Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

InP colloidal quantum dots for visible and near-infrared photonics

Subjects

Abstract

Owing to their tunable band gap, high absorption coefficient, narrow emission linewidths and unrestricted composition, InP-based colloidal quantum dots (QDs) have become industrially relevant for visible and near-infrared photonic technologies. Although their development has so far been strongly driven by their suitability for green and red light-emitting diodes, the spectrum of applications for this class of materials is much broader. This Review covers the multidisciplinary field of InP-based QDs from its genesis in the mid-1990s to date, drawing on relevant knowledge from other classes of QDs and from III–V semiconductors as a whole. We discuss the optoelectronic properties of InP QDs, their fabrication, their defects and passivation strategies and the design of InP-based QD heterostructures. Finally, we outline the technological status of these QDs for various photonic applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Optoelectronic properties of InP.
Fig. 2: Synthesis and structure of InP quantum dots.
Fig. 3: Documented structural defects in InP quantum dots and possible repair mechanisms.
Fig. 4: InP-based core–shell quantum dots.
Fig. 5: InP-based quantum dots in light-emitting diodes.
Fig. 6: Near-infrared applications of InP quantum dots.
Fig. 7: Coherent and quantum light sources using InP quantum dots.

Similar content being viewed by others

References

  1. Dingle, R., Wiegmann, W. & Henry, C. H. Quantum states of confined carriers in very thin AlxGa1−xAs-GaAs-AlxGa1−xAs heterostructures. Phys. Rev. Lett. 33, 827–830 (1974).

    Article  CAS  Google Scholar 

  2. Sakaki, H. Scattering suppression and high-mobility effect of size-quantized electrons in ultrafine semiconductor wire structures. Jpn. J. Appl. Phys. 19, 735–738 (1980).

    Article  Google Scholar 

  3. Ekimov, A. & Onushchenko, A. Quantum size effect in three-dimensional microscopic semiconductor crystals. JETP Lett. 34, 345 (1981).

    Google Scholar 

  4. Efros, A. L. & Efros, A. L. Interband absorption of light in a semiconductor sphere. Sov. Phys. Semicond. 16, 772–775 (1982).

    Google Scholar 

  5. Brus, L. E. A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites. J. Chem. Phys. 79, 5566–5571 (1983).

    Article  CAS  Google Scholar 

  6. Brus, L. E. Electron–electron and electron–hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J. Chem. Phys. 80, 4403–4409 (1984).

    Article  CAS  Google Scholar 

  7. Meyer, M., Wallberg, C., Kurihara, K. & Fendler, J. H. Photosensitized charge separation and hydrogen production in reversed micelle entrapped platinized colloidal cadmium sulphide. J. Chem. Soc. Chem. Commun. 2, 90–91 (1984).

    Article  Google Scholar 

  8. Murray, C. B., Norris, D. J. & Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 (1993).

    Article  CAS  Google Scholar 

  9. Yin, Y. & Alivisatos, A. P. Colloidal nanocrystal synthesis and the organic–inorganic interface. Nature 437, 664–670 (2005).

    Article  CAS  Google Scholar 

  10. Calvin, J. J., Brewer, A. S. & Alivisatos, A. P. The role of organic ligand shell structures in colloidal nanocrystal synthesis. Nat. Synth. 1, 127–137 (2022).

    Article  Google Scholar 

  11. Kovalenko, M. V. et al. Prospects of nanoscience with nanocrystals. ACS Nano 9, 1012–1057 (2015).

    Article  CAS  Google Scholar 

  12. Efros, A. L. & Brus, L. E. Nanocrystal quantum dots: from discovery to modern development. ACS Nano 15, 6192–6210 (2021).

    Article  CAS  Google Scholar 

  13. Pietryga, J. M. et al. Spectroscopic and device aspects of nanocrystal quantum dots. Chem. Rev. 116, 10513–10622 (2016).

    Article  CAS  Google Scholar 

  14. García de Arquer, F. P. et al. Semiconductor quantum dots: technological progress and future challenges. Science 373, eaaz8541 (2021).

    Article  Google Scholar 

  15. Liu, M. et al. Colloidal quantum dot electronics. Nat. Electron. 4, 548–558 (2021).

    Article  Google Scholar 

  16. Rhee, S., Kim, K., Roh, J. & Kwak, J. Recent progress in high-luminance quantum dot light-emitting diodes. Curr. Opt. Photon. 4, 161–173 (2020).

    CAS  Google Scholar 

  17. Liu, Z. et al. Micro-light-emitting diodes with quantum dots in display technology. Light Sci. Appl. 9, 83 (2020).

    Article  CAS  Google Scholar 

  18. Nannen, E., Frohleiks, J. & Gellner, S. Light-emitting electrochemical cells based on color-tunable inorganic colloidal quantum dots. Adv. Funct. Mater. 30, 1907349 (2020).

    Article  CAS  Google Scholar 

  19. Park, Y.-S., Roh, J., Diroll, B. T., Schaller, R. D. & Klimov, V. I. Colloidal quantum dot lasers. Nat. Rev. Mater. 6, 382–401 (2021).

    Article  CAS  Google Scholar 

  20. Jung, H., Ahn, N. & Klimov, V. I. Prospects and challenges of colloidal quantum dot laser diodes. Nat. Photon. 15, 643–655 (2021).

    Article  CAS  Google Scholar 

  21. Pejović, V. et al. Infrared colloidal quantum dot image sensors. IEEE Trans. Electron. Devices 69, 2840–2850 (2022).

    Article  Google Scholar 

  22. Nakotte, T. et al. Colloidal quantum dot based infrared detectors: extending to the mid-infrared and moving from the lab to the field. J. Mater. Chem. C 10, 790–804 (2022).

    Article  CAS  Google Scholar 

  23. Kagan, C. R., Bassett, L. C., Murray, C. B. & Thompson, S. M. Colloidal quantum dots as platforms for quantum information science. Chem. Rev. 121, 3186–3233 (2021).

    Article  CAS  Google Scholar 

  24. Chen, J. & Rong, K. Nanophotonic devices and circuits based on colloidal quantum dots. Mater. Chem. Front. 5, 4502–4537 (2021).

    Article  CAS  Google Scholar 

  25. Chen, M., Lu, L., Yu, H., Li, C. & Zhao, N. Integration of colloidal quantum dots with photonic structures for optoelectronic and optical devices. Adv. Sci. 8, 2101560 (2021).

    Article  CAS  Google Scholar 

  26. Click, S. M. & Rosenthal, S. J. Synthesis, surface chemistry, and fluorescent properties of InP quantum dots. Chem. Mater. 35, 822–836 (2023).

    Article  CAS  Google Scholar 

  27. Kim, Y. et al. III–V colloidal nanocrystals: control of covalent surfaces. Chem. Sci. 11, 913–922 (2020).

    Article  CAS  Google Scholar 

  28. Jang, E., Kim, Y., Won, Y.-H., Jang, H. & Choi, S.-M. Environmentally friendly InP-based quantum dots for efficient wide color gamut displays. ACS Energy Lett. 5, 1316–1327 (2020).

    Article  CAS  Google Scholar 

  29. Wu, Z., Liu, P., Zhang, W., Wang, K. & Sun, X. W. Development of InP quantum dot-based light-emitting diodes. ACS Energy Lett. 5, 1095–1106 (2020).

    Article  CAS  Google Scholar 

  30. Adachi, S. Handbook on Physical Properties of Semiconductors Vol. 2 (Springer, 2004).

  31. Abdollahi, A., Golzan, M. M. & Aghayar, K. First-principles investigation of electronic properties of AlxIn1−xP semiconductor alloy. J. Mater. Sci. 51, 7343–7354 (2016).

    Article  CAS  Google Scholar 

  32. Braunstein, R. & Kane, E. O. The valence band structure of the III–V compounds. J. Phys. Chem. Solids 23, 1423–1431 (1962).

    Article  CAS  Google Scholar 

  33. Vurgaftman, I., Meyer, J. R. & Ram-Mohan, L. R. Band parameters for III–V compound semiconductors and their alloys. J. Appl. Phys. 89, 5815–5875 (2001).

    Article  CAS  Google Scholar 

  34. Kim, Y.-S., Marsman, M., Kresse, G., Tran, F. & Blaha, P. Towards efficient band structure and effective mass calculations for III–V direct band-gap semiconductors. Phys. Rev. B 82, 205212 (2010).

    Article  Google Scholar 

  35. Almeida, G. et al. Size-dependent optical properties of InP CQDs. Nano Lett. https://doi.org/10.1021/acs.nanolett.3c02630 (2023).

  36. Franceschetti, A., Fu, H., Wang, L. W. & Zunger, A. Many-body pseudopotential theory of excitons in InP and CdSe quantum dots. Phys. Rev. B 60, 1819–1829 (1999).

    Article  CAS  Google Scholar 

  37. Efros, A. L. & Rosen, M. The electronic structure of semiconductor nanocrystals. Annu. Rev. Mater. Sci. 30, 475–521 (2000).

    Article  CAS  Google Scholar 

  38. Dümbgen, K. C., Zito, J., Infante, I. & Hens, Z. Shape, electronic structure, and trap states in indium phosphide quantum dots. Chem. Mater. 33, 6885–6896 (2021).

    Article  Google Scholar 

  39. Krauss, T. D. & Wise, F. W. Coherent acoustic phonons in a semiconductor quantum dot. Phys. Rev. Lett. 79, 5102–5105 (1997).

    Article  CAS  Google Scholar 

  40. Besombes, L., Kheng, K., Marsal, L. & Mariette, H. Acoustic phonon broadening mechanism in single quantum dot emission. Phys. Rev. B 63, 155307 (2001).

    Article  Google Scholar 

  41. Masumoto, Y. & Takagahara, T. (eds) Semiconductor Quantum Dots: Physics, Spectroscopy and Applications (Springer, 2002).

  42. Bozyigit, D. et al. Soft surfaces of nanomaterials enable strong phonon interactions. Nature 531, 618–622 (2016).

    Article  CAS  Google Scholar 

  43. Cui, J. et al. Evolution of the single-nanocrystal photoluminescence linewidth with size and shell: implications for exciton–phonon coupling and the optimization of spectral linewidths. Nano Lett. 16, 289–296 (2016).

    Article  CAS  Google Scholar 

  44. Kirschner, M. S. et al. Transient melting and recrystallization of semiconductor nanocrystals under multiple electron–hole pair excitation. Nano Lett. 17, 5314–5320 (2017).

    Article  CAS  Google Scholar 

  45. Yazdani, N. et al. Tuning electron–phonon interactions in nanocrystals through surface termination. Nano Lett. 18, 2233–2242 (2018).

    Article  CAS  Google Scholar 

  46. Yazdani, N., Volk, S., Yarema, O., Yarema, M. & Wood, V. Size, ligand, and defect-dependent electron–phonon coupling in chalcogenide and perovskite nanocrystals and its impact on luminescence line widths. ACS Photon. 7, 1088–1095 (2020).

    Article  CAS  Google Scholar 

  47. Kang, S., Kim, Y., Jang, E., Kang, Y. & Han, S. Fundamental limit of emission linewidth of quantum dots: ab initio study on CdSe nanocrystals. ACS Appl. Mater. Interfaces 12, 22012–22018 (2020).

    Article  CAS  Google Scholar 

  48. Guzelturk, B. et al. Dynamic lattice distortions driven by surface trapping in semiconductor nanocrystals. Nat. Commun. 12, 1860 (2021).

    Article  CAS  Google Scholar 

  49. Monreal, R. C. Electron–phonon interaction in the dynamics of trap filling in quantum dots. Phys. Rev. B 104, 184304 (2021).

    Article  CAS  Google Scholar 

  50. Kim, J., Wong, C. Y. & Scholes, G. D. Exciton fine structure and spin relaxation in semiconductor colloidal quantum dots. Acc. Chem. Res. 42, 1037–1046 (2009).

    Article  CAS  Google Scholar 

  51. Brodu, A. et al. Exciton fine structure and lattice dynamics in InP/ZnSe core/shell quantum dots. ACS Photon. 5, 3353–3362 (2018).

    Article  CAS  Google Scholar 

  52. Brodu, A. et al. Fine structure of nearly isotropic bright excitons in InP/ZnSe colloidal quantum dots. J. Phys. Chem. Lett. 10, 5468–5475 (2019).

    Article  CAS  Google Scholar 

  53. Brodu, A. et al. Hyperfine interactions and slow spin dynamics in quasi-isotropic InP-based core/shell colloidal nanocrystals. ACS Nano 13, 10201–10209 (2019).

    Article  CAS  Google Scholar 

  54. Efros, A. L. et al. Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: dark and bright exciton states. Phys. Rev. B 54, 4843–4856 (1996).

    Article  CAS  Google Scholar 

  55. Melnychuk, C. & Guyot-Sionnest, P. Multicarrier dynamics in quantum dots. Chem. Rev. 4, 2325–2372 (2021).

    Article  Google Scholar 

  56. Takagahara, T. Electron–phonon interactions and excitonic dephasing in semiconductor nanocrystals. Phys. Rev. Lett. 71, 3577–3580 (1993).

    Article  CAS  Google Scholar 

  57. Borri, P. et al. Exciton dephasing via phonon interactions in InAs quantum dots: dependence on quantum confinement. Phys. Rev. B 71, 115328 (2005).

    Article  Google Scholar 

  58. Masia, F., Accanto, N., Langbein, W. & Borri, P. Spin-flip limited exciton dephasing in CdSe/ZnS colloidal quantum dots. Phys. Rev. Lett. 108, 087401 (2012).

    Article  Google Scholar 

  59. Accanto, N. et al. Engineering the spin–flip limited exciton dephasing in colloidal CdSe/CdS quantum dots. ACS Nano 6, 5227–5233 (2012).

    Article  CAS  Google Scholar 

  60. Fumani, A. K. & Berezovsky, J. Magnetic-field-dependent spin decoherence and dephasing in room-temperature CdSe nanocrystal quantum dots. Phys. Rev. B 88, 155316 (2013).

    Article  Google Scholar 

  61. Micic, O. I., Curtis, C. J., Jones, K. M., Sprague, J. R. & Nozik, A. J. Synthesis and characterization of InP quantum dots. J. Phys. Chem. 98, 4966–4969 (1994).

    Article  CAS  Google Scholar 

  62. Guzelian, A. A. et al. Synthesis of size-selected, surface-passivated InP nanocrystals. J. Phys. Chem. 100, 7212–7219 (1996).

    Article  CAS  Google Scholar 

  63. Mićić, O. I., Jones, K. M., Cahill, A. & Nozik, A. J. Optical, electronic, and structural properties of uncoupled and close-packed arrays of InP quantum dots. J. Phys. Chem. B 102, 9791–9796 (1998).

    Article  Google Scholar 

  64. Battaglia, D. & Peng, X. Formation of high quality InP and InAs nanocrystals in a noncoordinating solvent. Nano Lett. 2, 1027–1030 (2002).

    Article  CAS  Google Scholar 

  65. Talapin, D. V. et al. Synthesis and surface modification of amino-stabilized CdSe, CdTe and InP nanocrystals. Colloids Surf. A Physicochem. Eng. Asp. 202, 145–154 (2002).

    Article  CAS  Google Scholar 

  66. Gao, S., Lu, J., Chen, N., Zhao, Y. & Xie, Y. Aqueous synthesis of III–V semiconductor GaP and InP exhibiting pronounced quantum confinement. Chem. Commun. 24, 3064–3065 (2002).

    Article  Google Scholar 

  67. Jun, K.-W., Khanna, P. K., Hong, K.-B., Baeg, J.-O. & Suh, Y.-D. Synthesis of InP nanocrystals from indium chloride and sodium phosphide by solution route. Mater. Chem. Phys. 96, 494–497 (2006).

    Article  CAS  Google Scholar 

  68. Gerbec, J. A., Magana, D., Washington, A. & Strouse, G. F. Microwave-enhanced reaction rates for nanoparticle synthesis. J. Am. Chem. Soc. 127, 15791–15800 (2005).

    Article  CAS  Google Scholar 

  69. Xu, S., Kumar, S. & Nann, T. Rapid synthesis of high-quality InP nanocrystals. J. Am. Chem. Soc. 128, 1054–1055 (2006).

    Article  CAS  Google Scholar 

  70. Xie, R., Battaglia, D. & Peng, X. Colloidal InP nanocrystals as efficient emitters covering blue to near-infrared. J. Am. Chem. Soc. 129, 15432–15433 (2007).

    Article  CAS  Google Scholar 

  71. Li, L., Protière, M. & Reiss, P. Economic synthesis of high quality InP nanocrystals using calcium phosphide as the phosphorus precursor. Chem. Mater. 20, 2621–2623 (2008).

    Article  CAS  Google Scholar 

  72. Harris, D. K. & Bawendi, M. G. Improved precursor chemistry for the synthesis of III–V quantum dots. J. Am. Chem. Soc. 134, 20211–20213 (2012).

    Article  CAS  Google Scholar 

  73. Xu, Z. et al. Formation of size-tunable and nearly monodisperse InP nanocrystals: chemical reactions and controlled synthesis. Chem. Mater. 31, 5331–5341 (2019).

    Article  CAS  Google Scholar 

  74. Won, Y.-H. et al. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes. Nature 575, 634–638 (2019).

    Article  CAS  Google Scholar 

  75. Achorn, O. B., Franke, D. & Bawendi, M. G. Seedless continuous injection synthesis of indium phosphide quantum dots as a route to large size and low size dispersity. Chem. Mater. 32, 6532–6539 (2020).

    Article  CAS  Google Scholar 

  76. Song, W.-S. et al. Amine-derived synthetic approach to color-tunable InP/ZnS quantum dots with high fluorescent qualities. J. Nanopart. Res. 15, 1750 (2013).

    Article  Google Scholar 

  77. Kim, K. et al. Halide–amine co-passivated indium phosphide colloidal quantum dots in tetrahedral shape. Angew. Chem. Int. Ed. 55, 3714–3718 (2016).

    Article  CAS  Google Scholar 

  78. Tessier, M. D., De Nolf, K., Dupont, D., Sinnaeve, D., De Roo, J. & Hens, Z. Aminophosphines: a double role in the synthesis of colloidal indium phosphide quantum dots. J. Am. Chem. Soc. 138, 5923–5929 (2016).

    Article  CAS  Google Scholar 

  79. Jo, J.-H. et al. InP-based quantum dots having an InP core, composition-gradient ZnSeS inner shell, and ZnS outer shell with sharp, bright emissivity, and blue absorptivity for display devices. ACS Appl. Nano Mater. 3, 1972–1980 (2020).

    Article  CAS  Google Scholar 

  80. Liu, Z. et al. Coreduction colloidal synthesis of III–V nanocrystals: the case of InP. Angew. Chem. Int. Ed. 47, 3540–3542 (2008).

    Article  CAS  Google Scholar 

  81. Joung, S., Yoon, S., Han, C.-S., Kim, Y. & Jeong, S. Facile synthesis of uniform large-sized InP nanocrystal quantum dots using tris(tert-butyldimethylsilyl)phosphine. Nanoscale Res. Lett. 7, 93 (2012).

    Article  Google Scholar 

  82. Gary, D. C., Glassy, B. A. & Cossairt, B. M. Investigation of indium phosphide quantum dot nucleation and growth utilizing triarylsilylphosphine precursors. Chem. Mater. 26, 1734–1744 (2014).

    Article  CAS  Google Scholar 

  83. Chandrasiri, H. B., Kim, E. B. & Snee, P. T. Sterically encumbered tris(trialkylsilyl) phosphine precursors for quantum dot synthesis. Inorg. Chem. 59, 15928–15935 (2020).

    Article  CAS  Google Scholar 

  84. Wells, R. L. et al. The use of tris(trimethylsilyl)arsine to prepare gallium arsenide and indium arsenide. Chem. Mater. 1, 4–6 (1989).

    Article  CAS  Google Scholar 

  85. Virieux, H. et al. InP/ZnS nanocrystals: coupling NMR and XPS for fine surface and interface description. J. Am. Chem. Soc. 134, 19701–19708 (2012).

    Article  CAS  Google Scholar 

  86. Ubbink, R. F. et al. In situ HF treatment for ultrabright InP quantum dots. Chem. Mater. 34, 10093–10103 (2022).

    Article  CAS  Google Scholar 

  87. Gary, D. C. & Cossairt, B. M. Role of acid in precursor conversion during InP quantum dot synthesis. Chem. Mater. 25, 2463–2469 (2013).

    Article  CAS  Google Scholar 

  88. Angelé, L., Dreyfuss, S., Dubertret, B. & Mézailles, N. Synthesis of monodisperse InP quantum dots: use of an acid-free indium carboxylate precursor. Inorg. Chem. 60, 2271–2278 (2021).

    Article  Google Scholar 

  89. Narayanaswamy, A., Xu, H., Pradhan, N., Kim, M. & Peng, X. Formation of nearly monodisperse In2O3 nanodots and oriented-attached nanoflowers: hydrolysis and alcoholysis vs pyrolysis. J. Am. Chem. Soc. 128, 10310–10319 (2006).

    Article  CAS  Google Scholar 

  90. Li, Y., Hou, X., Shen, Y., Dai, N. & Peng, X. Tuning the reactivity of indium alkanoates by tertiary organophosphines for the synthesis of indium-based quantum dots. Chem. Mater. 33, 9348–9356 (2021).

    Article  CAS  Google Scholar 

  91. Zhao, T. et al. General synthetic route to high-quality colloidal III–V semiconductor quantum dots based on pnictogen chlorides. J. Am. Chem. Soc. 141, 15145–15152 (2019).

    Article  CAS  Google Scholar 

  92. Ginterseder, M. et al. Scalable synthesis of InAs quantum dots mediated through indium redox chemistry. J. Am. Chem. Soc. 142, 4088–4092 (2020).

    Article  CAS  Google Scholar 

  93. Yadav, R. et al. Narrow near-infrared emission from InP QDs synthesized with indium(I) halides and aminophosphine. J. Am. Chem. Soc. 145, 5070–5891 (2023).

    Article  Google Scholar 

  94. Valleix, R. et al. Size-controlled indium phosphide quantum dots for bright and tunable light emission by simple hindered diamine addition. ACS Appl. Nano Mater. 4, 11105–11114 (2021).

    Article  CAS  Google Scholar 

  95. Xie, L., Harris, D. K., Bawendi, M. G. & Jensen, K. F. Effect of trace water on the growth of indium phosphide quantum dots. Chem. Mater. 27, 5058–5063 (2015).

    Article  CAS  Google Scholar 

  96. Baquero, E. A. et al. Synthesis of oxide-free InP quantum dots: surface control and H2-assisted growth. Chem. Mater. 29, 9623–9627 (2017).

    Article  CAS  Google Scholar 

  97. Calvin, J. J., Kaufman, T. M., Sedlak, A. B., Crook, M. F. & Alivisatos, A. P. Observation of ordered organic capping ligands on semiconducting quantum dots via powder X-ray diffraction. Nat. Commun. 12, 2663 (2021).

    Article  CAS  Google Scholar 

  98. Allen, P. M., Walker, B. J. & Bawendi, M. G. Mechanistic insights into the formation of InP quantum dots. Angew. Chem. Int. Ed. 49, 760–762 (2010).

    Article  CAS  Google Scholar 

  99. Gary, D. C., Terban, M. W., Billinge, S. J. L. & Cossairt, B. M. Two-step nucleation and growth of InP quantum dots via magic-sized cluster intermediates. Chem. Mater. 27, 1432–1441 (2015).

    Article  CAS  Google Scholar 

  100. Cossairt, B. M. Shining light on indium phosphide quantum dots: understanding the interplay among precursor conversion, nucleation, and growth. Chem. Mater. 28, 7181–7189 (2016).

    Article  CAS  Google Scholar 

  101. Xie, L. et al. Characterization of indium phosphide quantum dot growth intermediates using MALDI-TOF mass spectrometry. J. Am. Chem. Soc. 138, 13469–13472 (2016).

    Article  CAS  Google Scholar 

  102. Gary, D. C., Petrone, A., Li, X. & Cossairt, B. M. Investigating the role of amine in InP nanocrystal synthesis: destabilizing cluster intermediates by Z-type ligand displacement. Chem. Commun. 53, 161–164 (2017).

    Article  CAS  Google Scholar 

  103. Friedfeld, M. R., Johnson, D. A. & Cossairt, B. M. Conversion of InP clusters to quantum dots. Inorg. Chem. 58, 803–810 (2019).

    Article  CAS  Google Scholar 

  104. Kwon, Y. et al. Evolution from unimolecular to colloidal-quantum-dot-like character in chlorine or zinc incorporated InP magic size clusters. Nat. Commun. 11, 3127 (2020).

    Article  CAS  Google Scholar 

  105. Gary, D. C. et al. Single-crystal and electronic structure of a 1.3 nm indium phosphide nanocluster. J. Am. Chem. Soc. 138, 1510–1513 (2016).

    Article  CAS  Google Scholar 

  106. McMurtry, B. M. et al. Continuous nucleation and size dependent growth kinetics of indium phosphide nanocrystals. Chem. Mater. https://doi.org/10.1021/acs.chemmater.0c01561 (2020).

  107. Zhao, Q. & Kulik, H. J. Electronic structure origins of surface-dependent growth in III–V quantum dots. Chem. Mater. 30, 7154–7165 (2018).

    Article  CAS  Google Scholar 

  108. Baek, J., Allen, P. M., Bawendi, M. G. & Jensen, K. F. Investigation of indium phosphide nanocrystal synthesis using a high-temperature and high-pressure continuous flow microreactor. Angew. Chem. Int. Ed. 50, 627–630 (2011).

    Article  CAS  Google Scholar 

  109. Kim, K., Jeong, S., Woo, J. Y. & Han, C.-S. Successive and large-scale synthesis of InP/ZnS quantum dots in a hybrid reactor and their application to white LEDs. Nanotechnology 23, 065602 (2012).

    Article  Google Scholar 

  110. Ippen, C. et al. Large-scale synthesis of high quality InP quantum dots in a continuous flow-reactor under supercritical conditions. Nanotechnology 26, 085604 (2015).

    Article  CAS  Google Scholar 

  111. Baek, J., Shen, Y., Lignos, I., Bawendi, M. G. & Jensen, K. F. Multistage microfluidic platform for the continuous synthesis of III–V core/shell quantum dots. Angew. Chem. Int. Ed. 57, 10915–10918 (2018).

    Article  CAS  Google Scholar 

  112. Vikram, A. et al. Reactor system for multistep continuous synthesis of InP/ZnSeS nanoparticles. ChemNanoMat 4, 943–953 (2018).

    Article  CAS  Google Scholar 

  113. Lignos, I. et al. A high-temperature continuous stirred-tank reactor cascade for the multistep synthesis of InP/ZnS quantum dots. React. Chem. Eng. 6, 459–464 (2021).

    Article  CAS  Google Scholar 

  114. Okamoto, A. et al. Narrowing of the particle size distribution of InP quantum dots for green light emission by synthesis in micro-flow reactor. ChemistrySelect 7, e202104215 (2022).

    Article  CAS  Google Scholar 

  115. Kim, Y. et al. Tailored growth of single-crystalline InP tetrapods. Nat. Commun. 12, 4454 (2021).

    Article  CAS  Google Scholar 

  116. Yoo, H., Lee, K.-S., Nahm, S., Hwang, G. W. & Kim, S. Predicting ligand-dependent nanocrystal shapes of InP quantum dots and their electronic structures. Appl. Surf. Sci. 578, 151972 (2022).

    Article  CAS  Google Scholar 

  117. Micic, O. I. et al. Synthesis and characterization of InP, GaP, and GaInP2 quantum dots. J. Phys. Chem. 99, 7754–7759 (1995).

    Article  CAS  Google Scholar 

  118. Kim, S.-W. et al. Engineering InAsxP1−x/InP/ZnSe III−V alloyed core/shell quantum dots for the near-infrared. J. Am. Chem. Soc. 127, 10526–10532 (2005).

    Article  CAS  Google Scholar 

  119. Joo, J. et al. Synthesis and characterization of In1−xGaxP@ZnS alloy core−shell type colloidal quantum dots. J. Ind. Eng. Chem. 88, 106–110 (2020).

    Article  CAS  Google Scholar 

  120. Kim, Y., Yang, K. & Lee, S. Highly luminescent blue-emitting In1−xGaxP@ZnS quantum dots and their applications in QLEDs with inverted structure. J. Mater. Chem. C 8, 7679–7687 (2020).

    Article  CAS  Google Scholar 

  121. Leemans, J. et al. Acid–base mediated ligand exchange on near-infrared absorbing, indium-based III–V colloidal quantum dots. J. Am. Chem. Soc. 143, 4290–4301 (2021).

    Article  CAS  Google Scholar 

  122. Yarema, M. & Kovalenko, M. V. Colloidal synthesis of InSb nanocrystals with controlled polymorphism using indium and antimony amides. Chem. Mater. 25, 1788–1792 (2013).

    Article  CAS  Google Scholar 

  123. De Trizio, L. et al. Cu3–xP nanocrystals as a material platform for near-infrared plasmonics and cation exchange reactions. Chem. Mater. 27, 1120–1128 (2015).

    Article  Google Scholar 

  124. Koh, S., Kim, W. D., Bae, W. K., Lee, Y. K. & Lee, D. C. Controlling ion-exchange balance and morphology in cation exchange from Cu3–xP nanoplatelets into InP crystals. Chem. Mater. 31, 1990–2001 (2019).

    Article  CAS  Google Scholar 

  125. Stone, D. et al. Luminescent anisotropic wurtzite InP nanocrystals. Nano Lett. 21, 10032–10039 (2021).

    Article  CAS  Google Scholar 

  126. Shan, X., Li, B. & Ji, B. Synthesis of wurtzite In and Ga phosphide quantum dots through cation exchange reactions. Chem. Mater. 33, 5223–5232 (2021).

    Article  CAS  Google Scholar 

  127. Choi, M.-J. et al. Ligand exchange at a covalent surface enables balanced stoichiometry in III–V colloidal quantum dots. Nano Lett. 21, 6057–6063 (2021).

    Article  CAS  Google Scholar 

  128. Zhao, T. et al. Engineering the surface chemistry of colloidal InP quantum dots for charge transport. Chem. Mater. 34, 8306–8315 (2022).

    Article  CAS  Google Scholar 

  129. Boles, M. A., Ling, D., Hyeon, T. & Talapin, D. V. The surface science of nanocrystals. Nat. Mater. 15, 141–153 (2016).

    Article  CAS  Google Scholar 

  130. Ghosh, S. & Manna, L. The many ‘facets’ of halide ions in the chemistry of colloidal inorganic nanocrystals. Chem. Rev. 118, 7804–7864 (2018).

    Article  CAS  Google Scholar 

  131. Wang, W. et al. Colloidal inorganic ligand-capped nanocrystals: fundamentals, status, and insights into advanced functional nanodevices. Chem. Rev. 122, 4091–4162 (2022).

    Article  CAS  Google Scholar 

  132. Rosenberg, A. J. The oxidation of intermetallic compounds — III: the room-temperature oxidation of AIIIBv compounds. J. Phys. Chem. Solids 14, 175–180 (1960).

    Article  CAS  Google Scholar 

  133. Hollinger, G., Bergignat, E., Joseph, J. & Robach, Y. On the nature of oxides on InP surfaces. J. Vac. Sci. Technol. A 3, 2082–2088 (1985).

    Article  CAS  Google Scholar 

  134. Mićić, O. I., Sprague, J., Lu, Z. & Nozik, A. J. Highly efficient band‐edge emission from InP quantum dots. Appl. Phys. Lett. 68, 3150–3152 (1996).

    Article  Google Scholar 

  135. Cros-Gagneux, A. et al. Surface chemistry of InP quantum dots: a comprehensive study. J. Am. Chem. Soc. 132, 18147–18157 (2010).

    Article  CAS  Google Scholar 

  136. Cossairt, B. M., Stein, J. L., Holden, W. M. & Seidler, G. T. 4-1: Invited paper: role of phosphorus oxidation in controlling the luminescent properties of indium phosphide quantum dots. SID Symposium Digest of Technical Papers 49, 21–24 (2018).

    Article  CAS  Google Scholar 

  137. Clarke, M. T. et al. Synthesis of super bright indium phosphide colloidal quantum dots through thermal diffusion. Commun. Chem. 2, 36 (2019).

    Article  Google Scholar 

  138. Vikram, A. et al. Unraveling the origin of interfacial oxidation of InP-based quantum dots: implications for bioimaging and optoelectronics. ACS Appl. Nano Mater. 3, 12325–12333 (2020).

    Article  CAS  Google Scholar 

  139. Yang, W. et al. Surface passivation extends single and biexciton lifetimes of InP quantum dots. Chem. Sci. 11, 5779–5789 (2020).

    Article  CAS  Google Scholar 

  140. Pu, Y.-C., Fan, H.-C., Chang, J.-C., Chen, Y.-H. & Tseng, S.-W. Effects of interfacial oxidative layer removal on charge carrier recombination dynamics in InP/ZnSexS1–x core/shell quantum dots. J. Phys. Chem. Lett. 12, 7194–7200 (2021).

    Article  CAS  Google Scholar 

  141. Chen, G., Visbeck, S. B., Law, D. C. & Hicks, R. F. Structure-sensitive oxidation of the indium phosphide (001) surface. J. Appl. Phys. 91, 9362–9367 (2002).

    Article  CAS  Google Scholar 

  142. Santosh, K. et al. First principles study on InP (001)-(2×4) surface oxidation. J. Appl. Phys. 113, 103705 (2013).

    Article  Google Scholar 

  143. May, M. M., Lewerenz, H.-J. & Hannappel, T. Optical in situ study of InP(100) surface chemistry: dissociative adsorption of water and oxygen. J. Phys. Chem. C 118, 19032–19041 (2014).

    Article  CAS  Google Scholar 

  144. Ruiz Alvarado, I. A., Karmo, M., Runge, E. & Schmidt, W. G. InP and AlInP(001)(2 × 4) surface oxidation from density functional theory. ACS Omega 6, 6297–6304 (2021).

    Article  CAS  Google Scholar 

  145. Zhang, X., Ogitsu, T., Wood, B. C., Pham, T. A. & Ptasinska, S. Oxidation-induced polymerization of InP surface and implications for optoelectronic applications. J. Phys. Chem. C 123, 30893–30902 (2019).

    Article  CAS  Google Scholar 

  146. Wood, B. C., Schwegler, E., Choi, W. I. & Ogitsu, T. Surface chemistry of GaP(001) and InP(001) in contact with water. J. Phys. Chem. C 118, 1062–1070 (2014).

    Article  CAS  Google Scholar 

  147. Ramasamy, P., Kim, B., Lee, M.-S. & Lee, J.-S. Beneficial effects of water in the colloidal synthesis of InP/ZnS core–shell quantum dots for optoelectronic applications. Nanoscale 8, 17159–17168 (2016).

    Article  CAS  Google Scholar 

  148. Vikram, A. et al. Mechanistic insights into size-focused growth of indium phosphide nanocrystals in the presence of trace water. Chem. Mater. 32, 3577–3584 (2020).

    Article  CAS  Google Scholar 

  149. Baquero, E. A. et al. Identifying short surface ligands on metal phosphide quantum dots. Phys. Chem. Chem. Phys. 18, 17330–17334 (2016).

    Article  CAS  Google Scholar 

  150. Tomaselli, M. et al. NMR study of InP quantum dots: surface structure and size effects. J. Chem. Phys. 110, 8861–8864 (1999).

    Article  CAS  Google Scholar 

  151. Stein, J. L. et al. Probing surface defects of InP quantum dots using phosphorus Kα and Kβ X-ray emission spectroscopy. Chem. Mater. 30, 6377–6388 (2018).

    Article  CAS  Google Scholar 

  152. Calvin, J. J. et al. Thermodynamic investigation of increased luminescence in indium phosphide quantum dots by treatment with metal halide salts. J. Am. Chem. Soc. 142, 18897–18906 (2020).

    Article  CAS  Google Scholar 

  153. Protière, M. & Reiss, P. Amine-induced growth of an In2O3 shell on colloidal InP nanocrystals. Chem. Commun. 27, 2417–2419 (2007).

    Article  Google Scholar 

  154. Tessier, M. D. et al. Interfacial oxidation and photoluminescence of InP-Based core/shell quantum dots. Chem. Mater. 30, 6877–6883 (2018).

    Article  CAS  Google Scholar 

  155. Sadeghi, S. et al. Stokes-shift-engineered indium phosphide quantum dots for efficient luminescent solar concentrators. ACS Appl. Mater. Interfaces 10, 12975–12982 (2018).

    Article  CAS  Google Scholar 

  156. Kim, K. et al. Zinc oxo clusters improve the optoelectronic properties on indium phosphide quantum dots. Chem. Mater. 32, 2795–2802 (2020).

    Article  CAS  Google Scholar 

  157. Granada-Ramirez, D. A. et al. Chemical synthesis and optical, structural, and surface characterization of InP-In2O3 quantum dots. Appl. Surf. Sci. 530, 147294 (2020).

    Article  CAS  Google Scholar 

  158. Eren, G. O. et al. Cadmium-free and efficient type-II InP/ZnO/ZnS quantum dots and their application for LEDs. ACS Appl. Mater. Interfaces 13, 32022–32030 (2021).

    Article  CAS  Google Scholar 

  159. Van Avermaet, H. et al. Full-spectrum InP-based quantum dots with near-unity photoluminescence quantum efficiency. ACS Nano 6, 9701–9712 (2022).

    Article  Google Scholar 

  160. Wood, B. C., Ogitsu, T. & Schwegler, E. Local structural models of complex oxygen- and hydroxyl-rich GaP/InP (001) surfaces. J. Chem. Phys. 136, 064705 (2012).

    Article  Google Scholar 

  161. Wood, B. C., Schwegler, E., Choi, W. I. & Ogitsu, T. Surface chemistry of GaP (001) and InP (001) in contact with water. J. Phys. Chem. C 118, 1062–1070 (2014).

    Article  CAS  Google Scholar 

  162. Pham, T. A. et al. Integrating ab initio simulations and X-ray photoelectron spectroscopy: toward a realistic description of oxidized solid/liquid interfaces. J. Phys. Chem. Lett. 9, 194–203 (2018).

    Article  CAS  Google Scholar 

  163. Zhang, X., Pham, T. A., Ogitsu, T., Wood, B. C. & Ptasinska, S. Modulation of surface bonding topology: oxygen bridges on OH-terminated InP (001). J. Phys. Chem. C 124, 3196–3203 (2020).

    Article  CAS  Google Scholar 

  164. Ruiz Alvarado, I. A., Karmo, M., Runge, E. & Schmidt, W. G. InP and AlInP (001)(2× 4) surface oxidation from density functional theory. ACS Omega 6, 6297–6304 (2021).

    Article  CAS  Google Scholar 

  165. Berwanger, M., Schoenhalz, A. L., Dos Santos, C. L. & Piquini, P. Oxidation of InP nanowires: a first principles molecular dynamics study. Phys. Chem. Chem. Phys. 18, 31101–31106 (2016).

    Article  CAS  Google Scholar 

  166. Park, N. et al. Colloidal, room-temperature growth of metal oxide shells on InP quantum dots. Inorg. Chem. 62, 6674–6687 (2023).

    Article  CAS  Google Scholar 

  167. Gatos, H. C. & Lavine, M. C. Characteristics of the {111} surfaces of the III–V intermetallic compounds. J. Electrochem. Soc. 107, 427 (1960).

    Article  CAS  Google Scholar 

  168. Clark, D., Fok, T., Roberts, G. & Sykes, R. An investigation by electron spectroscopy for chemical analysis of chemical treatments of the (100) surface of n-type InP epitaxial layers for Langmuir film deposition. Thin Solid Films 70, 261–283 (1980).

    Article  CAS  Google Scholar 

  169. Adam, S. et al. The effect of nanocrystal surface structure on the luminescence properties: photoemission study of HF-etched InP nanocrystals. J. Chem. Phys. 123, 084706 (2005).

    Article  CAS  Google Scholar 

  170. Talapin, D. V. et al. Etching of colloidal InP nanocrystals with fluorides:  photochemical nature of the process resulting in high photoluminescence efficiency. J. Phys. Chem. B 106, 12659–12663 (2002).

    Article  CAS  Google Scholar 

  171. Kim, T.-G. et al. Trap passivation in indium-based quantum dots through surface fluorination: mechanism and applications. ACS Nano 12, 11529–11540 (2018).

    Article  CAS  Google Scholar 

  172. Li, H. et al. ZnF2-assisted synthesis of highly luminescent InP/ZnSe/ZnS quantum dots for efficient and stable electroluminescence. Nano Lett. 10, 4067–4073 (2022).

    Article  Google Scholar 

  173. Lovingood, D. D. & Strouse, G. F. Microwave induced in-situ active ion etching of growing InP nanocrystals. Nano Lett. 8, 3394–3397 (2008).

    Article  CAS  Google Scholar 

  174. Hughes, K. E., Stein, J. L., Friedfeld, M. R., Cossairt, B. M. & Gamelin, D. R. Effects of surface chemistry on the photophysics of colloidal InP nanocrystals. ACS Nano 13, 14198–14207 (2019).

    Article  CAS  Google Scholar 

  175. Fu, H. & Zunger, A. InP quantum dots: electronic structure, surface effects, and the redshifted emission. Phys. Rev. B 56, 1496–1508 (1997).

    Article  CAS  Google Scholar 

  176. Cho, E. et al. Optical characteristics of the surface defects in InP colloidal quantum dots for highly efficient light-emitting applications. ACS Appl. Nano Mater. 1, 7106–7114 (2018).

    Article  CAS  Google Scholar 

  177. Stein, J. L., Mader, E. A. & Cossairt, B. M. Luminescent InP quantum dots with tunable emission by post-synthetic modification with Lewis acids. J. Phys. Chem. Lett. 7, 1315–1320 (2016).

    Article  CAS  Google Scholar 

  178. Kirkwood, N. et al. Finding and fixing traps in II–VI and III–V colloidal quantum dots: the importance of Z-type ligand passivation. J. Am. Chem. Soc. 140, 15712–15723 (2018).

    Article  CAS  Google Scholar 

  179. Hanrahan, M. P., Stein, J. L., Park, N., Cossairt, B. M. & Rossini, A. J. Elucidating the location of Cd2+ in post-synthetically treated InP quantum dots using dynamic nuclear polarization 31P and 113Cd solid-state NMR spectroscopy. J. Phys. Chem. C 125, 2956–2965 (2021).

    Article  CAS  Google Scholar 

  180. Duke, C. Semiconductor surface reconstruction: the structural chemistry of two-dimensional surface compounds. Chem. Rev. 96, 1237–1260 (1996).

    Article  CAS  Google Scholar 

  181. Chadi, D. Vacancy-induced 2× 2 reconstruction of the Ga (111) surface of GaAs. Phys. Rev. Lett. 52, 1911 (1984).

    Article  CAS  Google Scholar 

  182. Chadi, D. Atomic structure of the (2× 2) reconstructed GaAs (1¯ 1¯ 1¯) surface: a multivacancy model. Phys. Rev. Lett. 57, 102 (1986).

    Article  CAS  Google Scholar 

  183. Biegelsen, D., Bringans, R., Northrup, J. & Swartz, L. Reconstructions of GaAs (1 1 1) surfaces observed by scanning tunneling microscopy. Phys. Rev. Lett. 65, 452 (1990).

    Article  CAS  Google Scholar 

  184. Voznyy, O. & Sargent, E. Atomistic model of fluorescence intermittency of colloidal quantum dots. Phys. Rev. Lett. 112, 157401 (2014).

    Article  CAS  Google Scholar 

  185. Schubert, E. F. Doping in IIIV Semiconductors (Cambridge Univ. Press, 1993).

  186. Thuy, U. T. D., Maurice, A., Liem, N. Q. & Reiss, P. Europium doped In(Zn)P/ZnS colloidal quantum dots. Dalton Trans. 42, 12606–12610 (2013).

    Article  CAS  Google Scholar 

  187. Xie, R. & Peng, X. Synthesis of Cu-doped InP nanocrystals (d-dots) with ZnSe diffusion barrier as efficient and color-tunable NIR emitters. J. Am. Chem. Soc. 131, 10645–10651 (2009).

    Article  CAS  Google Scholar 

  188. Knowles, K. E., Nelson, H. D., Kilburn, T. B. & Gamelin, D. R. Singlet–triplet splittings in the luminescent excited states of colloidal Cu+:CdSe, Cu+:InP, and CuInS2 nanocrystals: charge-transfer configurations and self-trapped excitons. J. Am. Chem. Soc. 137, 13138–13147 (2015).

    Article  CAS  Google Scholar 

  189. Hassan, A., Zhang, X., Liu, C. & Snee, P. T. Electronic structure and dynamics of copper-doped indium phosphide nanocrystals studied with time-resolved X-ray absorption and large-scale DFT calculations. J. Phys. Chem. C 122, 11145–11151 (2018).

    Article  CAS  Google Scholar 

  190. Kim, H.-J. et al. Emission enhancement of Cu-doped InP quantum dots through double shelling scheme. Materials 12, 2267 (2019).

    Article  CAS  Google Scholar 

  191. Sadeghi, S. et al. High-performance, large-area, and ecofriendly luminescent solar concentrators using copper-doped InP quantum dots. iScience 23, 101272 (2020).

    Article  CAS  Google Scholar 

  192. Mundy, M. E., Eagle, F. W., Hughes, K. E., Gamelin, D. R. & Cossairt, B. M. Synthesis and spectroscopy of emissive, surface-modified, copper-doped indium phosphide nanocrystals. ACS Mater. Lett. 2, 576–581 (2020).

    Article  CAS  Google Scholar 

  193. Kim, J. et al. Highly luminescent near-infrared Cu-doped InP quantum dots with a Zn–Cu–In–S/ZnS double shell scheme. J. Mater. Chem. C 9, 4330–4337 (2021).

    Article  CAS  Google Scholar 

  194. Prins, P. T. et al. Slow hole localization and fast electron cooling in Cu-doped InP/ZnSe quantum dots. J. Phys. Chem. Lett. 13, 9950–9956 (2022).

    Article  CAS  Google Scholar 

  195. Thuy, U. T. D., Reiss, P. & Liem, N. Q. Luminescence properties of In(Zn)P alloy core/ZnS shell quantum dots. Appl. Phys. Lett. 97, 193104 (2010).

    Article  Google Scholar 

  196. Koh, S. et al. Zinc–phosphorus complex working as an atomic valve for colloidal growth of monodisperse indium phosphide quantum dots. Chem. Mater. 29, 6346–6355 (2017).

    Article  CAS  Google Scholar 

  197. Suh, Y.-H. et al. Engineering core size of InP quantum dot with incipient ZnS for blue emission. Adv. Optical Mater. 10, 2102372 (2022).

    Article  CAS  Google Scholar 

  198. Mahajan, S., Bonner, W. A., Chin, A. K. & Miller, D. C. The characterization of highly‐zinc‐doped InP crystals. Appl. Phys. Lett. 35, 165–168 (1979).

    Article  CAS  Google Scholar 

  199. van Gurp, G. J., van Dongen, T., Fontijn, G. M., Jacobs, J. M. & Tjaden, D. L. A. Interstitial and substitutional Zn in InP and InGaAsP. J. Appl. Phys. 65, 553–560 (1989).

    Article  Google Scholar 

  200. Janke, E. M. et al. Origin of broad emission spectra in InP quantum dots: contributions from structural and electronic disorder. J. Am. Chem. Soc. 140, 15791–15803 (2018).

    Article  CAS  Google Scholar 

  201. Asor, L. et al. InAs nanocrystals with robust p-type doping. Adv. Funct. Mater. 31, 2007456 (2021).

    Article  CAS  Google Scholar 

  202. Asor, L. et al. Zn-doped P-type InAs nanocrystal quantum dots. Adv. Mater. 35, 2208332 (2022).

    Article  Google Scholar 

  203. Kirkwood, N. et al. Locating and controlling the Zn content in In(Zn)P quantum dots. Chem. Mater. 32, 557–565 (2020).

    Article  CAS  Google Scholar 

  204. Shen, C. et al. Highly luminescent InP–In(Zn)P/ZnSe/ZnS core/shell/shell colloidal quantum dots with tunable emissions synthesized based on growth-doping. J. Mater. Chem. C 9, 9599–9609 (2021).

    Article  CAS  Google Scholar 

  205. Kim, Y. et al. Bright and uniform green light emitting InP/ZnSe/ZnS quantum dots for wide color gamut displays. ACS Appl. Nano Mater. 2, 1496–1504 (2019).

    Article  CAS  Google Scholar 

  206. Liu, P. et al. Green InP/ZnSeS/ZnS core multi-shelled quantum dots synthesized with aminophosphine for effective display applications. Adv. Funct. Mater. 31, 2008453 (2021).

    Article  CAS  Google Scholar 

  207. Zhang, W. et al. High quantum yield blue InP/ZnS/ZnS quantum dots based on bromine passivation for efficient blue light-emitting diodes. Adv. Optical Mater. 10, 2200685 (2022).

    Article  CAS  Google Scholar 

  208. Yu, P. et al. Highly efficient green InP-based quantum dot light-emitting diodes regulated by inner alloyed shell component. Light Sci. Appl. 11, 162 (2022).

    Article  CAS  Google Scholar 

  209. Heun, S. et al. Interface composition and stacking fault density in II–VI/III–V heterostructures. Appl. Phys. Lett. 70, 237–239 (1997).

    Article  CAS  Google Scholar 

  210. Colli, A., Pelucchi, E. & Franciosi, A. Controlling the native stacking fault density in II–VI/III–V heterostructures. Appl. Phys. Lett. 83, 81–83 (2003).

    Article  CAS  Google Scholar 

  211. Kley, A. & Neugebauer, J. Atomic and electronic structure of the GaAs/ZnSe(001) interface. Phys. Rev. B 50, 8616–8628 (1994).

    Article  CAS  Google Scholar 

  212. Stroppa, A. & Peressi, M. ZnSe∕GaAs(001) heterostructures with defected interfaces: structural, thermodynamic, and electronic properties. Phys. Rev. B 72, 245304 (2005).

    Article  Google Scholar 

  213. Colli, A., Carlino, E., Pelucchi, E., Grillo, V. & Franciosi, A. Local interface composition and native stacking fault density in ZnSe∕GaAs(001) heterostructures. J. Appl. Phys. 96, 2592–2602 (2004).

    Article  CAS  Google Scholar 

  214. Deng, H.-X., Luo, J.-W. & Wei, S.-H. Chemical trends of stability and band alignment of lattice-matched II–VI/III–V semiconductor interfaces. Phys. Rev. B 91, 075315 (2015).

    Article  Google Scholar 

  215. Park, N. et al. Tuning the interfacial stoichiometry of InP core and InP/ZnSe core/shell quantum dots. J. Chem. Phys. 155, 084701 (2021).

    Article  CAS  Google Scholar 

  216. Cho, D.-Y., Xi, L., Boothroyd, C., Kardynal, B. & Lam, Y. M. The role of ion exchange in the passivation of In(Zn)P nanocrystals with ZnS. Sci. Rep. 6, 22818 (2016).

    Article  CAS  Google Scholar 

  217. Li, Y. et al. Stoichiometry-controlled InP-based quantum dots: synthesis, photoluminescence, and electroluminescence. J. Am. Chem. Soc. 141, 6448–6452 (2019).

    Article  CAS  Google Scholar 

  218. Sun, Z. et al. Suppressing the cation exchange at the core/shell interface of InP quantum dots by a selenium shielding layer enables efficient green light-emitting diodes. ACS Appl. Mater. Interfaces 14, 15401–15406 (2022).

    Article  CAS  Google Scholar 

  219. Wu, Q. et al. Quasi-shell-growth strategy achieves stable and efficient green InP quantum dot light-emitting diodes. Adv. Sci. 9, 2200959 (2022).

    Article  CAS  Google Scholar 

  220. Park, N. & Cossairt, B. Colloidal, room temperature growth of metal oxide shells on InP quantum dots. Inorg. Chem. 62, 6674–6687 (2023).

    Article  CAS  Google Scholar 

  221. Jang, Y. et al. Interface control of electronic and optical properties in IV–VI and II–VI core/shell colloidal quantum dots: a review. Chem. Commun. 53, 1002–1024 (2017).

    Article  CAS  Google Scholar 

  222. Chen, X., Lou, Y., Samia, A. C. & Burda, C. Coherency strain effects on the optical response of core/shell heteronanostructures. Nano Lett. 3, 799–803 (2003).

    Article  CAS  Google Scholar 

  223. Jing, L. et al. Insight into strain effects on band alignment shifts, carrier localization and recombination kinetics in CdTe/CdS core/shell quantum dots. J. Am. Chem. Soc. 137, 2073–2084 (2015).

    Article  CAS  Google Scholar 

  224. Smith, A. M., Mohs, A. M. & Nie, S. Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain. Nat. Nanotechnol. 4, 56–63 (2009).

    Article  CAS  Google Scholar 

  225. Han, P. & Bester, G. Heavy strain conditions in colloidal core–shell quantum dots and their consequences on the vibrational properties from ab initio calculations. Phys. Rev. B 92, 125438 (2015).

    Article  Google Scholar 

  226. Park, S.-H. & Cho, Y.-H. Strain and piezoelectric potential effects on optical properties in CdSe/CdS core/shell quantum dots. J. Appl. Phys. 109, 113103 (2011).

    Article  Google Scholar 

  227. Yablonovitch, E. & Kane, E. Reduction of lasing threshold current density by the lowering of valence band effective mass. J. Lightwave Technol. 4, 504–506 (1986).

    Article  Google Scholar 

  228. Fan, F. et al. Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy. Nature 544, 75–79 (2017).

    Article  CAS  Google Scholar 

  229. Park, Y.-S., Lim, J. & Klimov, V. I. Asymmetrically strained quantum dots with non-fluctuating single-dot emission spectra and subthermal room-temperature linewidths. Nat. Mater. 18, 249–255 (2019).

    Article  CAS  Google Scholar 

  230. Wang, L. et al. Controlling the emission linewidths of alloy quantum dots with asymmetric strain. J. Colloid Interface Sci. 624, 287–295 (2022).

    Article  CAS  Google Scholar 

  231. Song, Y. et al. Enhanced emission directivity from asymmetrically strained colloidal quantum dots. Sci. Adv. 8, eabl8219 (2022).

    Article  CAS  Google Scholar 

  232. Kobayashi, T., Aoki, K. & Yamamoto, K. Pressure dependence of optical absorption in InP at 77 K. Phys. B+C 139140, 537–540 (1986).

    Article  Google Scholar 

  233. Gorczyca, I., Christensen, N. E. & Alouani, M. Calculated optical and structural properties of InP under pressure. Phys. Rev. B 39, 7705–7712 (1989).

    Article  CAS  Google Scholar 

  234. Lee, C.-J., Mizel, A., Banin, U., Cohen, M. L. & Alivisatos, A. P. Observation of pressure-induced direct-to-indirect band gap transition in InP nanocrystals. J. Chem. Phys. 113, 2016–2020 (2000).

    Article  CAS  Google Scholar 

  235. Díaz, J. G., Bryant, G. W., Jaskólski, W. & Zieliński, M. Theory of InP nanocrystals under pressure. Phys. Rev. B 75, 245433 (2007).

    Article  Google Scholar 

  236. Liu, H. et al. Pressure-stimulus-responsive behaviors of core–shell InP/ZnSe nanocrystals: remarkable piezochromic luminescence and structural assembly. Nanoscale 14, 7530–7537 (2022).

    Article  CAS  Google Scholar 

  237. Rafipoor, M. et al. Strain engineering in InP/(Zn,Cd)Se core/shell quantum dots. Chem. Mater. 30, 4393–4400 (2018).

    Article  CAS  Google Scholar 

  238. Rafipoor, M. et al. Strain in InP/ZnSe, S core/shell quantum dots from lattice mismatch and shell thickness — material stiffness influence. J. Chem. Phys. 151, 154704 (2019).

    Article  Google Scholar 

  239. Frederick, M. T., Amin, V. A., Cass, L. C. & Weiss, E. A. A molecule to detect and perturb the confinement of charge carriers in quantum dots. Nano Lett. 11, 5455–5460 (2011).

    Article  CAS  Google Scholar 

  240. Harrison, W. A. & Tersoff, J. Tight‐binding theory of heterojunction band lineups and interface dipoles. J. Vac. Sci. Technol. B 4, 1068–1073 (1986).

    Article  Google Scholar 

  241. Jeong, B. G. et al. Interface polarization in heterovalent core–shell nanocrystals. Nat. Mater. 21, 246–252 (2021).

    Article  Google Scholar 

  242. Hahm, D. et al. Design principle for bright, robust, and color-pure InP/ZnSexS1–x/ZnS heterostructures. Chem. Mater. 31, 3476–3484 (2019).

    Article  CAS  Google Scholar 

  243. Zhang, W. et al. InP/ZnS/ZnS core/shell blue quantum dots for efficient light-emitting diodes. Adv. Funct. Mater. 30, 2005303 (2020).

    Article  CAS  Google Scholar 

  244. Mulder, J. T. et al. Developing lattice matched ZnMgSe shells on InZnP quantum dots for phosphor applications. ACS Appl. Nano Mater. 3, 3859–3867 (2020).

    Article  CAS  Google Scholar 

  245. Orfield, N. J., McBride, J. R., Keene, J. D., Davis, L. M. & Rosenthal, S. J. Correlation of atomic structure and photoluminescence of the same quantum dot: pinpointing surface and internal defects that inhibit photoluminescence. ACS Nano 9, 831–839 (2015).

    Article  CAS  Google Scholar 

  246. Kim, T. et al. Efficient and stable blue quantum dot light-emitting diode. Nature 586, 385–389 (2020).

    Article  CAS  Google Scholar 

  247. Cavanaugh, P. et al. Raman study of shell morphology in InP/ZnSe/ZnS core/shell/shell nanocrystals. J. Phys. Chem. C 125, 10549–10557 (2021).

    Article  CAS  Google Scholar 

  248. Nguyen, A. T., Jen-La Plante, I., Ippen, C., Ma, R. & Kelley, D. F. Extremely slow trap-mediated hole relaxation in room-temperature InP/ZnSe/ZnS quantum dots. J. Phys. Chem. C 125, 4110–4118 (2021).

    Article  CAS  Google Scholar 

  249. Cavanaugh, P. et al. Radiative dynamics and delayed emission in pure and doped InP/ZnSe/ZnS quantum dots. J. Chem. Phys. 155, 244705 (2021).

    Article  CAS  Google Scholar 

  250. Nguyen, A. T. et al. Auger dynamics in InP/ZnSe/ZnS quantum dots having pure and doped shells. J. Phys. Chem. C 125, 15405–15414 (2021).

    Article  CAS  Google Scholar 

  251. Sun, H. et al. Biexciton and trion dynamics in InP/ZnSe/ZnS quantum dots. J. Chem. Phys. 156, 054703 (2022).

    Article  CAS  Google Scholar 

  252. Kim, T., Won, Y.-H., Jang, E. & Kim, D. Negative trion auger recombination in highly luminescent InP/ZnSe/ZnS quantum dots. Nano Lett. 21, 2111–2116 (2021).

    Article  CAS  Google Scholar 

  253. Lee, S. H. et al. The effects of discrete and gradient mid-shell structures on the photoluminescence of single InP quantum dots. Nanoscale 11, 23251–23258 (2019).

    Article  CAS  Google Scholar 

  254. Lee, Y. et al. Effectual interface and defect engineering for auger recombination suppression in bright InP/ZnSeS/ZnS quantum dots. ACS Appl. Mater. Interfaces 14, 12479–12487 (2022).

    Article  CAS  Google Scholar 

  255. Sousa Velosa, F. et al. State filling and stimulated emission by colloidal InP/ZnSe core/shell quantum dots. Adv. Optical Mater. 10, 2200328 (2022).

    Article  CAS  Google Scholar 

  256. Kelley, A. M. et al. Identity of the reversible hole traps in InP/ZnSe core/shell quantum dots. J. Chem. Phys. 157, 174701 (2022).

    Article  CAS  Google Scholar 

  257. Cragg, G. E. & Efros, A. L. Suppression of auger processes in confined structures. Nano Lett. 10, 313–317 (2010).

    Article  CAS  Google Scholar 

  258. García-Santamaría, F. et al. Breakdown of volume scaling in auger recombination in CdSe/CdS heteronanocrystals: the role of the core−shell interface. Nano Lett. 11, 687–693 (2011).

    Article  Google Scholar 

  259. Park, Y.-S., Lim, J., Makarov, N. S. & Klimov, V. I. Effect of interfacial alloying versus ‘volume scaling’ on auger recombination in compositionally graded semiconductor quantum dots. Nano Lett. 17, 5607–5613 (2017).

    Article  CAS  Google Scholar 

  260. Lim, J., Park, Y.-S., Wu, K., Yun, H. J. & Klimov, V. I. Droop-free colloidal quantum dot light-emitting diodes. Nano Lett. 18, 6645–6653 (2018).

    Article  CAS  Google Scholar 

  261. Park, Y.-S., Bae, W. K., Baker, T., Lim, J. & Klimov, V. I. Effect of auger recombination on lasing in heterostructured quantum dots with engineered core/shell interfaces. Nano Lett. 15, 7319–7328 (2015).

    Article  CAS  Google Scholar 

  262. Roh, J., Park, Y.-S., Lim, J. & Klimov, V. I. Optically pumped colloidal-quantum-dot lasing in LED-like devices with an integrated optical cavity. Nat. Commun. 11, 271 (2020).

    Article  CAS  Google Scholar 

  263. Al-Ghamdi, M. S. et al. Absorption, gain, and threshold in InP/AlGaInP quantum dot laser diodes. IEEE J. Quantum Electron. 49, 389–394 (2013).

    Article  CAS  Google Scholar 

  264. Chen, C. H., Stockman, S. A., Peanasky, M. J. & Kuo, C. P. in High Brightness Light Emitting Diodes (eds Stringfellow, G. et al.) 97–149 (Elsevier, 1997).

  265. Gessmann, T. & Schubert, E. F. High-efficiency AlGaInP light-emitting diodes for solid-state lighting applications. J. Appl. Phys. 95, 2203–2216 (2004).

    Article  CAS  Google Scholar 

  266. Meier, L., Braun, C., Hannappel, T. & Schmidt, W. G. Band alignment at GaxIn1–xP/AlyIn1–y P alloy interfaces from hybrid density functional theory calculations. Phys. Stat. Sol. 258, 2000463 (2021).

    Article  CAS  Google Scholar 

  267. Zhang, X. H., Chua, S. J. & Fan, W. J. Band offsets at GaInP/AlGaInP(001) heterostructures lattice matched to GaAs. Appl. Phys. Lett. 73, 1098–1100 (1998).

    Article  CAS  Google Scholar 

  268. Srivastava, V. et al. Colloidal chemistry in molten salts: synthesis of luminescent In1–xGaxP and In1–xGaxAs quantum dots. J. Am. Chem. Soc. 140, 12144–12151 (2018).

    Article  CAS  Google Scholar 

  269. Wegner, K. D., Pouget, S., Ling, W. L., Carrière, M. & Reiss, P. Gallium — a versatile element for tuning the photoluminescence properties of InP quantum dots. Chem. Commun. 55, 1663–1666 (2019).

    Article  CAS  Google Scholar 

  270. Kim, K.-H. et al. Cation-exchange-derived InGaP alloy quantum dots toward blue emissivity. Chem. Mater. 32, 3537–3544 (2020).

    Article  CAS  Google Scholar 

  271. Kim, S. et al. Highly luminescent InP/GaP/ZnS nanocrystals and their application to white light-emitting diodes. J. Am. Chem. Soc. 134, 3804–3809 (2012).

    Article  CAS  Google Scholar 

  272. Lee, W. L. C., Kim, B., Choi, Y. & Chae, H. Synthesis of blue-emissive InP/GaP/ZnS quantum dots via controlling the reaction kinetics of shell growth and length of capping ligands. Nanomaterials 10, 2171 (2020).

    Article  CAS  Google Scholar 

  273. Xu, Y. et al. Preparation of highly stable and photoluminescent cadmium‐free InP/GaP/ZnS core/shell quantum dots and application to quantitative immunoassay. Part. Part. Syst. Charact. 37, 1900441 (2020).

    Article  CAS  Google Scholar 

  274. Luo, W., Lin, L., Huang, J., Lin, Q. & Lau, K. M. Electrically pumped InP/GaAsP quantum dot lasers grown on (001) Si emitting at 750 nm. Opt. Expr. 30, 40750–40755 (2022).

    Article  CAS  Google Scholar 

  275. Xie, R., Chen, K., Chen, X. & Peng, X. InAs/InP/ZnSe core/shell/shell quantum dots as near-infrared emitters: bright, narrow-band, non-cadmium containing, and biocompatible. Nano Res. 1, 457–464 (2008).

    Article  CAS  Google Scholar 

  276. Enright, M. J. et al. Role of atomic structure on exciton dynamics and photoluminescence in NIR emissive InAs/InP/ZnSe quantum dots. J. Phys. Chem. C 126, 7576–7587 (2022).

    Article  CAS  Google Scholar 

  277. Wijaya, H. et al. Efficient near-infrared light-emitting diodes based on In(Zn)As–In(Zn)P–GaP–ZnS quantum dots. Adv. Funct. Mater. 30, 1906483 (2020).

    Article  CAS  Google Scholar 

  278. Zhao, X., Lim, L. J., Ang, S. S. & Tan, Z.-K. Efficient short‐wave infrared light‐emitting diodes based on heavy‐metal‐free quantum dots. Adv. Mater. 34, 2206409 (2022).

    Article  CAS  Google Scholar 

  279. Eychmüller, A., Mews, A. & Weller, H. A quantum dot quantum well: CdS/HgS/CdS. Chem. Phys. Lett. 208, 59–62 (1993).

    Article  Google Scholar 

  280. Jeong, B. G. et al. Colloidal spherical quantum wells with near-unity photoluminescence quantum yield and suppressed blinking. ACS Nano 10, 9297–9305 (2016).

    Article  CAS  Google Scholar 

  281. Nagamine, G. et al. Efficient optical gain in spherical quantum wells enabled by engineering biexciton interactions. ACS Photon. 7, 2252–2264 (2020).

    Article  CAS  Google Scholar 

  282. Rreza, I. et al. Performance of spherical quantum well down converters in solid state lighting. ACS Appl. Mater. Interfaces 13, 12191–12197 (2021).

    Article  CAS  Google Scholar 

  283. Cassidy, J. et al. Quantum shells boost the optical gain of lasing media. ACS Nano 16, 3017–3026 (2022).

    Article  CAS  Google Scholar 

  284. Saeboe, A. M. et al. Extending the near-infrared emission range of indium phosphide quantum dots for multiplexed in vivo imaging. Nano Lett. 21, 3271–3279 (2021).

    Article  CAS  Google Scholar 

  285. Kim, S. et al. Reverse type-I ZnSe/InP/ZnS core/shell/shell nanocrystals: cadmium-free quantum dots for visible luminescence. Small 7, 70–73 (2011).

    Article  CAS  Google Scholar 

  286. Kim, S. et al. Bandgap engineered reverse type-I CdTe/InP/ZnS core–shell nanocrystals for the near-infrared. Chem. Commun. 10, 1267–1269 (2009).

    Article  Google Scholar 

  287. Kim, S. et al. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat. Biotechnol. 22, 93–97 (2004).

    Article  CAS  Google Scholar 

  288. Kim, S., Fisher, B., Eisler, H.-J. & Bawendi, M. Type-II quantum dots: CdTe/CdSe (core/shell) and CdSe/ZnTe (core/shell) heterostructures. J. Am. Chem. Soc. 125, 11466–11467 (2003).

    Article  CAS  Google Scholar 

  289. de Mello Donegá, C. Formation of nanoscale spatially indirect excitons: evolution of the type-II optical character of CdTe/CdSe heteronanocrystals. Phys. Rev. B 81, 165303 (2010).

    Article  Google Scholar 

  290. Gur, I., Fromer, N. A., Geier, M. L. & Alivisatos, A. P. Air-stable all-inorganic nanocrystal solar cells processed from solution. Science 310, 462–465 (2005).

    Article  CAS  Google Scholar 

  291. Simi, N. J., Bernadsha, S. B., Thomas, A. & Ison, V. V. Quantum dot sensitized solar cells using type-II CdSe-Cu2Se core–shell QDs. Results Opt. 4, 100088 (2021).

    Article  Google Scholar 

  292. Li, X. et al. Rational design of colloidal AgGaS2/CdSeS core/shell quantum dots for solar energy conversion and light detection. Nano Energy 89, 106392 (2021).

    Article  CAS  Google Scholar 

  293. Wang, Y. et al. Visible light driven type II heterostructures and their enhanced photocatalysis properties: a review. Nanoscale 5, 8326–8339 (2013).

    Article  CAS  Google Scholar 

  294. Zhou, Y., Zhao, H., Ma, D. & Rosei, F. Harnessing the properties of colloidal quantum dots in luminescent solar concentrators. Chem. Soc. Rev. 47, 5866–5890 (2018).

    Article  CAS  Google Scholar 

  295. Klimov, V. I. et al. Single-exciton optical gain in semiconductor nanocrystals. Nature 447, 441–446 (2007).

    Article  CAS  Google Scholar 

  296. Liao, C. et al. Ultralow-threshold single-mode lasing from phase-pure CdSe/CdS core/shell quantum dots. J. Phys. Chem. Lett. 7, 4968–4976 (2016).

    Article  CAS  Google Scholar 

  297. Dennis, A. M. et al. Suppressed blinking and auger recombination in near-infrared type-II InP/CdS nanocrystal quantum dots. Nano Lett. 12, 5545–5551 (2012).

    Article  CAS  Google Scholar 

  298. Wu, K. et al. Interfacial charge separation and recombination in InP and quasi-type II InP/CdS core/shell quantum dot-molecular acceptor complexes. J. Phys. Chem. A 117, 7561–7570 (2013).

    Article  CAS  Google Scholar 

  299. Smith, C. T. et al. Multiple exciton generation and dynamics in InP/CdS colloidal quantum dots. J. Phys. Chem. C 121, 2099–2107 (2017).

    Article  CAS  Google Scholar 

  300. Son, M., Kim, S., Lee, Y. & Bang, J. Synthesis of near-infrared-emitting type-II In(Zn)P/ZnTe (core/shell) quantum dots. J. Alloy Compd. 886, 161233 (2021).

    Article  CAS  Google Scholar 

  301. Karatum, O. et al. Light-emitting devices based on type-II InP/ZnO quantum dots. ACS Photon. 6, 939–946 (2019).

    Article  CAS  Google Scholar 

  302. Bahmani Jalali, H. et al. Effective neural photostimulation using indium-based type-II quantum dots. ACS Nano 12, 8104–8114 (2018).

    Article  CAS  Google Scholar 

  303. Karatum, O. et al. Quantum dot and electron acceptor nano-heterojunction for photo-induced capacitive charge-transfer. Sci. Rep. 11, 2460 (2021).

    Article  CAS  Google Scholar 

  304. Shimizu, K. T. et al. Toward commercial realization of quantum dot based white light-emitting diodes for general illumination. Photon. Res. 5, A1–A6 (2017).

    Article  CAS  Google Scholar 

  305. Toufanian, R., Chern, M., Kong, V. H. & Dennis, A. M. Engineering brightness-matched indium phosphide quantum dots. Chem. Mater. 33, 1964–1975 (2021).

    Article  CAS  Google Scholar 

  306. Dupont, D., Tessier, M. D., Smet, P. F. & Hens, Z. Indium phosphide-based quantum dots with shell-enhanced absorption for luminescent down-conversion. Adv. Mater. 29, 1700686 (2017).

    Article  Google Scholar 

  307. Karadza, B., Van Avermaet, H., Mingabudinova, L., Hens, Z. & Meuret, Y. Efficient, high-CRI white LEDs by combining traditional phosphors with cadmium-free InP/ZnSe red quantum dots. Photon. Res. 10, 155–165 (2022).

    Article  Google Scholar 

  308. Lee, S.-H. et al. Remote-type, high-color gamut white light-emitting diode based on InP quantum dot color converters. Opt. Mater. Express 4, 1297–1302 (2014).

    Article  CAS  Google Scholar 

  309. Tian, W., Dou, L., Jin, Z., Xiao, J. & Li, J. Full-color micro-LED displays with cadmium-free quantum dots patterned by photolithography technology. Appl. Opt. 59, 11112–11122 (2020).

    Article  CAS  Google Scholar 

  310. Boivin, D. B., Duffy, J. F., Kronauer, R. E. & Czeisler, C. A. Dose–response relationships for resetting of human circadian clock by light. Nature 379, 540–542 (1996).

    Article  CAS  Google Scholar 

  311. Pauley, S. M. Lighting for the human circadian clock: recent research indicates that lighting has become a public health issue. Med. Hypotheses 63, 588–596 (2004).

    Article  Google Scholar 

  312. Dong, K., Goyarts, E. C., Pelle, E., Trivero, J. & Pernodet, N. Blue light disrupts the circadian rhythm and create damage in skin cells. Int. J. Cosmet. Sci. 41, 558–562 (2019).

    Article  CAS  Google Scholar 

  313. Hye Oh, J., Ji Yang, S. & Rag Do, Y. Healthy, natural, efficient and tunable lighting: four-package white LEDs for optimizing the circadian effect, color quality and vision performance. Light Sci. Appl. 3, e141 (2014).

    Article  Google Scholar 

  314. Zhu, P., Zhu, H., Adhikari, G. C. & Thapa, S. Design of circadian white light-emitting diodes with tunable color temperature and nearly perfect color rendition. OSA Contin. 2, 2413–2427 (2019).

    Article  CAS  Google Scholar 

  315. Yang, J. et al. Toward full-color electroluminescent quantum dot displays. Nano Lett. 21, 26–33 (2020).

    Article  Google Scholar 

  316. Han, C.-Y. & Yang, H. Development of colloidal quantum dots for electrically driven light-emitting devices. J. Korean Ceram. Soc. 54, 449–469 (2017).

    Article  CAS  Google Scholar 

  317. Lim, J. et al. InP@ ZnSeS, core@ composition gradient shell quantum dots with enhanced stability. Chem. Mater. 23, 4459–4463 (2011).

    Article  CAS  Google Scholar 

  318. Lim, J. et al. Highly efficient cadmium-free quantum dot light-emitting diodes enabled by the direct formation of excitons within InP@ ZnSeS quantum dots. ACS Nano 7, 9019–9026 (2013).

    Article  CAS  Google Scholar 

  319. Jo, J.-H. et al. High-efficiency red electroluminescent device based on multishelled InP quantum dots. Opt. Lett. 41, 3984–3987 (2016).

    Article  CAS  Google Scholar 

  320. Cao, F. et al. Growth strategy for large-size InP/ZnSe/ZnS core–shell quantum dots enabling high-efficiency light-emitting diodes. Chem. Mater. 30, 8002–8007 (2018).

    Article  CAS  Google Scholar 

  321. Zhang, H. et al. High‐efficiency green InP quantum dot‐based electroluminescent device comprising thick‐shell quantum dots. Adv. Opt. Mater. 7, 1801602 (2019).

    Article  Google Scholar 

  322. Iwasaki, Y., Motomura, G., Ogura, K. & Tsuzuki, T. Efficient green InP quantum dot light-emitting diodes using suitable organic electron-transporting materials. Appl. Phys. Lett. 117, 111104 (2020).

    Article  CAS  Google Scholar 

  323. Chao, W.-C. et al. High efficiency green InP quantum dot light-emitting diodes by balancing electron and hole mobility. Commun. Mater. 2, 1–10 (2021).

    Article  Google Scholar 

  324. Zhang, H. et al. High-brightness blue InP quantum dot-based electroluminescent devices: the role of shell thickness. J. Phys. Chem. Lett. 11, 960–967 (2020).

    Article  CAS  Google Scholar 

  325. Mei, G. et al. Light extraction employing optical tunneling in blue InP quantum dot light-emitting diodes. Appl. Phys. Lett. 120, 091101 (2022).

    Article  CAS  Google Scholar 

  326. Thimsen, E., Sadtler, B. & Berezin, M. Y. Shortwave-infrared (SWIR) emitters for biological imaging: a review of challenges and opportunities. Nanophotonics 6, 1043–1054 (2017).

    Article  CAS  Google Scholar 

  327. Yun, S. H. & Kwok, S. J. J. Light in diagnosis, therapy and surgery. Nat. Biomed. Eng. 1, 0008 (2017).

    Article  CAS  Google Scholar 

  328. Yao, J., Li, P., Li, L. & Yang, M. Biochemistry and biomedicine of quantum dots: from biodetection to bioimaging, drug discovery, diagnostics, and therapy. Acta Biomater. 74, 36–55 (2018).

    Article  CAS  Google Scholar 

  329. Zhao, P. et al. Near infrared quantum dots in biomedical applications: current status and future perspective. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 10, e1483 (2018).

    Article  Google Scholar 

  330. Lee, G.-H. et al. Multifunctional materials for implantable and wearable photonic healthcare devices. Nat. Rev. Mater. 5, 149–165 (2020).

    Article  Google Scholar 

  331. Teutsch, M., Sappa, A. D. & Hammoud, R. I. Computer vision in the infrared spectrum: challenges and approaches. Synth. Lectures Comp. Vis. 10, 1–138 (2021).

    Article  Google Scholar 

  332. Kahn, J. M. & Barry, J. R. Wireless infrared communications. Proc. IEEE 85, 265–298 (1997).

    Article  Google Scholar 

  333. Haffouz, S. et al. Bright single InAsP quantum dots at telecom wavelengths in position-controlled InP nanowires: the role of the photonic waveguide. Nano Lett. 18, 3047–3052 (2018).

    Article  CAS  Google Scholar 

  334. Lu, C.-Y. & Pan, J.-W. Quantum-dot single-photon sources for the quantum internet. Nat. Nanotechnol. 16, 1294–1296 (2021).

    Article  CAS  Google Scholar 

  335. Sargent, H. E. Infrared quantum dots. Adv. Mater. 17, 515–522 (2005).

    Article  CAS  Google Scholar 

  336. Lu, H., Carroll, G. M., Neale, N. R. & Beard, M. C. Infrared quantum dots: progress, challenges, and opportunities. ACS Nano 13, 939–953 (2019).

    CAS  Google Scholar 

  337. Jin, D. et al. Nanoparticles for super-resolution microscopy and single-molecule tracking. Nat. Methods 15, 415–423 (2018).

    Article  CAS  Google Scholar 

  338. Chinnathambi, S. & Shirahata, N. Recent advances on fluorescent biomarkers of near-infrared quantum dots for in vitro and in vivo imaging. Sci. Technol. Adv. Mater. 20, 337–355 (2019).

    Article  CAS  Google Scholar 

  339. Tong, X., Wu, J. & Wang, Z. M. Quantum Dot Photodetectors (Springer, 2021).

  340. Carey, G. H. et al. Colloidal quantum dot solar cells. Chem. Rev. 115, 12732–12763 (2015).

    Article  CAS  Google Scholar 

  341. Zhang, L. et al. In vivo tumor active cancer targeting and CT-fluorescence dual-modal imaging with nanoprobe based on gold nanorods and InP/ZnS quantum dots. J. Mater. Chem. B 6, 2574–2583 (2018).

    Article  CAS  Google Scholar 

  342. Zaban, A., Mićić, O. I., Gregg, B. A. & Nozik, A. J. Photosensitization of nanoporous TiO2 electrodes with InP quantum dots. Langmuir 14, 3153–3156 (1998).

    Article  CAS  Google Scholar 

  343. Yang, S., Zhao, P., Zhao, X., Qu, L. & Lai, X. InP and Sn:InP based quantum dot sensitized solar cells. J. Mater. Chem. A 3, 21922–21929 (2015).

    Article  CAS  Google Scholar 

  344. Leemans, J. et al. Colloidal III–V quantum dot photodiodes for short-wave infrared photodetection. Adv. Sci. 9, 2200844 (2022).

    Article  CAS  Google Scholar 

  345. Lai, R., Sang, Y., Zhao, Y. & Wu, K. Triplet sensitization and photon upconversion using InP-based quantum dots. J. Am. Chem. Soc. 142, 19825–19829 (2020).

    Article  CAS  Google Scholar 

  346. Klimov, V. I. et al. Optical gain and stimulated emission in nanocrystal quantum dots. Science 290, 314–317 (2000).

    Article  CAS  Google Scholar 

  347. Geuchies, J. J. et al. Quantitative electrochemical control over optical gain in quantum-dot solids. ACS Nano 15, 377–386 (2020).

    Article  Google Scholar 

  348. Gao, S. et al. Lasing from colloidal InP/ZnS quantum dots. Opt. Expr. 19, 5528–5535 (2011).

    Article  CAS  Google Scholar 

  349. Senellart, P., Solomon, G. & White, A. High-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol. 12, 1026–1039 (2017).

    Article  CAS  Google Scholar 

  350. Michler, P. Quantum Dots for Quantum Information Technologies (Springer Cham, 2017).

  351. Benson, O., Santori, C., Pelton, M. & Yamamoto, Y. Regulated and entangled photons from a single quantum dot. Phys. Rev. Lett. 84, 2513–2516 (2000).

    Article  CAS  Google Scholar 

  352. Schimpf, C. et al. Quantum dots as potential sources of strongly entangled photons: perspectives and challenges for applications in quantum networks. Appl. Phys. Lett. 118, 100502 (2021).

    Article  CAS  Google Scholar 

  353. Trivedi, R., Fischer, K. A., Vučković, J. & Müller, K. Generation of non-classical light using semiconductor quantum dots. Adv. Quantum Technol. 3, 1900007 (2020).

    Article  Google Scholar 

  354. Akopian, N. et al. Entangled photon pairs from semiconductor quantum dots. Phys. Rev. Lett. 96, 130501 (2006).

    Article  CAS  Google Scholar 

  355. Lettner, T. et al. Strain-controlled quantum dot fine structure for entangled photon generation at 1550 nm. Nano Lett. 21, 10501–10506 (2021).

    Article  CAS  Google Scholar 

  356. Banin, U. et al. Quantum confinement and ultrafast dephasing dynamics in InP nanocrystals. Phys. Rev. B 55, 7059–7067 (1997).

    Article  CAS  Google Scholar 

  357. Ellingson, R. J. et al. Theoretical and experimental investigation of electronic structure and relaxation of colloidal nanocrystalline indium phosphide quantum dots. Phys. Rev. B 67, 075308 (2003).

    Article  Google Scholar 

  358. Narayanaswamy, A., Feiner, L. F., Meijerink, A. & van der Zaag, P. J. The effect of temperature and dot size on the spectral properties of colloidal InP/ZnS core−shell quantum dots. ACS Nano 3, 2539–2546 (2009).

    Article  CAS  Google Scholar 

  359. Huang, T. et al. Phonon induced pure dephasing process of excitonic state in colloidal semiconductor quantum dots. Superlatt. Microstruct. 92, 52–59 (2016).

    Article  CAS  Google Scholar 

  360. Brodu, A. et al. Exciton–phonon coupling in InP quantum dots with ZnS and (Zn, Cd) shells. Phys. Rev. B 101, 125413 (2020).

    Article  CAS  Google Scholar 

  361. Chandrasekaran, V. et al. Nearly blinking-free, high-purity single-photon emission by colloidal InP/ZnSe quantum dots. Nano Lett. 17, 6104–6109 (2017).

    Article  CAS  Google Scholar 

  362. Rainò, G. et al. Superfluorescence from lead halide perovskite quantum dot superlattices. Nature 563, 671–675 (2018).

    Article  Google Scholar 

  363. Grim, J. Q. et al. Scalable in operando strain tuning in nanophotonic waveguides enabling three-quantum-dot superradiance. Nat. Mater. 18, 963–969 (2019).

    Article  CAS  Google Scholar 

  364. Kim, T. et al. Shape-tuned multi-photon emitting InP nanotetrapod. Adv. Mater. 34, 2110665 (2022).

    Article  CAS  Google Scholar 

  365. Kwok, N. Complete Guide to Semiconductor Devices (Wiley–IEEE Press, 2002).

  366. Van de Walle, C. G. & Neugebauer, J. Universal alignment of hydrogen levels in semiconductors, insulators and solutions. Nature 423, 626–628 (2003).

    Article  Google Scholar 

  367. Adachi, S. The Handbook on Optical Constants of Semiconductors 632 (World Scientific, 2012).

  368. Catlow, C. R. A. & Stoneham, A. M. Ionicity in solids. J. Phys. C Solid State Phys. 16, 4321 (1983).

    Article  CAS  Google Scholar 

  369. Christensen, N. E., Satpathy, S. & Pawlowska, Z. Bonding and ionicity in semiconductors. Phys. Rev. B 36, 1032–1050 (1987).

    Article  CAS  Google Scholar 

  370. Tripathy, S. K. & Pattanaik, A. Optical and electronic properties of some semiconductors from energy gaps. Opt. Mater. 53, 123–133 (2016).

    Article  CAS  Google Scholar 

  371. Stroppa, A. & Peressi, M. ZnSe/GaAs (001) heterostructures with defected interfaces: structural, thermodynamic, and electronic properties. Phys. Rev. B 72, 245304 (2005).

    Article  Google Scholar 

  372. Hinuma, Y., Grüneis, A., Kresse, G. & Oba, F. Band alignment of semiconductors from density-functional theory and many-body perturbation theory. Phys. Rev. B 90, 155405 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank L. van der Poll (former student in their group) for the photograph shown in Fig. 2b. This publication is part of the project Quantum Dots for Advanced Lightning Applications (QUALITy) with Project No. 17188 of the Open Technology Programme, which is (partly) financed by the Dutch Research Council (NWO).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding authors

Correspondence to Guilherme Almeida or Arjan J. Houtepen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Dongho Kim and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almeida, G., Ubbink, R.F., Stam, M. et al. InP colloidal quantum dots for visible and near-infrared photonics. Nat Rev Mater 8, 742–758 (2023). https://doi.org/10.1038/s41578-023-00596-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-023-00596-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing