Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Engineering biomaterials to tailor the microenvironment for macrophage–endothelium interactions

Abstract

Macrophages and endothelial cells (ECs) have essential roles in physiological and pathological conditions by regulating inflammation, vascularization and tissue remodelling. Although the interactions between macrophages and ECs in tissue homeostasis and disease progression have been extensively studied in the past few decades, the role of the extracellular matrix in this intercellular process is less known. Here, we review the current knowledge on how microenvironmental cues, biophysical and biochemical, dictate macrophage–endothelium crosstalk in the pathology of different diseases. We summarize studies using biomaterials as extracellular matrix with tenable properties to manipulate macrophage–EC fate to regulate innate and adaptive immunity, angiogenesis and regeneration. Finally, we discuss the potential and challenges of developing novel therapeutic strategies to tailor macrophage–EC niches to restore homeostasis in various diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Examples of in vitro platforms to study macrophage–endothelial cell interactions.
Fig. 2: Therapeutic applications of biomaterials to engineer immune–endothelium interplay.

Similar content being viewed by others

References

  1. Ginhoux, F. & Guilliams, M. Tissue-resident macrophage ontogeny and homeostasis. Immunity 44, 439–449 (2016).

    Article  CAS  Google Scholar 

  2. Ipseiz, N. et al. Tissue-resident macrophages actively suppress IL-1beta release via a reactive prostanoid/IL-10 pathway. EMBO J. 39, e103454 (2020).

    Article  CAS  Google Scholar 

  3. Davies, L. C., Jenkins, S. J., Allen, J. E. & Taylor, P. R. Tissue-resident macrophages. Nat. Immunol. 14, 986–995 (2013).

    Article  CAS  Google Scholar 

  4. Hashimoto, D. et al. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity 38, 792–804 (2013).

    Article  CAS  Google Scholar 

  5. Jenkins, S. J. & Allen, J. E. The expanding world of tissue-resident macrophages. Eur. J. Immunol. 51, 1882–1896 (2021).

    Article  CAS  Google Scholar 

  6. Hernandez, G. E. & Iruela-Arispe, M. L. The many flavors of monocyte/macrophage–endothelial cell interactions. Curr. Opin. Hematol. 27, 181–189 (2020).

    Article  CAS  Google Scholar 

  7. Hong, H. & Tian, X. Y. The role of macrophages in vascular repair and regeneration after ischemic injury. Int. J. Mol. Sci. 21, 6328 (2020).

    Article  CAS  Google Scholar 

  8. Saraswathibhatla, A., Indana, D. & Chaudhuri, O. Cell–extracellular matrix mechanotransduction in 3D. Nat. Rev. Mol. Cell Biol. 24, 495–516 (2023).

    Article  CAS  Google Scholar 

  9. Mennens, S. F. B., van den Dries, K. & Cambi, A. Role for mechanotransduction in macrophage and dendritic cell immunobiology. Results Probl. Cell Differ. 62, 209–242 (2017).

    Article  CAS  Google Scholar 

  10. Jain, N. & Vogel, V. Spatial confinement downsizes the inflammatory response of macrophages. Nat. Mater. 17, 1134–1144 (2018).

    Article  CAS  Google Scholar 

  11. Chen, M. et al. Substrate stiffness modulates bone marrow-derived macrophage polarization through NF-κB signaling pathway. Bioact. Mater. 5, 880–890 (2020).

    Article  CAS  Google Scholar 

  12. Taufalele, P. V. et al. Matrix stiffness enhances cancer–macrophage interactions and M2-like macrophage accumulation in the breast tumor microenvironment. Acta Biomater. https://doi.org/10.1016/j.actbio.2022.04.031 (2022).

    Article  Google Scholar 

  13. Yao, D., Qiao, F., Song, C. & Lv, Y. Matrix stiffness regulates bone repair by modulating 12-lipoxygenase-mediated early inflammation. Mater. Sci. Eng. C Mater. Biol. Appl. 128, 112359 (2021).

    Article  CAS  Google Scholar 

  14. Wang, Y. et al. Tissue-resident macrophages promote extracellular matrix homeostasis in the mammary gland stroma of nulliparous mice. eLife https://doi.org/10.7554/eLife.57438 (2020).

    Article  Google Scholar 

  15. Witherel, C. E. et al. Regulation of extracellular matrix assembly and structure by hybrid M1/M2 macrophages. Biomaterials 269, 120667 (2021).

    Article  CAS  Google Scholar 

  16. Xu, M. et al. Inflammation-mediated matrix remodeling of extracellular matrix-mimicking biomaterials in tissue engineering and regenerative medicine. Acta Biomater. 151, 106–117 (2022).

    Article  CAS  Google Scholar 

  17. Sapudom, J. et al. 3D in vitro M2 macrophage model to mimic modulation of tissue repair. npj Regen. Med. 6, 83 (2021).

    Article  CAS  Google Scholar 

  18. Aird, W. C. Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ. Res. 100, 158–173 (2007).

    Article  CAS  Google Scholar 

  19. Kretschmer, M., Mamistvalov, R., Sprinzak, D., Vollmar, A. M. & Zahler, S. Matrix stiffness regulates Notch signaling activity in endothelial cells. J. Cell Sci. 136, jcs260442 (2023).

    Article  CAS  Google Scholar 

  20. Wiig, H., Keskin, D. & Kalluri, R. Interaction between the extracellular matrix and lymphatics: consequences for lymphangiogenesis and lymphatic function. Matrix Biol. 29, 645–656 (2010).

    Article  CAS  Google Scholar 

  21. Wei, Z., Schnellmann, R., Pruitt, H. C. & Gerecht, S. Hydrogel network dynamics regulate vascular morphogenesis. Cell Stem Cell 27, 798–812.e6 (2020).

    Article  CAS  Google Scholar 

  22. Schnellmann, R. et al. Stiffening matrix induces age-mediated microvascular phenotype through increased cell contractility and destabilization of adherens junctions. Adv. Sci. 9, e2201483 (2022).

    Article  Google Scholar 

  23. Shayan, M. et al. Elastin-like protein hydrogels with controllable stress relaxation rate and stiffness modulate endothelial cell function. J. Biomed. Mater. Res. A https://doi.org/10.1002/jbm.a.37520 (2023).

    Article  Google Scholar 

  24. Winkler, J., Abisoye-Ogunniyan, A., Metcalf, K. J. & Werb, Z. Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nat. Commun. 11, 5120 (2020).

    Article  CAS  Google Scholar 

  25. Pearce, O. M. T. et al. Deconstruction of a metastatic tumor microenvironment reveals a common matrix response in human cancers. Cancer Discov. 8, 304–319 (2018).

    Article  CAS  Google Scholar 

  26. Larsen, A. M. H. et al. Collagen density modulates the immunosuppressive functions of macrophages. J. Immunol. 205, 1461–1472 (2020).

    Article  CAS  Google Scholar 

  27. Horn, L. A. et al. Remodeling the tumor microenvironment via blockade of LAIR-1 and TGF-β signaling enables PD-L1-mediated tumor eradication. J. Clin. Invest. https://doi.org/10.1172/JCI155148 (2022).

    Article  Google Scholar 

  28. Itoh, Y. Proteolytic modulation of tumor microenvironment signals during cancer progression. Front. Oncol. 12, 935231 (2022).

    Article  CAS  Google Scholar 

  29. Wagenseil, J. E. & Mecham, R. P. Vascular extracellular matrix and arterial mechanics. Physiol. Rev. 89, 957–989 (2009).

    Article  CAS  Google Scholar 

  30. Weinberger, T. et al. Ontogeny of arterial macrophages defines their functions in homeostasis and inflammation. Nat. Commun. 11, 4549 (2020).

    Article  CAS  Google Scholar 

  31. Ensan, S. et al. Self-renewing resident arterial macrophages arise from embryonic CX3CR1(+) precursors and circulating monocytes immediately after birth. Nat. Immunol. 17, 159–168 (2016).

    Article  CAS  Google Scholar 

  32. Gialeli, C., Shami, A. & Gonçalves, I. Extracellular matrix: paving the way to the newest trends in atherosclerosis. Curr. Opin. Lipidol. 32, 277–285 (2021).

    Article  CAS  Google Scholar 

  33. Lacolley, P., Regnault, V., Segers, P. & Laurent, S. Vascular smooth muscle cells and arterial stiffening: relevance in development, aging, and disease. Physiol. Rev. 97, 1555–1617 (2017).

    Article  CAS  Google Scholar 

  34. Lacolley, P., Regnault, V. & Laurent, S. Mechanisms of arterial stiffening: from mechanotransduction to epigenetics. Arterioscler. Thromb. Vasc. Biol. 40, 1055–1062 (2020).

    Article  CAS  Google Scholar 

  35. Bays, J. L., Campbell, H. K., Heidema, C., Sebbagh, M. & DeMali, K. A. Linking E-cadherin mechanotransduction to cell metabolism through force-mediated activation of AMPK. Nat. Cell Biol. 19, 724–731 (2017).

    Article  CAS  Google Scholar 

  36. Zhang, J. et al. AMP-activated protein kinase regulates glycocalyx impairment and macrophage recruitment in response to low shear stress. FASEB J. 33, 7202–7212 (2019).

    Article  CAS  Google Scholar 

  37. Howe, K. L. & Fish, J. E. Transforming endothelial cells in atherosclerosis. Nat. Metab. 1, 856–857 (2019).

    Article  Google Scholar 

  38. Ng, C. Y. et al. Macrophages bind LDL using heparan sulfate and the perlecan protein core. J. Biol. Chem. 296, 100520 (2021).

    Article  CAS  Google Scholar 

  39. Barrett, T. J. Macrophages in atherosclerosis regression. Arterioscler. Thromb. Vasc. Biol. 40, 20–33 (2020).

    Article  CAS  Google Scholar 

  40. Zernecke, A. et al. Integrated single-cell analysis based classification of vascular mononuclear phagocytes in mouse and human atherosclerosis. Cardiovasc. Res. https://doi.org/10.1093/cvr/cvac161 (2022).

    Article  Google Scholar 

  41. Lim, H. Y. et al. Hyaluronan receptor LYVE-1-expressing macrophages maintain arterial tone through hyaluronan-mediated regulation of smooth muscle cell collagen. Immunity 49, 1191 (2018).

    Article  CAS  Google Scholar 

  42. Duan, R. et al. Single-cell RNA-Seq reveals CVI-mAb-induced Lyve1. Int. Immunopharmacol. 116, 109794 (2023).

    Article  CAS  Google Scholar 

  43. Drieu, A. et al. Parenchymal border macrophages regulate the flow dynamics of the cerebrospinal fluid. Nature 611, 585–593 (2022).

    Article  CAS  Google Scholar 

  44. Siret, C. et al. Deciphering the heterogeneity of the Lyve1. Nat. Commun. 13, 7366 (2022).

    Article  CAS  Google Scholar 

  45. Bai, J. et al. Contact-dependent carcinoma aggregate dispersion by M2a macrophages via ICAM-1 and β2 integrin interactions. Oncotarget 6, 25295–25307 (2015).

    Article  Google Scholar 

  46. Noonan, J. et al. A novel triple-cell two-dimensional model to study immune-vascular interplay in atherosclerosis. Front. Immunol. 10, 849 (2019).

    Article  CAS  Google Scholar 

  47. Spiller, K. L. et al. The role of macrophage phenotype in vascularization of tissue engineering scaffolds. Biomaterials 35, 4477–4488 (2014).

    Article  CAS  Google Scholar 

  48. Michaeli, S. et al. Soluble mediators produced by pro-resolving macrophages inhibit angiogenesis. Front. Immunol. 9, 768 (2018).

    Article  Google Scholar 

  49. Dohle, E. et al. Macrophage-mediated angiogenic activation of outgrowth endothelial cells in co-culture with primary osteoblasts. Eur. Cell Mater. 27, 164–165 (2014).

    Article  Google Scholar 

  50. Mayer, A., Hiebl, B., Lendlein, A. & Jung, F. Support of HUVEC proliferation by pro-angiogenic intermediate CD163+ monocytes/macrophages: a co-culture experiment. Clin. Hemorheol. Microcirc. 49, 423–430 (2011).

    Article  CAS  Google Scholar 

  51. He, H. et al. Endothelial cells provide an instructive niche for the differentiation and functional polarization of M2-like macrophages. Blood 120, 3152–3162 (2012).

    Article  CAS  Google Scholar 

  52. Clark, A. Y. et al. Integrin-specific hydrogels modulate transplanted human bone marrow-derived mesenchymal stem cell survival, engraftment, and reparative activities. Nat. Commun. 11, 114 (2020).

    Article  Google Scholar 

  53. Moore, E., Suresh, V., Ying, G. & West, J. M0 and M2 macrophages enhance vascularization of tissue engineering scaffolds. Regen. Eng. Transl. Med. 4, 51–61 (2018).

    Article  CAS  Google Scholar 

  54. Jetten, N. et al. Anti-inflammatory M2, but not pro-inflammatory M1 macrophages promote angiogenesis in vivo. Angiogenesis 17, 109–118 (2014).

    Article  CAS  Google Scholar 

  55. Graney, P. et al. Macrophages of diverse phenotypes drive vascularization of engineered tissues. Sci. Adv. 6, eaay6391 (2020).

    Article  CAS  Google Scholar 

  56. Kuehlbach, C., Hensler, S. & Mueller, M. M. Recapitulating the angiogenic switch in a hydrogel-based 3D in vitro tumor-stroma model. Bioengineering https://doi.org/10.3390/bioengineering8110186 (2021).

    Article  Google Scholar 

  57. Biglari, S. et al. Simulating inflammation in a wound microenvironment using a dermal wound-on-a-chip model. Adv. Healthc. Mater. 8, e1801307 (2019).

    Article  Google Scholar 

  58. Cui, X. et al. Hacking macrophage-associated immunosuppression for regulating glioblastoma angiogenesis. Biomaterials 161, 164–178 (2018).

    Article  CAS  Google Scholar 

  59. Boussommier-Calleja, A. et al. The effects of monocytes on tumor cell extravasation in a 3D vascularized microfluidic model. Biomaterials 198, 180–193 (2019).

    Article  CAS  Google Scholar 

  60. Song, C. et al. Microfluidic three-dimensional biomimetic tumor model for studying breast cancer cell migration and invasion in the presence of interstitial flow. Chin. Chem. Lett. 30, 1038–1042 (2019).

    Article  CAS  Google Scholar 

  61. Zheng, Y. et al. Angiogenesis in liquid tumors: an in vitro assay for leukemic‐cell‐induced bone marrow angiogenesis. Adv. Healthc. Mater. 5, 1014–1024 (2016).

    Article  CAS  Google Scholar 

  62. Ilhan, F. & Kalkanli, S. T. Atherosclerosis and the role of immune cells. World J. Clin. Cases 3, 345–352 (2015).

    Article  Google Scholar 

  63. Moore, K. J., Sheedy, F. J. & Fisher, E. A. Macrophages in atherosclerosis: a dynamic balance. Nat. Rev. Immunol. 13, 709–721 (2013).

    Article  CAS  Google Scholar 

  64. Kim, H. et al. Macrophages-triggered sequential remodeling of endothelium–interstitial matrix to form pre-metastatic niche in microfluidic tumor microenvironment. Adv. Sci. 6, 1900195 (2019).

    Article  Google Scholar 

  65. Moore, T. L. et al. Cellular shuttles: monocytes/macrophages exhibit transendothelial transport of nanoparticles under physiological flow. ACS Appl. Mater. Interfaces 9, 18501–18511 (2017).

    Article  CAS  Google Scholar 

  66. Yi, B., Xu, Q. & Liu, W. An overview of substrate stiffness guided cellular response and its applications in tissue regeneration. Bioact. Mater. 15, 82–102 (2022).

    Article  CAS  Google Scholar 

  67. Li, J., Jiang, X., Li, H., Gelinsky, M. & Gu, Z. Tailoring materials for modulation of macrophage fate. Adv. Mater. 33, 2004172 (2021).

    Article  CAS  Google Scholar 

  68. Birukova, A. A. et al. Endothelial barrier disruption and recovery is controlled by substrate stiffness. Microvasc. Res. 87, 50–57 (2013).

    Article  CAS  Google Scholar 

  69. Huynh, J. et al. Age-related intimal stiffening enhances endothelial permeability and leukocyte transmigration. Sci. Transl. Med. 3, 112ra122 (2011).

    Article  Google Scholar 

  70. Zhuang, Z. et al. Control of matrix stiffness using methacrylate–gelatin hydrogels for a macrophage-mediated inflammatory response. ACS Biomater. Sci. Eng. 6, 3091–3102 (2020).

    Article  CAS  Google Scholar 

  71. Escolano, J.-C. et al. Compliant substrates enhance macrophage cytokine release and NLRP3 inflammasome formation during their pro-inflammatory response. Front. Cell Dev. Biol. https://doi.org/10.3389/fcell.2021.639815 (2021).

    Article  Google Scholar 

  72. Sridharan, R., Cavanagh, B., Cameron, A. R., Kelly, D. J. & O’Brien, F. J. Material stiffness influences the polarization state, function and migration mode of macrophages. Acta Biomater. 89, 47–59 (2019).

    Article  CAS  Google Scholar 

  73. Adlerz, K. M., Aranda-Espinoza, H. & Hayenga, H. N. Substrate elasticity regulates the behavior of human monocyte-derived macrophages. Eur. Biophys. J. 45, 301–309 (2016).

    Article  CAS  Google Scholar 

  74. Lim, H. Y. et al. Hyaluronan receptor LYVE-1-expressing macrophages maintain arterial tone through hyaluronan-mediated regulation of smooth muscle cell collagen. Immunity 49, 326–341.e7 (2018).

    Article  CAS  Google Scholar 

  75. Ren, Y. et al. Hyaluronic acid hydrogel with adjustable stiffness for mesenchymal stem cell 3D culture via related molecular mechanisms to maintain stemness and induce cartilage differentiation. ACS Appl. Bio Mater. 4, 2601–2613 (2021).

    Article  CAS  Google Scholar 

  76. Di Giuseppe, M. et al. Mechanical behaviour of alginate-gelatin hydrogels for 3D bioprinting. J. Mech. Behav. Biomed. Mater. 79, 150–157 (2018).

    Article  Google Scholar 

  77. Stowers, R. S., Allen, S. C. & Suggs, L. J. Dynamic phototuning of 3D hydrogel stiffness. Proc. Natl Acad. Sci. USA 112, 1953–1958 (2015).

    Article  CAS  Google Scholar 

  78. Yoshikawa, H. Y. et al. Quantitative evaluation of mechanosensing of cells on dynamically tunable hydrogels. J. Am. Chem. Soc. 133, 1367–1374 (2011).

    Article  CAS  Google Scholar 

  79. Deshpande, S. R., Hammink, R., Nelissen, F. H., Rowan, A. E. & Heus, H. A. Biomimetic stress sensitive hydrogel controlled by DNA nanoswitches. Biomacromolecules 18, 3310–3317 (2017).

    Article  CAS  Google Scholar 

  80. Strehin, I., Nahas, Z., Arora, K., Nguyen, T. & Elisseeff, J. A versatile pH sensitive chondroitin sulfate–PEG tissue adhesive and hydrogel. Biomaterials 31, 2788–2797 (2010).

    Article  CAS  Google Scholar 

  81. Quah, S. P., Nykypanchuk, D. & Bhatia, S. R. Temperature‐dependent structure and compressive mechanical behavior of alginate/polyethylene oxide–poly (propylene oxide)–poly (ethylene oxide) hydrogels. J. Biomed. Mater. Res. Part B Appl. Biomater. 108, 834–844 (2020).

    Article  CAS  Google Scholar 

  82. Akimoto, A. M. et al. Mesenchylmal stem cell culture on poly (N-isopropylacrylamide) hydrogel with repeated thermo-stimulation. Int. J. Mol. Sci. 19, 1253 (2018).

    Article  Google Scholar 

  83. Wu, P.-H., Giri, A., Sun, S. X. & Wirtz, D. Three-dimensional cell migration does not follow a random walk. Proc. Natl Acad. Sci. USA 111, 3949–3954 (2014).

    Article  CAS  Google Scholar 

  84. Berger, A. J., Linsmeier, K. M., Kreeger, P. K. & Masters, K. S. Decoupling the effects of stiffness and fiber density on cellular behaviors via an interpenetrating network of gelatin-methacrylate and collagen. Biomaterials 141, 125–135 (2017).

    Article  CAS  Google Scholar 

  85. Wang, X. et al. Decoupling polymer properties to elucidate mechanisms governing cell behavior. Tissue Eng. Part B Rev. 18, 396–404 (2012).

    Article  CAS  Google Scholar 

  86. Gaharwar, A. K., Arpanaei, A., Andresen, T. L. & Dolatshahi-Pirouz, A. 3D biomaterial microarrays for regenerative medicine: current state-of-the-art, emerging directions and future trends. Adv. Mater. 28, 771–781 (2016).

    Article  CAS  Google Scholar 

  87. Zhou, Y. W. & Wu, Y. Substrate viscoelasticity amplifies distinctions between transient and persistent LPS‐induced signals. Adv. Healthc. Mater. 11, 2102271 (2022).

    Article  CAS  Google Scholar 

  88. Vining, K. H. et al. Mechanical checkpoint regulates monocyte differentiation in fibrotic niches. Nat. Mater. 21, 939–950 (2022).

    Article  CAS  Google Scholar 

  89. Vining, K. H. et al. Mechanical checkpoint regulates monocyte differentiation in fibrotic matrix. Blood 138, 2539 (2021).

    Article  Google Scholar 

  90. Weis, M., Schlichting, C. L., Engleman, E. G. & Cooke, J. P. Endothelial determinants of dendritic cell adhesion and migration: new implications for vascular diseases. Arterioscler. Thromb. Vasc. Biol. 22, 1817–1823 (2002).

    Article  CAS  Google Scholar 

  91. Nam, S., Stowers, R., Lou, J., Xia, Y. & Chaudhuri, O. Varying PEG density to control stress relaxation in alginate-PEG hydrogels for 3D cell culture studies. Biomaterials 200, 15–24 (2019).

    Article  CAS  Google Scholar 

  92. Gao, J. et al. Cell-free bilayered porous scaffolds for osteochondral regeneration fabricated by continuous 3D-printing using nascent physical hydrogel as ink. Adv. Healthc. Mater. 10, e2001404 (2021).

    Article  Google Scholar 

  93. Bao, G. et al. Triggered micropore-forming bioprinting of porous viscoelastic hydrogels. Mater. Horiz. 7, 2336–2347 (2020).

    Article  CAS  Google Scholar 

  94. Liu, C., McClements, D. J., Li, M., Xiong, L. & Sun, Q. Development of self-healing double-network hydrogels: enhancement of the strength of wheat gluten hydrogels by in situ metal–catechol coordination. J. Agric. Food Chem. 67, 6508–6516 (2019).

    Article  CAS  Google Scholar 

  95. Guo, Z., Mi, S. & Sun, W. A facile strategy for preparing tough, self‐healing double‐network hyaluronic acid hydrogels inspired by mussel cuticles. Macromol. Mater. Eng. 304, 1800715 (2019).

    Article  Google Scholar 

  96. Bhattacharya, S. et al. Fluorescent self-healing carbon dot/polymer gels. ACS Nano 13, 1433–1442 (2019).

    CAS  Google Scholar 

  97. Li, H. et al. Fingerprintable hydrogel from dual reversible cross-linking networks with different relaxation times. ACS Appl. Mater. Interfaces 11, 17925–17930 (2019).

    Article  CAS  Google Scholar 

  98. Abandansari, H. S. et al. In situ formation of interpenetrating polymer network using sequential thermal and click crosslinking for enhanced retention of transplanted cells. Biomaterials 170, 12–25 (2018).

    Article  CAS  Google Scholar 

  99. Marozas, I. A., Cooper-White, J. J. & Anseth, K. S. Photo-induced viscoelasticity in cytocompatible hydrogel substrates. N. J. Phys. 21, 045004 (2019).

    Article  CAS  Google Scholar 

  100. Lou, J., Stowers, R., Nam, S., Xia, Y. & Chaudhuri, O. Stress relaxing hyaluronic acid-collagen hydrogels promote cell spreading, fiber remodeling, and focal adhesion formation in 3D cell culture. Biomaterials 154, 213–222 (2018).

    Article  CAS  Google Scholar 

  101. Konieczynska, M. D. et al. On-demand dissolution of a dendritic hydrogel-based dressing for second-degree burn wounds through thiol-thioester exchange reaction. Angew. Chem. Int. Ed. 55, 9984–9987 (2016).

    Article  CAS  Google Scholar 

  102. Brown, T. E. et al. Photopolymerized dynamic hydrogels with tunable viscoelastic properties through thioester exchange. Biomaterials 178, 496–503 (2018).

    Article  CAS  Google Scholar 

  103. Nelson, B. R. et al. Photoinduced dithiolane crosslinking for multiresponsive dynamic hydrogels. Adv. Mater. https://doi.org/10.1002/adma.202211209 (2023).

  104. Leight, J. L., Alge, D. L., Maier, A. J. & Anseth, K. S. Direct measurement of matrix metalloproteinase activity in 3D cellular microenvironments using a fluorogenic peptide substrate. Biomaterials 34, 7344–7352 (2013).

    Article  CAS  Google Scholar 

  105. Hanjaya-Putra, D. et al. Spatial control of cell-mediated degradation to regulate vasculogenesis and angiogenesis in hyaluronan hydrogels. Biomaterials 33, 6123–6131 (2012).

    Article  CAS  Google Scholar 

  106. Brown, B. N. et al. Macrophage phenotype as a predictor of constructive remodeling following the implantation of biologically derived surgical mesh materials. Acta Biomater. 8, 978–987 (2012).

    Article  CAS  Google Scholar 

  107. Brown, B. N., Valentin, J. E., Stewart-Akers, A. M., McCabe, G. P. & Badylak, S. F. Macrophage phenotype and remodeling outcomes in response to biologic scaffolds with and without a cellular component. Biomaterials 30, 1482–1491 (2009).

    Article  CAS  Google Scholar 

  108. Li, X. et al. Effects of titanium surface roughness on the mediation of osteogenesis via modulating the immune response of macrophages. Biomed. Mater. 13, 045013 (2018).

    Article  Google Scholar 

  109. Gimbrone, M. A. Jr & García-Cardeña, G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ. Res. 118, 620–636 (2016).

    Article  CAS  Google Scholar 

  110. Li, J. et al. The observed difference of macrophage phenotype on different surface roughness of mineralized collagen. Regen. Biomater. 7, 203–211 (2020).

    Article  CAS  Google Scholar 

  111. Yurdagul, A. Jr, Finney, A. C., Woolard, M. D. & Orr, A. W. The arterial microenvironment: the where and why of atherosclerosis. Biochem. J. 473, 1281–1295 (2016).

    Article  CAS  Google Scholar 

  112. McWhorter, F. Y., Wang, T., Nguyen, P., Chung, T. & Liu, W. F. Modulation of macrophage phenotype by cell shape. Proc. Natl Acad. Sci. USA 110, 17253–17258 (2013).

    Article  CAS  Google Scholar 

  113. Chen, L., Simpson, J. D., Fuchs, A. V., Rolfe, B. E. & Thurecht, K. J. Effects of surface charge of hyperbranched polymers on cytotoxicity, dynamic cellular uptake and localization, hemotoxicity, and pharmacokinetics in mice. Mol. Pharm. 14, 4485–4497 (2017).

    Article  CAS  Google Scholar 

  114. Bartneck, M. et al. Rapid uptake of gold nanorods by primary human blood phagocytes and immunomodulatory effects of surface chemistry. ACS Nano 4, 3073–3086 (2010).

    Article  CAS  Google Scholar 

  115. Lv, L. et al. Unveiling the mechanism of surface hydrophilicity‐modulated macrophage polarization. Adv. Healthc. Mater. 7, 1800675 (2018).

    Article  Google Scholar 

  116. Qie, Y. et al. Surface modification of nanoparticles enables selective evasion of phagocytic clearance by distinct macrophage phenotypes. Sci. Rep. 6, 26269 (2016).

    Article  CAS  Google Scholar 

  117. Chen, A. et al. Zwitterionic polymer/polydopamine coating of electrode arrays reduces fibrosis and residual hearing loss after cochlear implantation. Adv. Healthc. Mater. 12, e2200807 (2023).

    Article  Google Scholar 

  118. Danelius, E. et al. Dynamic chirality in the mechanism of action of allosteric CD36 modulators of macrophage-driven inflammation. J. Med. Chem. 62, 11071–11079 (2019).

    Article  CAS  Google Scholar 

  119. Lin, Y., Xu, J. & Lan, H. Tumor-associated macrophages in tumor metastasis: biological roles and clinical therapeutic applications. J. Hematol. Oncol. 12, 1–16 (2019).

    Article  Google Scholar 

  120. Barmaki, S. et al. A microfluidic oxygen sink to create a targeted cellular hypoxic microenvironment under ambient atmospheric conditions. Acta Biomater. 73, 167–179 (2018).

    Article  CAS  Google Scholar 

  121. Müller, A. S. et al. The impact of clay-based hypoxia mimetic hydrogel on human fibroblasts of the periodontal soft tissue. J. Biomater. Appl. 33, 1277–1284 (2019).

    Article  Google Scholar 

  122. Sathy, B. N. et al. Hypoxia mimicking hydrogels to regulate the fate of transplanted stem cells. Acta Biomater. 88, 314–324 (2019).

    Article  CAS  Google Scholar 

  123. Dawes, C. S., Konig, H. & Lin, C. C. Enzyme-immobilized hydrogels to create hypoxia for in vitro cancer cell culture. J. Biotechnol. 248, 25–34 (2017).

    Article  CAS  Google Scholar 

  124. Li, C. et al. A new approach for on-demand generation of various oxygen tensions for in vitro hypoxia models. PLoS ONE 11, e0155921 (2016).

    Article  Google Scholar 

  125. Park, K. M., Blatchley, M. R. & Gerecht, S. The design of dextran-based hypoxia-inducible hydrogels via in situ oxygen-consuming reaction. Macromol. Rapid Commun. 35, 1968–1975 (2014).

    Article  CAS  Google Scholar 

  126. Blatchley, M., Park, K. M. & Gerecht, S. Designer hydrogels for precision control of oxygen tension and mechanical properties. J. Mater. Chem. B 3, 7939–7949 (2015).

    Article  CAS  Google Scholar 

  127. Blatchley, M. R. et al. Discretizing three-dimensional oxygen gradients to modulate and investigate cellular processes. Adv. Sci. 8, e2100190 (2021).

    Article  Google Scholar 

  128. Čejková, S., Králová-Lesná, I. & Poledne, R. Monocyte adhesion to the endothelium is an initial stage of atherosclerosis development. Cor Vasa 58, e419–e425 (2016).

    Article  Google Scholar 

  129. Sager, H. B. et al. RNAi targeting multiple cell adhesion molecules reduces immune cell recruitment and vascular inflammation after myocardial infarction. Sci. Transl. Med. 8, 342ra380 (2016).

    Article  Google Scholar 

  130. Krohn-Grimberghe, M. et al. Nanoparticle-encapsulated siRNAs for gene silencing in the haematopoietic stem-cell niche. Nat. Biomed. Eng. 4, 1076–1089 (2020).

    Article  CAS  Google Scholar 

  131. Lameijer, M. et al. Efficacy and safety assessment of a TRAF6-targeted nanoimmunotherapy in atherosclerotic mice and non-human primates. Nat. Biomed. Eng. 2, 279–292 (2018).

    Article  CAS  Google Scholar 

  132. Wang, Y. et al. Biomimetic nanotherapies: red blood cell based core–shell structured nanocomplexes for atherosclerosis management. Adv. Sci. 6, 1900172 (2019).

    Article  Google Scholar 

  133. Boada, C. et al. Rapamycin-loaded biomimetic nanoparticles reverse vascular inflammation. Circ. Res. 126, 25–37 (2020).

    Article  CAS  Google Scholar 

  134. Yang, Y. et al. M2 macrophage-derived exosomes promote angiogenesis and growth of pancreatic ductal adenocarcinoma by targeting E2F2. Mol. Ther. 29, 1226–1238 (2021).

    Article  CAS  Google Scholar 

  135. Wei, K. et al. M2 macrophage-derived exosomes promote lung adenocarcinoma progression by delivering miR-942. Cancer Lett. 526, 205–216 (2022).

    Article  CAS  Google Scholar 

  136. Njock, M. S. et al. Endothelial extracellular vesicles promote tumour growth by tumour‐associated macrophage reprogramming. J. Extracell. Vesicles 11, e12228 (2022).

    Article  CAS  Google Scholar 

  137. Ge, X. et al. Exosomal miR-155 from M1-polarized macrophages promotes EndoMT and impairs mitochondrial function via activating NF-κB signaling pathway in vascular endothelial cells after traumatic spinal cord injury. Redox Biol. 41, 101932 (2021).

    Article  CAS  Google Scholar 

  138. Osada-Oka, M. et al. Macrophage-derived exosomes induce inflammatory factors in endothelial cells under hypertensive conditions. Hypertens. Res. 40, 353–360 (2017).

    Article  CAS  Google Scholar 

  139. Tu, F. et al. Novel role of endothelial derived exosomal HSPA12B in regulating macrophage inflammatory responses in polymicrobial sepsis. Front. Immunol. 11, 825 (2020).

    Article  CAS  Google Scholar 

  140. Huang, S. et al. Nonviral delivery systems for antisense oligonucleotide therapeutics. Biomater. Res. 26, 49 (2022).

    Article  CAS  Google Scholar 

  141. Pons, S. et al. Immune consequences of endothelial cells’ activation and dysfunction during sepsis. Crit. Care Clin. 36, 401 (2020).

    Article  Google Scholar 

  142. Tan, X. et al. A curcumin-loaded polymeric micelle as a carrier of a microRNA-21 antisense-oligonucleotide for enhanced anti-tumor effects in a glioblastoma animal model. Biomater. Sci. 6, 407–417 (2018).

    Article  CAS  Google Scholar 

  143. Khatoon, N., Zhang, Z., Zhou, C. & Chu, M. Macrophage membrane coated nanoparticles: a biomimetic approach for enhanced and targeted delivery. Biomater. Sci. 10, 1193–1208 (2022).

    Article  CAS  Google Scholar 

  144. Gao, C. et al. Treatment of atherosclerosis by macrophage-biomimetic nanoparticles via targeted pharmacotherapy and sequestration of proinflammatory cytokines. Nat. Commun. 11, 2622 (2020).

    Article  CAS  Google Scholar 

  145. Li, R. et al. Route to rheumatoid arthritis by macrophage-derived microvesicle-coated nanoparticles. Nano Lett. 19, 124–134 (2018).

    Article  Google Scholar 

  146. Sadtler, K. et al. Design, clinical translation and immunological response of biomaterials in regenerative medicine. Nat. Rev. Mater. 1, 1–17 (2016).

    Article  Google Scholar 

  147. Hsu, C.-W. et al. Improved angiogenesis in response to localized delivery of macrophage-recruiting molecules. PLoS ONE 10, e0131643 (2015).

    Article  Google Scholar 

  148. Moore, E. M., Ying, G. & West, J. L. Macrophages influence vessel formation in 3D bioactive hydrogels. Adv. Biosyst. 1, 1600021 (2017).

    Article  Google Scholar 

  149. Krieger, J. et al. Spatially localized recruitment of anti-inflammatory monocytes by SDF-1α-releasing hydrogels enhances microvascular network remodeling. Biomaterials 77, 280–290 (2016).

    Article  CAS  Google Scholar 

  150. Smith, R. J. Jr. et al. Endothelialization of arterial vascular grafts by circulating monocytes. Nat. Commun. 11, 1622 (2020).

    Article  CAS  Google Scholar 

  151. Jin, S. et al. Inference and analysis of cell–cell communication using CellChat. Nat. Commun. 12, 1088 (2021).

    Article  CAS  Google Scholar 

  152. Efremova, M., Vento-Tormo, M., Teichmann, S. A. & Vento-Tormo, R. CellPhoneDB: inferring cell–cell communication from combined expression of multi-subunit ligand–receptor complexes. Nat. Protoc. 15, 1484–1506 (2020).

    Article  CAS  Google Scholar 

  153. Murray, P. J. et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41, 14–20 (2014).

    Article  CAS  Google Scholar 

  154. Sanin, D. E. et al. A common framework of monocyte-derived macrophage activation. Sci. Immunol. 7, eabl7482 (2022).

    Article  CAS  Google Scholar 

  155. Watanabe, S., Alexander, M., Misharin, A. V. & Budinger, G. R. S. The role of macrophages in the resolution of inflammation. J. Clin. Invest. 129, 2619–2628 (2019).

    Article  Google Scholar 

  156. Basil, M. C. & Levy, B. D. Specialized pro-resolving mediators: endogenous regulators of infection and inflammation. Nat. Rev. Immunol. 16, 51–67 (2016).

    Article  CAS  Google Scholar 

  157. Barthes, J. et al. Immune assisted tissue engineering via incorporation of macrophages in cell-laden hydrogels under cytokine stimulation. Front. Bioeng. Biotechnol. 6, 108 (2018).

    Article  Google Scholar 

  158. Kumar, M. et al. A fully defined matrix to support a pluripotent stem cell derived multi-cell-liver steatohepatitis and fibrosis model. Biomaterials 276, 121006 (2021).

    Article  CAS  Google Scholar 

  159. Pittet, M. J., Michielin, O. & Migliorini, D. Clinical relevance of tumour-associated macrophages. Nat. Rev. Clin. Oncol. 19, 402–421 (2022).

    Article  Google Scholar 

  160. Cheng, S. et al. A pan-cancer single-cell transcriptional atlas of tumor infiltrating myeloid cells. Cell 184, 792–809.e23 (2021).

    Article  CAS  Google Scholar 

  161. Aibar, S. et al. SCENIC: single-cell regulatory network inference and clustering. Nat. Methods 14, 1083–1086 (2017).

    Article  CAS  Google Scholar 

  162. Ma, R. Y., Black, A. & Qian, B. Z. Macrophage diversity in cancer revisited in the era of single-cell omics. Trends Immunol. 43, 546–563 (2022).

    Article  CAS  Google Scholar 

  163. Maishi, N., Annan, D. A., Kikuchi, H., Hida, Y. & Hida, K. Tumor endothelial heterogeneity in cancer progression. Cancers 11, 1511 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

S.G. acknowledges funding support from the Translational Research Institute for Space Health through NASA Cooperative Agreement NNX16AO69A (RAD0102). L.R. was supported by W81XWH-20-1-0498 and 1(GG014746-47) – Supplement.

Author information

Authors and Affiliations

Authors

Contributions

Y.G. and S.G. contributed substantially to discussion of the content. All authors researched data for the article, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Sharon Gerecht.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Alessandra Cambi; Gordona Vunjak-Novakovic, who co-reviewed with Pamela Graney; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, Y., Racioppi, L. & Gerecht, S. Engineering biomaterials to tailor the microenvironment for macrophage–endothelium interactions. Nat Rev Mater 8, 688–699 (2023). https://doi.org/10.1038/s41578-023-00591-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-023-00591-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing