crystallization of hybrid perovskites, delivering low voltage loss photovoltaics. Joule 1, 328–343 (2017).

    Article  CAS  Google Scholar 

  91. Marshall, A. R. et al. Dimethylammonium: an A-site cation for modifying CsPbI3. Sol. RRL 5, 2000599 (2021).

    Article  CAS  Google Scholar 

  92. Ke, W., Spanopoulos, I., Stoumpos, C. C. & Kanatzidis, M. G. Myths and reality of HPbI3 in halide perovskite solar cells. Nat. Commun. 9, 4785 (2018).

    Article  Google Scholar 

  93. McMeekin, D. P. et al. Crystallization kinetics and morphology control of formamidinium–cesium mixed‐cation lead mixed‐halide perovskite via tunability of the colloidal precursor solution. Adv. Mater. 29, 1607039 (2017).

    Article  Google Scholar 

  94. Abdi-Jalebi, M. et al. Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature 555, 497–501 (2018).

    Article  CAS  Google Scholar 

  95. Tang, Z. et al. Hysteresis-free perovskite solar cells made of potassium-doped organometal halide perovskite. Sci. Rep. 7, 12183–12183 (2017).

    Article  Google Scholar 

  96. Nam, J. K. et al. Potassium incorporation for enhanced performance and stability of fully inorganic cesium lead halide perovskite solar cells. Nano Lett. 17, 2028–2033 (2017).

    Article  CAS  Google Scholar 

  97. Palmstrom, A. F. et al. Enabling flexible all-perovskite tandem solar cells. Joule 3, 2193–2204 (2019).

    Article  CAS  Google Scholar 

  98. Huang, Z. et al. Stable, bromine-free, tetragonal perovskites with 1.7 eV bandgaps via A-site cation substitution. ACS Mater. Lett. 2, 869–872 (2020).

    Article  CAS  Google Scholar 

  99. Tan, S. et al. Steric impediment of ion migration contributes to improved operational stability of perovskite solar cells. Adv. Mater. 32, 1906995 (2020).

    Article  CAS  Google Scholar 

  100. Beal, R. E. et al. Cesium lead halide perovskites with improved stability for tandem solar cells. J. Phys. Chem. Lett. 7, 746–751 (2016).

    Article  CAS  Google Scholar 

  101. T. Hoke, E. et al. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chem. Sci. 6, 613–617 (2015).

    Article  Google Scholar 

  102. Brennan, M. C., Draguta, S., Kamat, P. V. & Kuno, M. Light-induced anion phase segregation in mixed halide perovskites. ACS Energy Lett. 3, 204–213 (2018).

    Article  CAS  Google Scholar 

  103. Xiao, K. et al. Scalable processing for realizing 21.7%-efficient all-perovskite tandem solar modules. Science 376, 762–767 (2022).

    Article  CAS  Google Scholar 

  104. Wang, L. et al. Strain modulation for light-stable n–i–p perovskite/silicon tandem solar cells. Adv. Mater. 34, 2201315 (2022).

    Article  CAS  Google Scholar 

  105. Bai, S. et al. Planar perovskite solar cells with long-term stability using ionic liquid additives. Nature 571, 245–250 (2019).

    Article  CAS  Google Scholar 

  106. Caprioglio, P. et al. Bi-functional interfaces by poly(ionic liquid) treatment in efficient pin and nip perovskite solar cells. Energy Environ. Sci. 14, 4508–4522 (2021).

    Article  CAS  Google Scholar 

  107. Gharibzadeh, S. et al. Record open‐circuit voltage wide‐bandgap perovskite solar cells utilizing 2D/3D perovskite heterostructure. Adv. Energy Mater. 9, 1803699 (2019).

    Article  Google Scholar 

  108. Noel, N. K. et al. Elucidating the role of a tetrafluoroborate-based ionic liquid at the n-type oxide/perovskite interface. Adv. Energy Mater. 10, 1903231 (2020).

    Article  CAS  Google Scholar 

  109. Niu, T. et al. Ionic liquids-enabled efficient and stable perovskite photovoltaics: progress and challenges. ACS Energy Lett. 6, 1453–1479 (2021).

    Article  CAS  Google Scholar 

  110. Zhou, Y. et al. Benzylamine-treated wide-bandgap perovskite with high thermal-photostability and photovoltaic performance. Adv. Energy Mater. 7, 1701048 (2017).

    Article  Google Scholar 

  111. Wang, Z. et al. Efficient ambient-air-stable solar cells with 2D-3D heterostructured butylammonium–caesium–formamidinium lead halide perovskites. Nat. Energy 2, 17135 (2017).

    Article  CAS  Google Scholar 

  112. Bu, T. et al. Structure engineering of hierarchical layered perovskite interface for efficient and stable wide bandgap photovoltaics. Nano Energy 75, 104917 (2020).

    Article  CAS  Google Scholar 

  113. Chen, C. et al. Arylammonium-assisted reduction of the open-circuit voltage deficit in wide-bandgap perovskite solar cells: the role of suppressed ion migration. ACS Energy Lett. 5, 2560–2568 (2020).

    Article  CAS  Google Scholar 

  114. Chen, C. et al. Achieving a high open-circuit voltage in inverted wide-bandgap perovskite solar cells with a graded perovskite homojunction. Nano Energy 61, 141–147 (2019).

    Article  CAS  Google Scholar 

  115. Yang, D. et al. Surface optimization to eliminate hysteresis for record efficiency planar perovskite solar cells. Energy Environ. Sci. 9, 3071–3078 (2016).

    Article  CAS  Google Scholar 

  116. Wu, Y. et al. Thermally stable MAPbI3 perovskite solar cells with efficiency of 19.19% and area over 1 cm2 achieved by additive engineering. Adv. Mater. 29, 1701073 (2017).

    Article  Google Scholar 

  117. Wu, Q. et al. Solution-processable ionic liquid as an independent or modifying electron transport layer for high-efficiency perovskite solar cells. ACS Appl. Mater. Interfaces 8, 34464–34473 (2016).

    Article  CAS  Google Scholar 

  118. Grancini, G. et al. One-year stable perovskite solar cells by 2D/3D interface engineering. Nat. Commun. 8, 15684 (2017).

    Article  CAS  Google Scholar 

  119. Katan, C., Mercier, N. & Even, J. Quantum and dielectric confinement effects in lower-dimensional hybrid perovskite semiconductors. Chem. Rev. 119, 3140–3192 (2019).

    Article  CAS  Google Scholar 

  120. Gharibzadeh, S. et al. 2D/3D heterostructure for semitransparent perovskite solar cells with engineered bandgap enables efficiencies exceeding 25% in four‐terminal tandems with silicon and CIGS. Adv. Funct. Mater. 30, 1909919 (2020).

    Article  CAS  Google Scholar 

  121. Noel, N. K. et al. Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic–inorganic lead halide perovskites. ACS Nano 8, 9815–9821 (2014).

    Article  CAS  Google Scholar 

  122. Guan, H. et al. Low-dimensional 2-thiopheneethylammonium lead halide capping layer enables efficient single-junction methylamine-free wide-bandgap and tandem perovskite solar cells. Adv. Funct. Mater. 33, 2300860 (2023).

    Article  CAS  Google Scholar 

  123. Chen, C. et al. Interfacial engineering of a thiophene-based 2D/3D perovskite heterojunction for efficient and stable inverted wide-bandgap perovskite solar cells. Nano Energy 90, 106608 (2021).

    Article  CAS  Google Scholar 

  124. Mariotti, S. et al. Interface engineering for high-performance, triple-halide perovskite–silicon tandem solar cells. Science 381, 63–69 (2023).

    Article  CAS  Google Scholar 

  125. Li, F. et al. Regulating surface termination for efficient inverted perovskite solar cells with greater than 23% efficiency. J. Am. Chem. Soc. 142, 20134–20142 (2020).

    Article  CAS  Google Scholar 

  126. Jiang, Q. et al. Surface passivation of perovskite film for efficient solar cells. Nat. Photon. 13, 460–466 (2019).

    Article  CAS  Google Scholar 

  127. He, R. et al. All-perovskite tandem 1 cm2 cells with improved interface quality. Nature https://doi.org/10.1038/s41586-023-05992-y (2023).

    Article  Google Scholar 

  128. Zu, F., Shin, D. & Koch, N. Electronic properties of metal halide perovskites and their interfaces: the basics. Mater. Horiz. 9, 17–24 (2022).

    Article  CAS  Google Scholar 

  129. Béchu, S., Ralaiarisoa, M., Etcheberry, A. & Schulz, P. Photoemission spectroscopy characterization of halide perovskites. Adv. Energy Mater. 10, 1904007 (2020).

    Article  Google Scholar 

  130. Ramadan, A. J. et al. Revealing the stoichiometric tolerance of lead trihalide perovskite thin films. Chem. Mater. 32, 114–120 (2020).

    Article  CAS  Google Scholar 

  131. Ramadan, A. J. et al. Unravelling the improved electronic and structural properties of methylammonium lead iodide deposited from acetonitrile. Chem. Mater. 30, 7737–7743 (2018).

    Article  CAS  Google Scholar 

  132. Ramadan, A. J., Rochford, L. A., Fearn, S. & Snaith, H. J. Processing solvent-dependent electronic and structural properties of cesium lead triiodide thin films. J. Phys. Chem. Lett. 8, 4172–4176 (2017).

    Article  CAS  Google Scholar 

  133. Olthof, S. & Meerholz, K. Substrate-dependent electronic structure and film formation of MAPbI3 perovskites. Sci. Rep. 7, 40267 (2017).

    Article  CAS  Google Scholar 

  134. Canil, L. et al. Tuning halide perovskite energy levels. Energy Environ. Sci. 14, 1429–1438 (2021).

    Article  CAS  Google Scholar 

  135. Bush, K. A. et al. 23.6%-Efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat. Energy 2, 17009 (2017).

    Article  CAS  Google Scholar 

  136. Yu, Z. et al. Simplified interconnection structure based on C60/SnO2−x for all-perovskite tandem solar cells. Nat. Energy 5, 657–665 (2020).

    Article  CAS  Google Scholar 

  137. Jungbluth, A., Kaienburg, P. & Riede, M. Charge transfer state characterization and voltage losses of organic solar cells. J. Phys. Mater. 5, 024002 (2022).

    Article  Google Scholar 

  138. Zhang, M. & Zhan, X. Nonfullerene n‐type organic semiconductors for perovskite solar cells. Adv. Energy Mater. 9, 1900860 (2019).

    Article  Google Scholar 

  139. Song, C. et al. Sulfonyl-based non-fullerene electron acceptor-assisted grain boundary passivation for efficient and stable perovskite solar cells. J. Mater. Chem. A 7, 19881–19888 (2019).

    Article  CAS  Google Scholar 

  140. Yang, Q. et al. Hydroxylated non-fullerene acceptor for highly efficient inverted perovskite solar cells. Energy Environ. Sci. 14, 6536–6545 (2021).

    Article  CAS  Google Scholar 

  141. Zhang, L. et al. Surface defect passivation of Pb–Sn-alloyed perovskite film by 1,3-propanediammonium iodide toward high-performance photovoltaic devices. Sol. RRL 5, 2100299 (2021).

    Article  CAS  Google Scholar 

  142. Zhang, F. et al. Metastable Dion–Jacobson 2D structure enables efficient and stable perovskite solar cells. Science 375, 71–76 (2022).

    Article  CAS  Google Scholar 

  143. Wang, Y. et al. Cross-linked hole transport layers for high-efficiency perovskite tandem solar cells. Sci. China Chem. 64, 2025–2034 (2021).

    Article  CAS  Google Scholar 

  144. Al-Ashouri, A. et al. Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells. Energy Environ. Sci. 12, 3356–3369 (2019).

    Article  CAS  Google Scholar 

  145. Magomedov, A. et al. Self-assembled hole transporting monolayer for highly efficient perovskite solar cells. Adv. Energy Mater. 8, 1801892 (2018).

    Article  Google Scholar 

  146. Bryant, D. et al. Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells. Energy Environ. Sci. 9, 1655–1660 (2016).

    Article  CAS  Google Scholar 

  147. Holzhey, P. et al. A chain is as strong as its weakest link — stability study of MAPbI3 under light and temperature. Mater. Today 29, 10–19 (2019).

    Article  CAS  Google Scholar 

  148. Di Girolamo, D. et al. Dual effect of humidity on cesium lead bromide: enhancement and degradation of perovskite films. J. Mater. Chem. A 7, 12292–12302 (2019).

    Article  Google Scholar 

  149. Howard, J. M. et al. Humidity-induced photoluminescence hysteresis in variable Cs/Br ratio hybrid perovskites. J. Phys. Chem. Lett. 9, 3463–3469 (2018).

    Article  CAS  Google Scholar 

  150. Khenkin, M. V., Anoop, K. M., Katz, E. A. & Visoly-Fisher, I. Bias-dependent degradation of various solar cells: lessons for stability of perovskite photovoltaics. Energy Environ. Sci. 12, 550–558 (2019).

    Article  CAS  Google Scholar 

  151. Lee, J.-W. & Park, N.-G. Chemical approaches for stabilizing perovskite solar cells. Adv. Energy Mater. 10, 1903249 (2020).

    Article  CAS  Google Scholar 

  152. Conings, B. et al. Intrinsic thermal instability of methylammonium lead trihalide perovskite. Adv. Energy Mater. 5, 1500477 (2015).

    Article  Google Scholar 

  153. Zhao, Y. et al. Discovery of temperature-induced stability reversal in perovskites using high-throughput robotic learning. Nat. Commun. 12, 2191 (2021).

    Article  CAS  Google Scholar 

  154. Kim, M. et al. Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule 3, 2179–2192 (2019).

    Article  CAS  Google Scholar 

  155. Ball, J. M. & Petrozza, A. Defects in perovskite-halides and their effects in solar cells. Nat. Energy 1, 16149 (2016).

    Article  CAS  Google Scholar 

  156. Fu, L. et al. Defect passivation strategies in perovskites for an enhanced photovoltaic performance. Energy Environ. Sci. 13, 4017–4056 (2020).

    Article  CAS  Google Scholar 

  157. Kosar, S. et al. Unraveling the varied nature and roles of defects in hybrid halide perovskites with time-resolved photoemission electron microscopy. Energy Environ. Sci. 14, 6320–6328 (2021).

    Article  CAS  Google Scholar 

  158. Hartono, N. T. P. et al. Stability follows efficiency based on the analysis of a large perovskite solar cells ageing dataset. Nat. Commun. 14, 4869 (2023).

    Article  CAS  Google Scholar 

  159. Khenkin, M. V. et al. Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. Nat. Energy 5, 35–49 (2020).

    Article  Google Scholar 

  160. Zhu, H. et al. Long-term operating stability in perovskite photovoltaics. Nat. Rev. Mater. https://doi.org/10.1038/s41578-023-00582-w (2023).

    Article  Google Scholar 

  161. Gil-Escrig, L. et al. Efficient wide-bandgap mixed-cation and mixed-halide perovskite solar cells by vacuum deposition. ACS Energy Lett. 6, 827–836 (2021).

    Article  CAS  Google Scholar 

  162. Guo, R. et al. Degradation mechanisms of perovskite solar cells under vacuum and one atmosphere of nitrogen. Nat. Energy 6, 977–986 (2021).

    Article  CAS  Google Scholar 

  163. Boyd, C. C., Cheacharoen, R., Leijtens, T. & McGehee, M. D. Understanding degradation mechanisms and improving stability of perovskite photovoltaics. Chem. Rev. 119, 3418–3451 (2019).

    Article  CAS  Google Scholar 

  164. Deretzis, I. et al. Stability and degradation in hybrid perovskites: is the glass half-empty or half-full? J. Phys. Chem. Lett. 9, 3000–3007 (2018).

    Article  CAS  Google Scholar 

  165. Chi, W. & Banerjee, S. K. Achieving resistance against moisture and oxygen for perovskite solar cells with high efficiency and stability. Chem. Mater. 33, 4269–4303 (2021).

    Article  CAS  Google Scholar 

  166. McMeekin, D. P. et al. Intermediate-phase engineering via dimethylammonium cation additive for stable perovskite solar cells. Nat. Mater. 22, 73–83 (2023).

    Article  CAS  Google Scholar 

  167. Snaith, H. J. & Hacke, P. Enabling reliability assessments of pre-commercial perovskite photovoltaics with lessons learned from industrial standards. Nat. Energy 3, 459–465 (2018).

    Article  Google Scholar 

  168. Viperlab. Fully connected virtual and physical perovskite photovoltaics lab; https://www.viperlab.eu/.

  169. Jacobsson, T. J. et al. An open-access database and analysis tool for perovskite solar cells based on the FAIR data principles. Nat. Energy 7, 107–115 (2022).

    Article  CAS  Google Scholar 

  170. Myung, C. W. et al. Challenges, opportunities, and prospects in metal halide perovskites from theoretical and machine learning perspectives. Adv. Energy Mater. 12, 2202279 (2022).

    Article  CAS  Google Scholar 

  171. Srivastava, M., Hering, A. R., An, Y., Correa-Baena, J.-P. & Leite, M. S. Machine learning enables prediction of halide perovskites’ optical behavior with >90% accuracy. ACS Energy Lett. 8, 1716–1722 (2023).

    Article  CAS  Google Scholar 

  172. Liu, Y. et al. Exploring the relationship of microstructure and conductivity in metal halide perovskites via active learning-driven automated scanning probe microscopy. J. Phys. Chem. Lett. 14, 3352–3359 (2023).

    Article  Google Scholar 

  173. Yang, W. et al. Unlocking voltage potentials of mixed-halide perovskite solar cells via phase segregation suppression. Adv. Funct. Mater. 32, 2110698 (2022).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the European Union’s Horizon 2020 Research and Innovation programme under grant agreement no. 861985 (peroCUBE) and the UK’s Engineering and Physical Sciences Research Council (EPSRC) EP/T025077/1 and EP/T012455/1. R.D.J.O. acknowledges the support of the Penrose Scholarship.

Author information

Authors and Affiliations

Authors

Contributions

A.J.R. and R.D.J.O. contributed equally to the article. R.D.J.O. performed the simulations for the article. A.J.R. and R.D.J.O. researched data for the article. All authors contributed substantially to discussion of the content. A.J.R. wrote the article with input from R.D.J.O. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Alexandra J. Ramadan.

Ethics declarations

Competing interests

H.J.S. is the co-founder and CSO of Oxford PV Ltd, a company that is commercializing perovskite photovoltaic technologies. A.J.R., R.D.J.O. and M.B.J. declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Hairen Tan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramadan, A.J., Oliver, R.D.J., Johnston, M.B. et al. Methylammonium-free wide-bandgap metal halide perovskites for tandem photovoltaics. Nat Rev Mater 8, 822–838 (2023). https://doi.org/10.1038/s41578-023-00610-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-023-00610-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing