Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

A guide to comprehensive phosphor discovery for solid-state lighting

Abstract

Inorganic phosphors have been crucial in enabling energy-efficient, phosphor-converted light-emitting diode (LED) lighting and display technologies. The push to increase the luminous efficacy and improve the colour quality of these lights has led to a surge in reports of different combinations of phosphor host structures and activators, with many claiming that the new materials have transformative properties. This Perspective article outlines the optical property requirements phosphors must meet to impact the field. Additionally, the tools that have been developed to accelerate the discovery of exceptional phosphors that meet these requirements are summarized, including crystal–chemical design rules, proxies, data-driven approaches, first-principles calculations and combinatorial methods. We also highlight open challenges in the field of phosphor discovery. Finally, we discuss the reality that these methods are unlikely to identify a perfect phosphor that satisfies all the requirements. Instead, we propose a workflow for phosphor discovery that prioritizes the properties necessary to produce next-generation phosphor materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The composition of phosphors and the six key properties a phosphor must possess for commercialization.
Fig. 2: Metaheuristics-assisted combinatorial screening to target phosphors with a specific emission colour.
Fig. 3: A single-particle diagnosis approach for phosphor discovery.
Fig. 4: Machine learning the Debye temperature to identify highly efficient phosphors.
Fig. 5: The full width at half maximum of phosphors is influenced by aliovalent substitution and local structure.
Fig. 6: Density functional theory calculations and machine learning can be used to understand and predict phosphor thermal quenching.
Fig. 7: A phosphor discovery pipeline.

Similar content being viewed by others

References

  1. United Nations Environment Programme. The Rapid Transition to Energy Efficient Lighting: An Integrated Policy Approach. UNEP https://wedocs.unep.org/20.500.11822/8468 (2013).

  2. Pust, P., Schmidt, P. J. & Schnick, W. A revolution in lighting. Nat. Mater. 14, 454–458 (2015).

    Article  CAS  Google Scholar 

  3. George, N. C., Denault, K. A. & Seshadri, R. Phosphors for solid-state white lighting. Annu. Rev. Mater. Res. 43, 481–501 (2013).

    Article  CAS  Google Scholar 

  4. Morgan, P. et al. 2022 Solid-State Lighting R&D Opportunities. US Department of Energy Office of Scientific and Technical Information https://doi.org/10.2172/1862626 (2022).

  5. McKittrick, J. & Shea-Rohwer, L. E. Review: down conversion materials for solid-state lighting. J. Am. Ceram. Soc. 97, 1327–1352 (2014).

    Article  CAS  Google Scholar 

  6. Meyer, J. & Tappe, F. Photoluminescent materials for solid-state lighting: state of the art and future challenges. Adv. Opt. Mater. 3, 424–430 (2015).

    Article  CAS  Google Scholar 

  7. Luo, X. & Xie, R.-J. Recent progress on discovery of novel phosphors for solid state lighting. J. Rare Earths 38, 464–473 (2020).

    Article  Google Scholar 

  8. Zhuo, Y. & Brgoch, J. Opportunities for next-generation luminescent materials through artificial intelligence. J. Phys. Chem. Lett. 12, 764–772 (2021).

    Article  CAS  Google Scholar 

  9. Hariyani, S. & Brgoch, J. Spectral design of phosphor-converted LED lighting guided by color theory. lnorg. Chem. 61, 4205–4218 (2022).

    Article  CAS  Google Scholar 

  10. Hariyani, S. & Brgoch, J. Advancing human-centric LED lighting using Na2MgPO4F:Eu2+. ACS Appl. Mater. Interfaces 13, 16669–16676 (2021).

    Article  CAS  Google Scholar 

  11. Lumileds. Narrow Red Phosphor Technology. Lumileds https://lumileds.com/wp-content/uploads/files/WP32.pdf (2016).

  12. Ohno, Y. Color rendering and luminous efficacy of white LED spectra. Proc. SPIE Int. Soc. Opt. Eng. 5530, 88–98 (2004).

    Google Scholar 

  13. National Research Council, Division on Engineering and Physical Sciences, Board on Energy and Environmental Systems & Committee on Assessment of Solid-state Lighting. Assessment of Advanced Solid-State Lighting (The National Academies Press, 2013).

  14. Murphy, J. E., Garcia-Santamaria, F., Setlur, A. A. & Sista, S. 62.4: PFS, K2SiF6:Mn4+: the red-line emitting LED phosphor behind GE’s TriGain Technology™ platform. SID Int. Symp. Dig. Tec. 46, 927–930 (2015).

    Article  CAS  Google Scholar 

  15. MacAdam, D. L. Specification of small chromaticity differences. J. Opt. Soc. Am. 33, 18–26 (1943).

    Article  Google Scholar 

  16. Dorenbos, P. Crystal field splitting of lanthanide 4fn−15d-levels in inorganic compounds. J. Alloy. Compd. 341, 156–159 (2002).

    Article  CAS  Google Scholar 

  17. Xia, Y. et al. Crystal structure evolution and luminescence properties of color tunable solid solution phosphors Ca2+xLa8−x(SiO4)6−x(PO4)xO2:Eu2+. Dalton Trans. 45, 1007–1015 (2016).

    Article  CAS  Google Scholar 

  18. Jiang, L. et al. Multiobjective machine learning-assisted discovery of a novel cyan–green garnet: Ce phosphors with excellent thermal stability. ACS Appl. Mater. Interfaces 14, 15426–15436 (2022).

    Article  CAS  Google Scholar 

  19. Lai, S., Zhao, M., Qiao, J., Molokeev, M. S. & Xia, Z. Data-driven photoluminescence tuning in Eu2+-doped phosphors. J. Phys. Chem. Lett. 11, 5680–5685 (2020).

    Article  CAS  Google Scholar 

  20. van Uitert, L. G. An empirical relation fitting the position in energy of the lower d-band edge for Eu2+ or Ce3+ in various compounds. J. Lumin. 29, 1–9 (1984).

    Article  Google Scholar 

  21. Park, W. B., Singh, S. P., Kim, M. & Sohn, K.-S. Phosphor informatics based on confirmatory factor analysis. ACS Comb. Sci. 17, 317–325 (2015).

    Article  CAS  Google Scholar 

  22. Wang, Q. et al. Crystal structure and photoluminescence properties of Eu2+-activated Ba2LiB5O10 phosphors. Opt. Commun. 284, 5315–5318 (2011).

    Article  CAS  Google Scholar 

  23. Sonekar, R., Omanwar, S. & Moharil, S. Combustion synthesis and photoluminescence of Eu2+ doped BaB8O13. Indian J. Pure Appl. Phys. 47, 441–443 (2009).

    CAS  Google Scholar 

  24. Lee, J.-W. et al. Metaheuristics-assisted combinatorial screening of Eu2+-doped Ca–Sr–Ba–Li–Mg–Al–Si–Ge–N compositional space in search of a narrow-band green emitting phosphor and density functional theory calculations. lnorg. Chem. 56, 9814–9824 (2017).

    Article  CAS  Google Scholar 

  25. Park, W. B., Singh, S. P. & Sohn, K.-S. Discovery of a phosphor for light emitting diode applications and its structural determination, Ba(Si,Al)5(O,N)8:Eu2+. J. Am. Chem. Soc. 136, 2363–2373 (2014).

    Article  CAS  Google Scholar 

  26. Strobel, P. et al. Narrow-band green emitting nitridolithoalumosilicate Ba[Li2(Al2Si2)N6]:Eu2+ with framework topology whj for LED/LCD-backlighting applications. Chem. Mater. 27, 6109–6115 (2015).

    Article  CAS  Google Scholar 

  27. Park, W. B., Singh, S. P., Yoon, C. & Sohn, K.-S. Combinatorial chemistry of oxynitride phosphors and discovery of a novel phosphor for use in light emitting diodes, Ca1.5Ba0.5Si5N6O3:Eu2+. J. Mater. Chem. C 1, 1832–1839 (2013).

    Article  CAS  Google Scholar 

  28. Park, W. B., Shin, N., Hong, K.-P., Pyo, M. & Sohn, K.-S. A new paradigm for materials discovery: heuristics-assisted combinatorial chemistry involving parameterization of material novelty. Adv. Funct. Mater. 22, 2258–2266 (2012).

    Article  CAS  Google Scholar 

  29. Kulshreshtha, C., Sharma, A. K. & Sohn, K.-S. Search for new red phosphors using genetic algorithm-assisted combinatorial chemistry. J. Comb. Chem. 10, 421–425 (2008).

    Article  CAS  Google Scholar 

  30. Singh, S. P., Kim, M., Park, W. B., Lee, J.-W. & Sohn, K.-S. Discovery of a red-emitting Li3RbGe8O18:Mn4+ phosphor in the alkali-germanate system: structural determination and electronic calculations. lnorg. Chem. 55, 10310–10319 (2016).

    Article  CAS  Google Scholar 

  31. Takeda, T., Hirosaki, N., Funahashi, S. & Xie, R.-J. New phosphor discovery by the single particle diagnosis approach. Mater. Discov. 1, 29–37 (2015).

    Article  Google Scholar 

  32. Zhang, Y. et al. Realizing red/orange emission of Eu2+/Ce3+ in La26−xSrxSi41Ox+1N80−x (x = 12.72–12.90) phosphors for high color rendition white LEDs. J. Mater. Chem. C 8, 13458–13466 (2020).

    Article  CAS  Google Scholar 

  33. Hirosaki, N., Takeda, T., Funahashi, S. & Xie, R.-J. Discovery of new nitridosilicate phosphors for solid state lighting by the single-particle-diagnosis approach. Chem. Mater. 26, 4280–4288 (2014).

    Article  CAS  Google Scholar 

  34. Takeda, T., Hirosaki, N., Funahshi, S. & Xie, R.-J. Narrow-band green-emitting phosphor Ba2LiSi7AlN12:Eu2+ with high thermal stability discovered by a single particle diagnosis approach. Chem. Mater. 27, 5892–5898 (2015).

    Article  CAS  Google Scholar 

  35. Wang, C.-Y. et al. New deep-blue-emitting Ce-doped A4–mBnC19+2mX29+m (A = Sr, La; B = Li; C = Si, Al; X = O, N; 0 ≤ m ≤ 1; 0 ≤ n ≤ 1) phosphors for high-color-rendering warm white light-emitting diodes. ACS Appl. Mater. Interfaces 11, 29047–29055 (2019).

    Article  CAS  Google Scholar 

  36. Wong, K.-L., Bünzli, J.-C. G. & Tanner, P. A. Quantum yield and brightness. J. Lumin. 224, 117256 (2020).

    Article  CAS  Google Scholar 

  37. Feldmann, C., Jüstel, T., Ronda, C. R. & Wiechert, D. U. Quantum efficiency of down-conversion phosphor LiGdF4:Eu. J. Lumin. 92, 245–254 (2001).

    Article  CAS  Google Scholar 

  38. Fan, B., Chlique, C., Merdrignac-Conanec, O., Zhang, X. & Fan, X. Near-infrared quantum cutting material Er3+/Yb3+ doped La2O2S with an external quantum yield higher than 100%. J. Phys. Chem. C 116, 11652–11657 (2012).

    Article  CAS  Google Scholar 

  39. Zhong, Y. et al. Pyrophosphate phosphor solid solution with high quantum efficiency and thermal stability for efficient LED lighting. iScience 23, 100892 (2020).

    Article  CAS  Google Scholar 

  40. Dexter, D. L. & Schulman, J. H. Theory of concentration quenching in inorganic phosphors. J. Chem. Phys. 22, 1063–1070 (2004).

    Article  Google Scholar 

  41. Rohwer, L. S. & Martin, J. E. Measuring the absolute quantum efficiency of luminescent materials. J. Lumin. 115, 77–90 (2005).

    Article  CAS  Google Scholar 

  42. Zhuo, Y., Mansouri Tehrani, A., Oliynyk, A. O., Duke, A. C. & Brgoch, J. Identifying an efficient, thermally robust inorganic phosphor host via machine learning. Nat. Commun. 9, 4377 (2018).

    Article  Google Scholar 

  43. George, N. C. et al. Local environments of dilute activator ions in the solid-state lighting phosphor Y3–xCexAl5O12. Chem. Mater. 25, 3979–3995 (2013).

    Article  CAS  Google Scholar 

  44. Guo, C., Xu, Y., Ren, Z. & Bai, J. Blue-white-yellow tunable emission from Ce3+ and Eu2+ co-doped BaSiO3 phosphors. J. Electrochem. Soc. 158, J373 (2011).

    Article  CAS  Google Scholar 

  45. Brgoch, J., DenBaars, S. P. & Seshadri, R. Proxies from ab initio calculations for screening efficient Ce3+ phosphor hosts. J. Phys. Chem. C 117, 17955–17959 (2013).

    Article  CAS  Google Scholar 

  46. Hariyani, S., Duke, A. C., Krauskopf, T., Zeier, W. G. & Brgoch, J. The effect of rare-earth substitution on the Debye temperature of inorganic phosphors. Appl. Phys. Lett. 116, 051901 (2020).

    Article  CAS  Google Scholar 

  47. Hermus, M. & Brgoch, J. Phosphors by design: approaches toward the development of advanced luminescent materials. Electrochem. Soc. Interface 24, 55–59 (2015).

    Article  CAS  Google Scholar 

  48. Amachraa, M. et al. Predicting thermal quenching in inorganic phosphors. Chem. Mater. 32, 6256–6265 (2020).

    Article  CAS  Google Scholar 

  49. Jain, A. et al. Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).

    Article  Google Scholar 

  50. Zhong, J. et al. Closing the cyan gap toward full-spectrum LED lighting with NaMgBO3:Ce3+. Chem. Mater. 32, 882–888 (2020).

    Article  CAS  Google Scholar 

  51. Im, W. B. et al. Sr2.975−xBaxCe0.025AlO4F: a highly efficient green-emitting oxyfluoride phosphor for solid state white lighting. Chem. Mater. 22, 2842–2849 (2010).

    Article  CAS  Google Scholar 

  52. Hariyani, S. & Brgoch, J. Local structure distortion induced broad band emission in the all-inorganic BaScO2F:Eu2+ perovskite. Chem. Mater. 32, 6640–6649 (2020).

    Article  CAS  Google Scholar 

  53. You, S., Zhuo, Y., Chen, Q., Brgoch, J. & Xie, R.-J. Dual-site occupancy induced broadband cyan emission in Ba2CaB2Si4O14:Ce3+. J. Mater. Chem. C 8, 15626–15633 (2020).

    Article  CAS  Google Scholar 

  54. Ha, J. et al. An integrated first principles and experimental investigation of the relationship between structural rigidity and quantum efficiency in phosphors for solid state lighting. J. Lumin. 179, 297–305 (2016).

    Article  CAS  Google Scholar 

  55. Duke, A. C., Finley, E., Hermus, M. & Brgoch, J. Yellow-green luminescence and extreme thermal quenching in the Sr6M2Al4O15:Eu2+ (M = Y, Lu, Sc) phosphor series. Solid State Sci. 60, 108–113 (2016).

    Article  CAS  Google Scholar 

  56. Brik, M. G., Srivastava, A. M. & Popov, A. I. A few common misconceptions in the interpretation of experimental spectroscopic data. Opt. Mater. 127, 112276 (2022).

    Article  CAS  Google Scholar 

  57. Lakowicz, J. R. Principles of Fluorescence Spectroscopy 3rd edn 53–54 (Springer, 2008).

  58. Mooney, J. & Kambhampati, P. Get the basics right: Jacobian conversion of wavelength and energy scales for quantitative analysis of emission spectra. J. Phys. Chem. Lett. 4, 3316–3318 (2013).

    Article  CAS  Google Scholar 

  59. Blasse, G. & Grabmaier, B. C. Luminescent Materials 72–84 (Springer-Verlag, 1994).

  60. Li, S. et al. Data-driven discovery of full-visible-spectrum phosphor. Chem. Mater. 31, 6286–6294 (2019).

    Article  CAS  Google Scholar 

  61. Strobel, P. et al. Luminescence of an oxonitridoberyllate: a study of narrow-band cyan-emitting Sr[Be6ON4]:Eu2+. Chem. Mater. 30, 3122–3130 (2018).

    Article  CAS  Google Scholar 

  62. Strobel, P., Maak, C., Weiler, V., Schmidt, P. J. & Schnick, W. Ultra-narrow-band blue-emitting oxoberyllates AELi2[Be4O6]:Eu2+ (AE=Sr, Ba) paving the way to efficient RGB pc-LEDs. Angew. Chem. Int. Ed. 57, 8739–8743 (2018).

    Article  CAS  Google Scholar 

  63. Wendl, S. et al. Nitridophosphate-based ultra-narrow-band blue-emitters: luminescence properties of AEP8N14:Eu2+ (AE=Ca, Sr, Ba). Chem. Eur. J. 26, 7292–7298 (2020).

    Article  CAS  Google Scholar 

  64. Li, C. et al. Narrow-band blue emitting nitridomagnesosilicate phosphor Sr8Mg7Si9N22:Eu2+ for phosphor-converted LEDs. Chem. Commun. 54, 11598–11601 (2018).

    Article  CAS  Google Scholar 

  65. Zhuo, Y., Hariyani, S., Zhong, J. & Brgoch, J. Creating a green-emitting phosphor through selective rare-earth site preference in NaBaB9O15:Eu2+. Chem. Mater. 33, 3304–3311 (2021).

    Article  CAS  Google Scholar 

  66. Chen, Y.-J., Cao, F.-B., Tian, Y.-W., Xiao, L.-J. & Li, L.-K. Optimized photoluminescence by charge compensation in a novel phosphor system. Phys. B 405, 435–438 (2010).

    Article  CAS  Google Scholar 

  67. Duke, A. C., Hariyani, S. & Brgoch, J. Ba3Y2B6O15:Ce3+ — a high symmetry, narrow-emitting blue phosphor for wide-gamut white lighting. Chem. Mater. 30, 2668–2675 (2018).

    Article  CAS  Google Scholar 

  68. Pust, P. et al. Narrow-band red-emitting Sr[LiAl3N4]:Eu2+ as a next-generation LED-phosphor material. Nat. Mater. 13, 891–896 (2014).

    Article  CAS  Google Scholar 

  69. Pust, P. et al. Group (III) nitrides M[Mg2Al2N4] (M = Ca, Sr, Ba, Eu) and Ba[Mg2Ga2N4] — structural relation and nontypical luminescence properties of Eu2+ doped samples. Chem. Mater. 26, 6113–6119 (2014).

    Article  CAS  Google Scholar 

  70. García-Fuente, A. et al. Properties design: prediction and experimental validation of the luminescence properties of a new EuII-based phosphor. Chem. Eur. J. 24, 16276–16281 (2018).

    Article  Google Scholar 

  71. Henderson, B. & Imbusch, G. F. Optical Spectroscopy of Inorganic Solids 199–208 (Clarendon Press 1989).

  72. Brinkley, S. E. et al. Robust thermal performance of Sr2Si5N8:Eu2+: an efficient red emitting phosphor for light emitting diode based white lighting. Appl. Phys. Lett. 99, 241106 (2011).

    Article  Google Scholar 

  73. Dorenbos, P. Thermal quenching of Eu2+ 5d–4f luminescence in inorganic compounds. J. Phys. Condens. Matter 17, 8103–8111 (2005).

    Article  CAS  Google Scholar 

  74. Zhuo, Y., Hariyani, S., Armijo, E., Abolade Lawson, Z. & Brgoch, J. Evaluating thermal quenching temperature in Eu3+-substituted oxide phosphors via machine learning. ACS Appl. Mater. Interfaces 12, 5244–5250 (2020).

    Article  CAS  Google Scholar 

  75. Garlick, G. F. J. & Gibson, A. F. The electron trap mechanism of luminescence in sulphide and silicate phosphors. Proc. Phys. Soc. 60, 574 (1948).

    Article  CAS  Google Scholar 

  76. Müller, M. & Jüstel, T. On the luminescence and energy transfer of white emitting Ca3Y2(Si3O9)2:Ce3+,Mn2+ phosphor. J. Lumin. 155, 398–404 (2014).

    Article  Google Scholar 

  77. Shchekin, O. B. et al. Excitation dependent quenching of luminescence in LED phosphors. Phys. Stat. Sol. Rapid Res. Lett. 10, 310–314 (2016).

    CAS  Google Scholar 

  78. Wen, J. et al. First-principles study on structural, electronic, and spectroscopic properties of γ-Ca2SiO4:Ce3+ phosphors. J. Phys. Chem. A 119, 8031–8039 (2015).

    Article  CAS  Google Scholar 

  79. Huang, X. et al. Site occupation and spectral assignment in Eu2+-activated β-Ca3(PO4)2-type phosphors: insights from first-principles calculations. lnorg. Chem. 59, 16760–16768 (2020).

    Article  CAS  Google Scholar 

  80. Zhong, J. et al. Combining experiment and computation to elucidate the optical properties of Ce3+ in Ba5Si8O21. Phys. Chem. Chem. Phys. 22, 2327–2336 (2020).

    Article  CAS  Google Scholar 

  81. Wen, J. et al. Site occupation and 4f → 5d transitions of Ce3+ ions at mixed Ca2+/Y3+ sites in CaYAlO4: insights from first-principles calculations. J. Lumin. 216, 116726 (2019).

    Article  CAS  Google Scholar 

  82. Zhong, J. et al. Understanding the β-K2CO3-type Na(Na0.5Sc0.5)BO3:Ce3+ phosphor. ECS Solid. State Sci. Technol. 10, 096014 (2021).

    Article  CAS  Google Scholar 

  83. Park, C. et al. A data-driven approach to predicting band gap, excitation, and emission energies for Eu2+-activated phosphors. Inorg. Chem. Front. 8, 4610–4624 (2021).

    Article  CAS  Google Scholar 

  84. Wilkerson, A., Sullivan, G. P., Davis, R. G. & Safranek, S. Yuma Border Patrol Area Lighting Retrofit: Final LED System Performance Assessment of Trial and Full Installation. US Department of Energy Office of Scientific and Technical Information https://doi.org/10.2172/1437097 (2018).

  85. Hariyani, S. et al. From lab to lamp: understanding downconverter degradation in LED packages. J. Appl. Phys. 132, 190901 (2022).

    Article  CAS  Google Scholar 

  86. MacAdam, D. L. Visual sensitivities to color differences in daylight. J. Opt. Soc. Am. 32, 247–274 (1942).

    Article  Google Scholar 

  87. Narendran, N., Vasconez, S., Boyce, P. & Eklund, N. Just-perceivable color differences between similar light sources in display lighting applications. J. Illum. Eng. Soc. 29, 68–77 (2000).

    Article  Google Scholar 

  88. Jiang, R., Wang, Z., Wang, Q. & Dai, L. Multi-user sum-rate optimization for visible light communications with lighting constraints. J. Lightwave Technol. 34, 3943–3952 (2016).

    Article  CAS  Google Scholar 

  89. Hartmann, P., Pachler, P., Payrer, E. & Tasch, S. in SPIE OPTO: Integrated Optoelectronic Devices (SPIE, 2009).

  90. Li, J. et al. Improvement in optical performance and color uniformity by optimizing the remote phosphor caps geometry for chip-on-board light emitting diodes. Solid State Electron. 126, 36–45 (2016).

    Article  CAS  Google Scholar 

  91. Perera, I. U. & Narendran, N. Analysis of a remote phosphor layer heat sink to reduce phosphor operating temperature. Int. J. Heat Mass. Transf. 117, 211–222 (2018).

    Article  Google Scholar 

  92. Chung, T. Y. et al. Study of temperature distribution within pc-WLEDs using the remote-dome phosphor package. IEEE Photon. J. 7, 1–11 (2015).

    Article  CAS  Google Scholar 

  93. Zheng, Z. et al. Enhanced heat dissipation of phosphor film in WLEDs by AlN-coated sapphire plate. IEEE Trans. Electron. Dev. 67, 3180–3185 (2020).

    Article  CAS  Google Scholar 

  94. Zhao, Y. et al. Enhanced thermal degradation stability of the Sr2Si5N8:Eu2+ phosphor by ultra-thin Al2O3 coating through the atomic layer deposition technique in a fluidized bed reactor. J. Mater. Chem. C 7, 5772–5781 (2019).

    Article  CAS  Google Scholar 

  95. Zhao, Y. et al. Waterproof surface passivation of K2GeF6:Mn4+ by a dense Al2O3 layer via atomic layer deposition. J. Mater. Chem. C 10, 9867–9874 (2022).

    Article  CAS  Google Scholar 

  96. Zhang, F. et al. Silica coating enhances the stability of inorganic perovskite nanocrystals for efficient and stable down-conversion in white light-emitting devices. Nanoscale 10, 20131–20139 (2018).

    Article  CAS  Google Scholar 

  97. Liu, Y. et al. Achieving thermally stable and anti-hydrolytic Sr2Si5N8:Eu2+ phosphor via a nanoscale carbon deposition strategy. Ceram. Int. 47, 3244–3251 (2021).

    Article  CAS  Google Scholar 

  98. Zhou, Y.-Y., Song, E.-H., Deng, T.-T. & Zhang, Q.-Y. Waterproof narrow-band fluoride red phosphor K2TiF6:Mn4+ via facile superhydrophobic surface modification. ACS Appl. Mater. Interfaces 10, 880–889 (2018).

    Article  CAS  Google Scholar 

  99. Arunkumar, P., Kim, Y. H., Kim, H. J., Unithrattil, S. & Im, W. B. Hydrophobic organic skin as a protective shield for moisture-sensitive phosphor-based optoelectronic devices. ACS Appl. Mater. Interfaces 9, 7232–7240 (2017).

    Article  CAS  Google Scholar 

  100. Waltz, D. & Buchanan, B. G. Automating science. Science 324, 43–44 (2009).

    Article  CAS  Google Scholar 

  101. Danielson, E. et al. A rare-earth phosphor containing one-dimensional chains identified through combinatorial methods. Science 279, 837–839 (1998).

    Article  CAS  Google Scholar 

  102. Lin, T. et al. Rapid automated materials synthesis instrument: exploring the composition and heat-treatment of nanoprecursors toward low temperature red phosphors. J. Comb. Chem. 12, 383–392 (2010).

    Article  CAS  Google Scholar 

  103. Hariyani, S. & Brgoch, J. in Comprehensive Inorganic Chemistry III 3rd edn (eds Reedijk, J. & Poeppelmeier, K. R) 262–307 (Elsevier, 2023).

  104. Hermus, M., Phan, P.-C., Duke, A. C. & Brgoch, J. Tunable optical properties and increased thermal quenching in the blue-emitting phosphor series: Ba2(Y1–xLux)5B5O17:Ce3+ (x = 0 – 1). Chem. Mater. 29, 5267–5275 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

S.H., M.S. and J.B. thank the National Science Foundation (CER-1911311 and DMR-1847701) for supporting this work.

Author information

Authors and Affiliations

Authors

Contributions

S.H. and M.S. researched data for the article. S.H., A.S. and J.B. contributed substantially to discussion of the content. S.H., M.S. and J.B. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Shruti Hariyani or Jakoah Brgoch.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Kee-Sun Sohn, Ru-Shi Liu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hariyani, S., Sójka, M., Setlur, A. et al. A guide to comprehensive phosphor discovery for solid-state lighting. Nat Rev Mater 8, 759–775 (2023). https://doi.org/10.1038/s41578-023-00605-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-023-00605-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing