Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Printed transistors made of 2D material-based inks

Abstract

Large-area electronics for the Internet of Things requires a new generation of light-weight, flexible, low-power electronics, based on advanced materials able to provide high-throughput fabrication of reliable, stable and cost-effective field-effect transistors that can be easily integrated onto flexible substrates such as plastic, paper and textiles. The family of 2D materials comprises a range of crystals with different chemical composition, structures and electronic properties that can be used as building blocks in transistors. Solution processing of 2D materials does not require the use of glove boxes, can be performed with minimal chemical processing and enables the use of printing technologies for device fabrication — these factors represent a critical advantage over traditional high-performance materials in terms of ease of processing, compatibility with flexible substrates, fabrication costs, large-volume manufacturing and scalability. Nevertheless, the electronic quality of solution-processed 2D materials is a bottleneck for the development of next-generation printed and flexible devices. This Review surveys solution-processed 2D material-based transistors, discussing the figures of merit, state of art and performance limits of devices, and describes the open challenges and future perspectives of this field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Field-effect transistor structure and characteristics.
Fig. 2: Two-dimensional materials deposition and printing techniques and corresponding film morphologies.
Fig. 3: Figures of merit of solution-processed 2D conductors.
Fig. 4: Figures of merit of solution-processed 2D insulators.
Fig. 5: Figures of merit of solution-processed 2D semiconductors.

Similar content being viewed by others

References

  1. IRDS. International Roadmap for Devices and Systems 2021 Edition (IEEE, 2021).

  2. Lombardi, M., Pascale, F. & Santaniello, D. Internet of things: a general overview between architectures, protocols and applications. Information 12, 87 (2021).

    Article  Google Scholar 

  3. Choi, W. et al. Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today 20, 116–130 (2017).

    Article  CAS  Google Scholar 

  4. Reuss, R. H. et al. Macroelectronics: perspectives on technology and applications. Proc. IEEE 93, 1239–1256 (2005).

    Article  CAS  Google Scholar 

  5. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

    Article  CAS  Google Scholar 

  6. Fiori, G. et al. Electronics based on two-dimensional materials. Nat. Nanotechnol. 9, 768–779 (2014). This review focuses on the performance limits and advantages of 2DMs and associated technologies, when exploited for both digital and analogue applications, focusing on the main figures of merit needed to meet industry requirements.

    Article  CAS  Google Scholar 

  7. Akinwande, D., Petrone, N. & Hone, J. Two-dimensional flexible nanoelectronics. Nat. Commun. 5, 5678 (2014). A detailed review on flexible 2D nanoelectronics covering their progress, prospects and contemporary challenges.

    Article  CAS  Google Scholar 

  8. Eda, G. & Chhowalla, M. Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics. Adv. Mater. 22, 2392–2415 (2010).

    Article  CAS  Google Scholar 

  9. Zhu, Y. et al. Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22, 3906–3924 (2010).

    Article  CAS  Google Scholar 

  10. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013). This review introduces and describes the potential of layering 2D materials into van der Waals heterostructures.

    Article  CAS  Google Scholar 

  11. Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A. C. Graphene photonics and optoelectronics. Nat. Photonics 4, 611–622 (2010).

    Article  CAS  Google Scholar 

  12. Gao, X., Bian, G. & Zhu, J. Electronics from solution-processed 2D semiconductors. J. Mater. Chem. C 7, 12835–12861 (2019).

    Article  CAS  Google Scholar 

  13. Kang, J., Sangwan, V. K., Wood, J. D. & Hersam, M. C. Solution-based processing of monodisperse two-dimensional nanomaterials. Acc. Chem. Res. 50, 943–951 (2017).

    Article  CAS  Google Scholar 

  14. Choi, S. H. et al. Large-scale synthesis of graphene and other 2D materials towards industrialization. Nat. Commun. 13, 1484 (2022). This review discusses the state-of-the-art mass production techniques of 2D materials, their limitations and opportunities for future development.

    Article  CAS  Google Scholar 

  15. Hu, G. et al. Functional inks and printing of two-dimensional materials. Chem. Soc. Rev. 47, 3265–3300 (2018). This review summarizes the progress on ink formulations of 2D materials and the printable applications enables by them.

    Article  CAS  Google Scholar 

  16. Torrisi, F. & Carey, T. Graphene, related two-dimensional crystals and hybrid systems for printed and wearable electronics. Nano Today 23, 73–96 (2018).

    Article  CAS  Google Scholar 

  17. Song, O. & Kang, J. Solution-processed 2D materials for electronic applications. ACS Appl. Electron. Mater. 5, 1335–1346 (2023).

    Article  CAS  Google Scholar 

  18. Hernandez, Y. et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3, 563–568 (2008).

    Article  CAS  Google Scholar 

  19. Parvez, K. et al. Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. J. Am. Chem. Soc. 136, 6083–6091 (2014).

    Article  CAS  Google Scholar 

  20. Besenhard, J. O. The electrochemical preparation and properties of ionic alkali metal-and NR4-graphite intercalation compounds in organic electrolytes. Carbon 14, 111–115 (1976).

    Article  CAS  Google Scholar 

  21. Yang, S., Zhang, P., Nia, A. S. & Feng, X. Emerging 2D materials produced via electrochemistry. Adv. Mater. 32, 1907857 (2020). The article presents a critical survey of the recent progress in electrochemically exfoliated 2D materials, comprising the strategic design, exfoliation principles, underlying mechanisms, processing techniques and potential applications.

    Article  CAS  Google Scholar 

  22. Wang, Y. et al. Field-effect transistors made from solution-grown two-dimensional tellurene. Nat. Electron. 1, 228–236 (2018).

    Article  Google Scholar 

  23. Amani, M. et al. Solution-synthesized high-mobility tellurium nanoflakes for short-wave infrared photodetectors. ACS Nano 12, 7253–7263 (2018).

    Article  CAS  Google Scholar 

  24. Lauth, J. et al. Solution-processed two-dimensional ultrathin InSe nanosheets. Chem. Mater. 28, 1728–1736 (2016).

    Article  CAS  Google Scholar 

  25. Son, D. et al. Colloidal synthesis of uniform-sized molybdenum disulfide nanosheets for wafer-scale flexible nonvolatile memory. Adv. Mater. 28, 9326–9332 (2016).

    Article  CAS  Google Scholar 

  26. Yoo, D., Kim, M., Jeong, S., Han, J. & Cheon, J. Chemical synthetic strategy for single-layer transition-metal chalcogenides. J. Am. Chem. Soc. 136, 14670–14673 (2014).

    Article  CAS  Google Scholar 

  27. Sokolikova, M. S., Sherrell, P. C., Palczynski, P., Bemmer, V. L. & Mattevi, C. Direct solution-phase synthesis of 1T’ WSe2 nanosheets. Nat. Commun. 10, 712 (2019).

    Article  CAS  Google Scholar 

  28. Li, W. et al. Large‐scale ultra‐robust MoS2 patterns directly synthesized on polymer substrate for flexible sensing electronics. Adv. Mater. 35, 2207447 (2023).

    Article  CAS  Google Scholar 

  29. Ko, M., Mendecki, L. & Mirica, K. A. Conductive two-dimensional metal–organic frameworks as multifunctional materials. Chem. Commun. 54, 7873–7891 (2018).

    Article  CAS  Google Scholar 

  30. Lu, Y. et al. Precise tuning of interlayer electronic coupling in layered conductive metal–organic frameworks. Nat. Commun. 13, 7240 (2022).

    Article  CAS  Google Scholar 

  31. Dong, R. & Feng, X. Making large single crystals of 2D MOFs. Nat. Mater. 20, 122–123 (2021).

    Article  Google Scholar 

  32. Wang, M., Dong, R. & Feng, X. Two-dimensional conjugated metal–organic frameworks (2Dc -MOFs): chemistry and function for MOFtronics. Chem. Soc. Rev. 50, 2764–2793 (2021).

    Article  CAS  Google Scholar 

  33. Chen, Y. et al. 2D Ruddlesden–Popper perovskites for optoelectronics. Adv. Mater. 30, 1703487 (2018).

    Article  Google Scholar 

  34. Luo, T. et al. Compositional control in 2D perovskites with alternating cations in the interlayer space for photovoltaics with efficiency over 18%. Adv. Mater. 31, 1903848 (2019).

    Article  CAS  Google Scholar 

  35. Zhang, F. et al. Enhanced charge transport in 2D perovskites via fluorination of organic cation. J. Am. Chem. Soc. 141, 5972–5979 (2019).

    Article  CAS  Google Scholar 

  36. Qin, C. et al. Stable room-temperature continuous-wave lasing in quasi-2D perovskite films. Nature 585, 53–57 (2020).

    Article  CAS  Google Scholar 

  37. Zhao, W. et al. Ultrathin two-dimensional metal–organic framework nanosheets for functional electronic devices. Coord. Chem. Rev. 377, 44–63 (2018).

    Article  CAS  Google Scholar 

  38. Cai, W., Wang, H., Zang, Z. & Ding, L. 2D perovskites for field-effect transistors. Sci. Bull. 66, 648–650 (2021).

    Article  CAS  Google Scholar 

  39. Qiu, X. et al. Room temperature two-dimensional lead halide perovskite thin-film transistors with high stability. Cell Rep. Phys. Sci. 4, 101217 (2023).

    Article  CAS  Google Scholar 

  40. Ferrari, A. C. et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7, 4598–4810 (2015). This review provides an overview of the key aspects of graphene and related materials, ranging from fundamental research challenges to applications in a large number of sectors.

    Article  CAS  Google Scholar 

  41. Kelly, A. G., O’Suilleabhain, D., Gabbett, C. & Coleman, J. N. The electrical conductivity of solution-processed nanosheet networks. Nat. Rev. Mater. 7, 217–234 (2021). This review covers inks preparation and deposition methods of solution-processed 2D materials.

    Article  Google Scholar 

  42. Lin, Z., Huang, Y. & Duan, X. Van der Waals thin-film electronics. Nat. Electron. 2, 378–388 (2019). This perspective article explores the development of van der Waals thin films and their use in high-performance large-area electronics by examining the formulation of the nanosheet inks and their scalable assembly into devices.

    Article  Google Scholar 

  43. Lundstrom, M. S. & Alam, M. A. Moore’s law: the journey ahead. Science 378, 722–723 (2022).

    Article  CAS  Google Scholar 

  44. Allain, A., Kang, J., Banerjee, K. & Kis, A. Electrical contacts to two-dimensional semiconductors. Nat. Mater. 14, 1195–1205 (2015).

    Article  CAS  Google Scholar 

  45. Finn, D. J. et al. Inkjet deposition of liquid-exfoliated graphene and MoS2 nanosheets for printed device applications. J. Mater. Chem. C 2, 925–932 (2014).

    Article  CAS  Google Scholar 

  46. Kang, B., Lim, S., Lee, W. H., Jo, S. B. & Cho, K. Work-function-tuned reduced graphene oxide via direct surface functionalization as source/drain electrodes in bottom-contact organic transistors. Adv. Mater. 25, 5856–5862 (2013). This article reports high-performance organic FETs owing to the work function tuning of rGO electrodes by using self-assembled monolayers.

    Article  CAS  Google Scholar 

  47. Stratakis, E., Savva, K., Konios, D., Petridis, C. & Kymakis, E. Improving the efficiency of organic photovoltaics by tuning the work function of graphene oxide hole transporting layers. Nanoscale 6, 6925–6931 (2014).

    Article  CAS  Google Scholar 

  48. Lyu, B. et al. Large-area MXene electrode array for flexible electronics. ACS Nano 13, 11392–11400 (2019).

    Article  CAS  Google Scholar 

  49. Xu, X. et al. High-yield Ti3C2Tx MXene–MoS2 integrated circuits. Adv. Mater. 34, 2107370 (2022). This article shows the potential of Ti3C2Tx MXene for developing large-area 2D electronics.

    Article  CAS  Google Scholar 

  50. Lemme, M. C., Member, S., Echtermeyer, T. J., Baus, M. & Kurz, H. A graphene field-effect device. IEEE Electron Device Lett. 28, 282–284 (2007).

    Article  CAS  Google Scholar 

  51. Pan, Y. et al. Near-ideal subthreshold swing MoS2 back-gate transistors with an optimized ultrathin HfO2 dielectric layer. Nanotechnology 30, 095202 (2019).

    Article  CAS  Google Scholar 

  52. Illarionov, Y. Y. et al. Insulators for 2D nanoelectronics: the gap to bridge. Nat. Commun. 11, 3385 (2020).

    Article  CAS  Google Scholar 

  53. Illarionov, Y. Y. et al. The role of charge trapping in MoS2/SiO2 and MoS2/hBN field-effect transistors. 2D Mater. 3, 035004 (2016).

    Article  Google Scholar 

  54. Lee, C. et al. Comparison of trapped charges and hysteresis behavior in hBN encapsulated single MoS2 flake based field effect transistors on SiO2 and hBN substrates. Nanotechnology 29, 335202 (2018).

    Article  Google Scholar 

  55. Knobloch, T. et al. The performance limits of hexagonal boron nitride as an insulator for scaled CMOS devices based on two-dimensional materials. Nat. Electron. 4, 98–108 (2021). This perspective article assesses the material parameters and performance limits of hBN by comparing the experimental and theoretical tunnel currents through ultrathin layers of hBN and other 2D gate insulators.

    Article  CAS  Google Scholar 

  56. Cheng, Z. et al. How to report and benchmark emerging field-effect transistors. Nat. Electron. 5, 416–423 (2022). This perspective article proposes guidelines for reporting and benchmarking key field-effect transistor parameters and performance metrics.

    Article  Google Scholar 

  57. Illarionov, Y. Y. et al. Reliability of scalable MoS2 FETs with 2 nm crystalline CaF2 insulators. 2D Mater. 6, 045004 (2019).

    Article  CAS  Google Scholar 

  58. Fu, Y. et al. Graphene related materials for thermal management. 2D Mater. 7, 012001 (2020).

    Article  CAS  Google Scholar 

  59. Ippolito, S. & Samorì, P. Defect engineering strategies toward controlled functionalization of solution‐processed transition metal dichalcogenides. Small Sci. 2, 2100122 (2022).

    Article  CAS  Google Scholar 

  60. Wu, F. et al. High thermal conductivity 2D materials: from theory and engineering to applications. Adv. Mater. Interfaces 9, 2200409 (2022).

    Article  CAS  Google Scholar 

  61. Rahman, M. et al. Anisotropic thermal conductivity of inkjet-printed 2D crystal films: role of the microstructure and interfaces. Nanomaterials 12, 3861 (2022).

    Article  CAS  Google Scholar 

  62. McManus, D. et al. Water-based and biocompatible 2D crystal inks for all-inkjet-printed heterostructures. Nat. Nanotechnol. 12, 343–350 (2017). In this article, water-based 2D nanodispersions are used to develop inkjet-printed complex circuits.

    Article  CAS  Google Scholar 

  63. Caironi, M. & Noh, Y.-Y. Large Area and Flexible Electronics (Wiley-VCH Verlag GmbH & Co. KGaA, 2015).

  64. Cai, X., Luo, Y., Liu, B. & Cheng, H.-M. Preparation of 2D material dispersions and their applications. Chem. Soc. Rev. 47, 6224–6266 (2018).

    Article  CAS  Google Scholar 

  65. Pinilla, S., Coelho, J., Li, K., Liu, J. & Nicolosi, V. Two-dimensional material inks. Nat. Rev. Mater. 7, 717–735 (2022).

    Article  Google Scholar 

  66. Conti, S. et al. Low-voltage 2D materials-based printed field-effect transistors for integrated digital and analog electronics on paper. Nat. Commun. 11, 3566 (2020).

    Article  CAS  Google Scholar 

  67. Brunetti, I. et al. Inkjet-printed low-dimensional materials-based complementary electronic circuits on paper. npj 2D Mater. Appl. 5, 85 (2021). This article demonstrates inkjet-printed 2D material-based electronic circuits on paper.

    Article  Google Scholar 

  68. Song, O. et al. All inkjet-printed electronics based on electrochemically exfoliated two-dimensional metal, semiconductor, and dielectric. npj 2D Mater. Appl. 6, 64 (2022).

    Article  CAS  Google Scholar 

  69. Kelly, A. G. et al. All-printed thin-film transistors from networks of liquid-exfoliated nanosheets. Science 356, 69–73 (2017). This article reports all-printed transistors entirely fabricated using 2D materials.

    Article  CAS  Google Scholar 

  70. Kim, J. et al. All‐solution‐processed van der waals heterostructures for wafer‐scale electronics. Adv. Mater. 34, 2106110 (2022). This article reports the wafer-scale assembly of van der Waals heterostructure to fabricate field-effect transistors, photodetectors, diodes and logic gates.

    Article  CAS  Google Scholar 

  71. Wang, Z., Kim, H. & Alshareef, H. N. Oxide thin-film electronics using all-MXene electrical contacts. Adv. Mater. 30, 1706656 (2018).

    Article  Google Scholar 

  72. Hyun, W. J., Secor, E. B., Hersam, M. C., Frisbie, C. D. & Francis, L. F. High-resolution patterning of graphene by screen printing with a silicon stencil for highly flexible printed electronics. Adv. Mater. 27, 109–115 (2015).

    Article  CAS  Google Scholar 

  73. Kelly, A. G., Vega-Mayoral, V., Boland, J. B. & Coleman, J. N. Whiskey-phase exfoliation: exfoliation and printing of nanosheets using Irish whiskey. 2D Mater. 6, 045036 (2019).

    Article  CAS  Google Scholar 

  74. Parvez, K. et al. Electrochemically exfoliated graphene as solution-processable, highly conductive electrodes for organic electronics. ACS Nano 7, 3598–3606 (2013).

    Article  CAS  Google Scholar 

  75. Carey, T. et al. Fully inkjet-printed two-dimensional material field-effect heterojunctions for wearable and textile electronics. Nat. Commun. 8, 1202 (2017). This article demonstrates fully inkjet-printed 2D materials electronics on wearable and washable textile substrates.

    Article  Google Scholar 

  76. Worsley, R. et al. All-2D material inkjet-printed capacitors: toward fully printed integrated circuits. ACS Nano 13, 54–60 (2019).

    Article  CAS  Google Scholar 

  77. Kelly, A. G., Finn, D., Harvey, A., Hallam, T. & Coleman, J. N. All-printed capacitors from graphene-BN-graphene nanosheet heterostructures. Appl. Phys. Lett. 109, 023107 (2016).

    Article  Google Scholar 

  78. Lin, Z. et al. Solution-processable 2D semiconductors for high-performance large-area electronics. Nature 562, 254–258 (2018). This article reports a novel intercalation method to obtain highly uniform solution-processed 2D semiconductors.

    Article  CAS  Google Scholar 

  79. Kim, J. et al. Area-selective chemical doping on solution-processed MoS2 thin-film for multi-valued logic gates. Nano Lett. 22, 570–577 (2022).

    Article  CAS  Google Scholar 

  80. Gao, X. et al. High-mobility patternable MoS2 percolating nanofilms. Nano Res. 14, 2255–2263 (2021).

    Article  CAS  Google Scholar 

  81. Carey, T. et al. Inkjet printed circuits with 2D semiconductor inks for high-performance electronics. Adv. Electron. Mater. 7, 2100112 (2021).

    Article  CAS  Google Scholar 

  82. Jewel, M. U., Monne, M. A., Mishra, B. & Chen, M. Y. Inkjet-printed molybdenum disulfide and nitrogen-doped graphene active layer high on/off ratio transistors. Molecules 25, 1081 (2020).

    Article  CAS  Google Scholar 

  83. Alsaif, M. M. Y. A. et al. High-performance field effect transistors using electronic inks of 2D molybdenum oxide nanoflakes. Adv. Funct. Mater. 26, 91–100 (2016).

    Article  CAS  Google Scholar 

  84. Curreli, N. et al. Liquid phase exfoliated indium selenide based highly sensitive photodetectors. Adv. Funct. Mater. 30, 1908427 (2020).

    Article  CAS  Google Scholar 

  85. Arapov, K. et al. Conductivity enhancement of binder-based graphene inks by photonic annealing and subsequent compression rolling. Adv. Eng. Mater. 18, 1234–1239 (2016).

    Article  CAS  Google Scholar 

  86. Chen, J.-H., Jang, C., Xiao, S., Ishigami, M. & Fuhrer, M. S. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat. Nanotechnol. 3, 206–209 (2008).

    Article  CAS  Google Scholar 

  87. Novoselov, K. S. et al. A roadmap for graphene. Nature 490, 192–200 (2012).

    Article  CAS  Google Scholar 

  88. Jabari, E. & Toyserkani, E. Aerosol-jet printing of highly flexible and conductive graphene/silver patterns. Mater. Lett. 174, 40–43 (2016).

    Article  CAS  Google Scholar 

  89. Amiri, A., Naraghi, M., Ahmadi, G., Soleymaniha, M. & Shanbedi, M. A review on liquid-phase exfoliation for scalable production of pure graphene, wrinkled, crumpled and functionalized graphene and challenges. FlatChem 8, 40–71 (2018).

    Article  CAS  Google Scholar 

  90. Dua, V. et al. All-organic vapor sensor using inkjet-printed reduced graphene oxide. Angew. Chem. Int. Ed. 49, 2154–2157 (2010).

    Article  CAS  Google Scholar 

  91. Arapov, K., Abbel, R., de With, G. & Friedrich, H. Inkjet printing of graphene. Faraday Discuss. 173, 323–336 (2014).

    Article  CAS  Google Scholar 

  92. Parvez, K., Worsley, R., Alieva, A., Felten, A. & Casiraghi, C. Water-based and inkjet printable inks made by electrochemically exfoliated graphene. Carbon 149, 213–221 (2019).

    Article  CAS  Google Scholar 

  93. Majee, S., Liu, C., Wu, B., Zhang, S.-L. & Zhang, Z.-B. Ink-jet printed highly conductive pristine graphene patterns achieved with water-based ink and aqueous doping processing. Carbon 114, 77–83 (2017).

    Article  CAS  Google Scholar 

  94. Leng, T. et al. Screen-printed graphite nanoplate conductive ink for machine learning enabled wireless radiofrequency-identification sensors. ACS Appl. Nano Mater. 2, 6197–6208 (2019).

    Article  CAS  Google Scholar 

  95. Parate, K. et al. Aerosol-jet-printed graphene immunosensor for label-free cytokine monitoring in serum. ACS Appl. Mater. Interfaces 12, 8592–8603 (2020).

    Article  CAS  Google Scholar 

  96. Zheng, Q. et al. Transparent conductive films consisting of ultralarge graphene sheets produced by Langmuir–Blodgett assembly. ACS Nano 5, 6039–6051 (2011).

    Article  CAS  Google Scholar 

  97. Su, C. Y. et al. High-quality thin graphene films from fast electrochemical exfoliation. ACS Nano 5, 2332–2339 (2011).

    Article  CAS  Google Scholar 

  98. Becerril, H. A. et al. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2, 463–470 (2008).

    Article  CAS  Google Scholar 

  99. Savchak, M. et al. Highly conductive and transparent reduced graphene oxide nanoscale films via thermal conversion of polymer-encapsulated graphene oxide sheets. ACS Appl. Mater. Interfaces 10, 3975–3985 (2018).

    Article  CAS  Google Scholar 

  100. Yang, S. et al. Organic radical-assisted electrochemical exfoliation for the scalable production of high-quality graphene. J. Am. Chem. Soc. 137, 13927–13932 (2015).

    Article  CAS  Google Scholar 

  101. Wang, W. et al. Highly efficient production of graphene by an ultrasound coupled with a shear mixer in supercritical CO2. Ind. Eng. Chem. Res. 57, 16701–16708 (2018).

    Article  CAS  Google Scholar 

  102. Calabrese, G. et al. Inkjet-printed graphene hall mobility measurements and low-frequency noise characterization. Nanoscale 12, 6708–6716 (2020).

    Article  CAS  Google Scholar 

  103. Overgaard, M. H. et al. Facile synthesis of mildly oxidized graphite inks for screen‐printing of highly conductive electrodes. Adv. Eng. Mater. 21, 1801304 (2019).

    Article  Google Scholar 

  104. Huang, X. et al. Highly flexible and conductive printed graphene for wireless wearable communications applications. Sci. Rep. 5, 18298 (2016).

    Article  Google Scholar 

  105. Pan, K. et al. Sustainable production of highly conductive multilayer graphene ink for wireless connectivity and IoT applications. Nat. Commun. 9, 5197 (2018).

    Article  Google Scholar 

  106. He, P. et al. Screen-printing of a highly conductive graphene ink for flexible printed electronics. ACS Appl. Mater. Interfaces 11, 32225–32234 (2019).

    Article  CAS  Google Scholar 

  107. Kim, K. S. et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009).

    Article  CAS  Google Scholar 

  108. Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5, 574–578 (2010).

    Article  CAS  Google Scholar 

  109. Suk, J. W. et al. Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS Nano 5, 6916–6924 (2011).

    Article  CAS  Google Scholar 

  110. Lim, S., Park, H., Yamamoto, G., Lee, C. & Suk, J. W. Measurements of the electrical conductivity of monolayer graphene flakes using conductive atomic force microscopy. Nanomaterials 11, 2575 (2021).

    Article  CAS  Google Scholar 

  111. Gao, Y., Shi, W., Wang, W., Leng, Y. & Zhao, Y. Inkjet printing patterns of highly conductive pristine graphene on flexible substrates. Ind. Eng. Chem. Res. 53, 16777–16784 (2014).

    Article  CAS  Google Scholar 

  112. Secor, E. B., Prabhumirashi, P. L., Puntambekar, K., Geier, M. L. & Hersam, M. C. Inkjet printing of high conductivity, flexible graphene patterns. J. Phys. Chem. Lett. 4, 1347–1351 (2013).

    Article  CAS  Google Scholar 

  113. Søndergaard, R. R., Espinosa, N., Jørgensen, M. & Krebs, F. C. Efficient decommissioning and recycling of polymer solar cells: justification for use of silver. Energy Environ. Sci. 7, 1006–1012 (2014).

    Article  Google Scholar 

  114. Rösch, R. et al. Investigation of the degradation mechanisms of a variety of organic photovoltaic devices by combination of imaging techniques — the ISOS-3 Inter-laboratory Collaboration. Energy Environ. Sci. 5, 6521 (2012).

    Article  Google Scholar 

  115. Feng, X. et al. A fully printed flexible MoS2 memristive artificial synapse with femtojoule switching energy. Adv. Electron. Mater. 5, 1900740 (2019).

    Article  CAS  Google Scholar 

  116. Li, Y. et al. Aerosol jet printed WSe2 crossbar architecture device on kapton with dual functionality as resistive memory and photosensor for flexible system integration. IEEE Sens. J. 20, 4653–4659 (2020).

    Article  CAS  Google Scholar 

  117. Worfolk, B. J. et al. Ultrahigh electrical conductivity in solution-sheared polymeric transparent films. Proc. Natl Acad. Sci. USA 112, 14138–14143 (2015).

    Article  CAS  Google Scholar 

  118. Mariano, M. et al. Solution-processed titanium carbide MXene films examined as highly transparent conductors. Nanoscale 8, 16371–16378 (2016).

    Article  CAS  Google Scholar 

  119. Akuzum, B. et al. Rheological characteristics of 2D titanium carbide (MXene) dispersions: a guide for processing MXenes. ACS Nano 12, 2685–2694 (2018).

    Article  CAS  Google Scholar 

  120. Naguib, M., Mochalin, V. N., Barsoum, M. W. & Gogotsi, Y. 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv. Mater. 26, 992–1005 (2014).

    Article  CAS  Google Scholar 

  121. Feng, J. et al. Metallic few-layered VS2 ultrathin nanosheets: high two-dimensional conductivity for in-plane supercapacitors. J. Am. Chem. Soc. 133, 17832–17838 (2011).

    Article  CAS  Google Scholar 

  122. Liang, H. et al. Solution growth of vertical VS2 nanoplate arrays for electrocatalytic hydrogen evolution. Chem. Mater. 28, 5587–5591 (2016).

    Article  CAS  Google Scholar 

  123. Ji, Q. et al. Metallic vanadium disulfide nanosheets as a platform material for multifunctional electrode applications. Nano Lett. 17, 4908–4916 (2017).

    Article  CAS  Google Scholar 

  124. Yang, C. et al. Metallic graphene-like VSe2 ultrathin nanosheets: superior potassium-ion storage and their working mechanism. Adv. Mater. 30, 1800036 (2018).

    Article  Google Scholar 

  125. Ming, F., Liang, H., Lei, Y., Zhang, W. & Alshareef, H. N. Solution synthesis of VSe2 nanosheets and their alkali metal ion storage performance. Nano Energy 53, 11–16 (2018).

    Article  CAS  Google Scholar 

  126. Wang, Y., Sofer, Z., Luxa, J. & Pumera, M. Lithium exfoliated vanadium dichalcogenides (VS2, VSe2, VTe2) exhibit dramatically different properties from their bulk counterparts. Adv. Mater. Interfaces 3, 1600433 (2016).

    Article  Google Scholar 

  127. Najafi, L. et al. Niobium disulphide (NbS2)-based (heterogeneous) electrocatalysts for an efficient hydrogen evolution reaction. J. Mater. Chem. A 7, 25593–25608 (2019).

    Article  CAS  Google Scholar 

  128. Si, J. et al. Scalable production of few-layer niobium disulfide nanosheets via electrochemical exfoliation for energy-efficient hydrogen evolution reaction. ACS Appl. Mater. Interfaces 11, 13205–13213 (2019).

    Article  CAS  Google Scholar 

  129. Le, Q. Van et al. Dual use of tantalum disulfides as hole and electron extraction layers in organic photovoltaic cells. Phys. Chem. Chem. Phys. 16, 25468–25472 (2014).

    Article  CAS  Google Scholar 

  130. Najafi, L. et al. TaS2, TaSe2, and their heterogeneous films as catalysts for the hydrogen evolution reaction. ACS Catal. 10, 3313–3325 (2020).

    Article  CAS  Google Scholar 

  131. Shi, S., Sun, Z. & Hu, Y. H. Synthesis, stabilization and applications of 2-dimensional 1T metallic MoS2. J. Mater. Chem. A 6, 23932–23977 (2018).

    Article  CAS  Google Scholar 

  132. Gholamvand, Z. et al. Comparison of liquid exfoliated transition metal dichalcogenides reveals MoSe2 to be the most effective hydrogen evolution catalyst. Nanoscale 8, 5737–5749 (2016).

    Article  CAS  Google Scholar 

  133. Sun, Y. et al. Low-temperature solution synthesis of few-layer 1T ′-MoTe2 nanostructures exhibiting lattice compression. Angew. Chem. Int. Ed. 55, 2830–2834 (2016).

    Article  CAS  Google Scholar 

  134. Lukowski, M. A. et al. Highly active hydrogen evolution catalysis from metallic WS2 nanosheets. Energy Environ. Sci. 7, 2608–2613 (2014).

    Article  CAS  Google Scholar 

  135. Liang, Z. et al. The metallic 1T-phase WS2 nanosheets as cocatalysts for enhancing the photocatalytic hydrogen evolution of g-C3N4 nanotubes. Appl. Catal. B Environ. 274, 119114 (2020).

    Article  CAS  Google Scholar 

  136. He, H.-Y. Metallic WSe2: Sn nanosheets assembled on graphene by a modified hydrothermal process for hydrogen evolution reaction. Colloids Surf. A: Physicochem. Eng. Asp. 589, 124149 (2020).

    Article  CAS  Google Scholar 

  137. Cunningham, G., Hanlon, D., McEvoy, N., Duesberg, G. S. & Coleman, J. N. Large variations in both dark- and photoconductivity in nanosheet networks as nanomaterial is varied from MoS2 to WTe2. Nanoscale 7, 198–208 (2015).

    Article  CAS  Google Scholar 

  138. Kim, J. et al. Modulation of conductivity and contact resistance of RuO2 nanosheets via metal nano-particles surface decoration. Nanomaterials 11, 2444 (2021).

    Article  CAS  Google Scholar 

  139. Wu, X.-J. et al. Two-dimensional CuSe nanosheets with microscale lateral size: synthesis and template-assisted phase transformation. Angew. Chem. Int. Ed. 53, 5083–5087 (2014).

    Article  CAS  Google Scholar 

  140. Vikulov, S. et al. Fully solution-processed conductive films based on colloidal copper selenide nanosheets for flexible electronics. Adv. Funct. Mater. 26, 3670–3677 (2016).

    Article  CAS  Google Scholar 

  141. Dillon, A. D. et al. Highly conductive optical quality solution-processed films of 2D titanium carbide. Adv. Funct. Mater. 26, 4162–4168 (2016).

    Article  CAS  Google Scholar 

  142. Abdolhosseinzadeh, S., Jiang, X., Zhang, H., Qiu, J. & Zhang, C. J. Perspectives on solution processing of two-dimensional MXenes. Mater. Today 48, 214–240 (2021).

    Article  CAS  Google Scholar 

  143. Ying, G., Dillon, A. D., Fafarman, A. T. & Barsoum, M. W. Transparent, conductive solution processed spincast 2D Ti2CTx (MXene) films. Mater. Res. Lett. 5, 391–398 (2017).

    Article  CAS  Google Scholar 

  144. Zhang, C. J. et al. Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance. Adv. Mater. 29, 1702678 (2017).

    Article  Google Scholar 

  145. Couly, C. et al. Asymmetric flexible MXene-reduced graphene oxide micro-supercapacitor. Adv. Electron. Mater. 4, 17003339 (2018).

    Article  Google Scholar 

  146. An, H. et al. Surface-agnostic highly stretchable and bendable conductive MXene multilayers. Sci. Adv. 4, eaaq0118 (2018).

    Article  Google Scholar 

  147. Han, M. et al. Solution-processed Ti3C2Tx MXene antennas for radio-frequency communication. Adv. Mater. 33, 2003225 (2021).

    Article  CAS  Google Scholar 

  148. Kong, B.-S., Geng, J. & Jung, H.-T. Layer-by-layer assembly of graphene and gold nanoparticles by vacuum filtration and spontaneous reduction of gold ions. ChemComm https://doi.org/10.1039/b821920f (2009).

  149. Yin, Z. et al. Electrochemical deposition of ZnO nanorods on transparent reduced graphene oxide electrodes for hybrid solar cells. Small 6, 307–312 (2010).

    Article  CAS  Google Scholar 

  150. Li, S.-S., Tu, K.-H., Lin, C.-C., Chen, C.-W. & Chhowalla, M. Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells. ACS Nano 4, 3169–3174 (2010).

    Article  CAS  Google Scholar 

  151. Rout, C. S. et al. Superior field emission properties of layered WS2-RGO nanocomposites. Sci. Rep. 3, 3282 (2013).

    Article  Google Scholar 

  152. Sygellou, L., Paterakis, G., Galiotis, C. & Tasis, D. Work function tuning of reduced graphene oxide thin films. J. Phys. Chem. C 120, 281–290 (2016).

    Article  CAS  Google Scholar 

  153. Xu, J., Shim, J., Park, J.-H. & Lee, S. MXene electrode for the integration of WSe2 and MoS2 field effect transistors. Adv. Funct. Mater. 26, 5328–5334 (2016).

    Article  CAS  Google Scholar 

  154. Peng, C. et al. High efficiency photocatalytic hydrogen production over ternary Cu/TiO2@Ti3C2Tx enabled by low-work-function 2D titanium carbide. Nano Energy 53, 97–107 (2018).

    Article  CAS  Google Scholar 

  155. Agresti, A. et al. Titanium-carbide MXenes for work function and interface engineering in perovskite solar cells. Nat. Mater. 18, 1228–1234 (2019).

    Article  CAS  Google Scholar 

  156. Deng, W. et al. All‐sprayed‐processable, large‐area, and flexible perovskite/MXene‐based photodetector arrays for photocommunication. Adv. Opt. Mater. 7, 1801521 (2019).

    Article  Google Scholar 

  157. Schultz, T. et al. Surface termination dependent work function and electronic properties of Ti3C2Tx MXene. Chem. Mater. 31, 6590–6597 (2019).

    Article  CAS  Google Scholar 

  158. Bellani, S. et al. Few-layer MoS2 flakes as a hole-selective layer for solution-processed hybrid organic hydrogen-evolving photocathodes. J. Mater. Chem. A 5, 4384–4396 (2017).

    Article  CAS  Google Scholar 

  159. Nguyen, T. P., Sohn, W., Oh, J. H., Jang, H. W. & Kim, S. Y. Size-dependent properties of two-dimensional MoS2 and WS2. J. Phys. Chem. C 120, 10078–10085 (2016).

    Article  CAS  Google Scholar 

  160. Yuan, Z. et al. Layered bismuth selenide utilized as hole transporting layer for highly stable organic photovoltaics. Org. Electron. 26, 327–333 (2015).

    Article  CAS  Google Scholar 

  161. Gu, X. et al. Solution-processed 2D niobium diselenide nanosheets as efficient hole-transport layers in organic solar cells. ChemSusChem 7, 416–420 (2014).

    Article  CAS  Google Scholar 

  162. Norita, S. et al. Inkjet-printed copper electrodes using photonic sintering and their application to organic thin-film transistors. Org. Electron. 25, 131–134 (2015).

    Article  CAS  Google Scholar 

  163. Khazaei, M. et al. OH-terminated two-dimensional transition metal carbides and nitrides as ultralow work function materials. Phys. Rev. B 92, 75411 (2015).

    Article  Google Scholar 

  164. Liu, Y., Xiao, H. & Goddard, W. A. Schottky-barrier-free contacts with two-dimensional semiconductors by surface-engineered MXenes. J. Am. Chem. Soc. 138, 15853–15856 (2016).

    Article  CAS  Google Scholar 

  165. Yota, J., Shen, H. & Ramanathan, R. Characterization of atomic layer deposition HfO2, Al2O3, and plasma-enhanced chemical vapor deposition Si3N4 as metal–insulator–metal capacitor dielectric for GaAs HBT technology. J. Vac. Sci. Technol. A Vac. Surf. Film. 31, 01A134 (2013).

    Article  Google Scholar 

  166. Lee, S.-K. et al. All graphene-based thin film transistors on flexible plastic substrates. Nano Lett. 12, 3472–3476 (2012).

    Article  CAS  Google Scholar 

  167. Standley, B., Mendez, A., Schmidgall, E. & Bockrath, M. Graphene–graphite oxide field-effect transistors. Nano Lett. 12, 1165–1169 (2012).

    Article  CAS  Google Scholar 

  168. Eda, G. et al. Graphene oxide gate dielectric for graphene-based monolithic field effect transistors. Appl. Phys. Lett. 102, 13–17 (2013).

    Article  Google Scholar 

  169. Britnell, L. et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335, 947–950 (2012).

    Article  CAS  Google Scholar 

  170. Withers, F. et al. Heterostructures produced from nanosheet-based inks. Nano Lett. 14, 3987–3992 (2014).

    Article  CAS  Google Scholar 

  171. Zhu, J. et al. Solution-processed dielectrics based on thickness-sorted two-dimensional hexagonal boron nitride nanosheets. Nano Lett. 15, 7029–7036 (2015).

    Article  Google Scholar 

  172. Lu, S. et al. Flexible, print-in-place 1D–2D thin-film transistors using aerosol jet printing. ACS Nano 13, 11263–11272 (2019). This article uses aerosol jet printing to fabricate 1D2D thin film transistors with a low-temperature approach.

    Article  CAS  Google Scholar 

  173. Joseph, A. M., Nagendra, B., Bhoje Gowd, E. & Surendran, K. P. Screen-printable electronic ink of ultrathin boron nitride nanosheets. ACS Omega 1, 1220–1228 (2016).

    Article  CAS  Google Scholar 

  174. Coleman, J. N. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331, 568–571 (2011). This article reports the efficient liquid exfoliation of 2D materials.

    Article  CAS  Google Scholar 

  175. Lin, Y. et al. Aqueous dispersions of few-layered and monolayered hexagonal boron nitride nanosheets from sonication-assisted hydrolysis: critical role of water. J. Phys. Chem. C 115, 2679–2685 (2011).

    Article  CAS  Google Scholar 

  176. Gupta, B. & Matte, H. S. S. R. Solution-processed layered hexagonal boron nitride dielectrics: a route toward fabrication of high performance flexible devices. ACS Appl. Electron. Mater. 1, 2130–2139 (2019).

    Article  CAS  Google Scholar 

  177. Zhu, X. et al. Hexagonal boron nitride-enhanced optically transparent polymer dielectric inks for printable electronics. Adv. Funct. Mater. 30, 2002339 (2020).

    Article  CAS  Google Scholar 

  178. Chandni, U., Watanabe, K., Taniguchi, T. & Eisenstein, J. P. Evidence for defect-mediated tunneling in hexagonal boron nitride-based junctions. Nano Lett. 15, 7329–7333 (2015).

    Article  CAS  Google Scholar 

  179. Laturia, A., Van de Put, M. L. & Vandenberghe, W. G. Dielectric properties of hexagonal boron nitride and transition metal dichalcogenides: from monolayer to bulk. npj 2D Mater. Appl. 2, 6 (2018).

    Article  Google Scholar 

  180. Nalawade, Y. et al. All-printed dielectric capacitors from high-permittivity, liquid-exfoliated BiOCl nanosheets. ACS Appl. Electron. Mater. 2, 3233–3241 (2020).

    Article  CAS  Google Scholar 

  181. Zhu, J. et al. Layer-by-layer assembled 2D montmorillonite dielectrics for solution-processed electronics. Adv. Mater. 28, 63–68 (2016).

    Article  CAS  Google Scholar 

  182. Osada, M. et al. Controlled polarizability of one-nanometer-thick oxide nanosheets for tailored, high-κ nanodielectrics. Adv. Funct. Mater. 21, 3482–3487 (2011).

    Article  CAS  Google Scholar 

  183. Osada, M. et al. Robust high-κ response in molecularly thin perovskite nanosheets. ACS Nano 4, 5225–5232 (2010).

    Article  CAS  Google Scholar 

  184. Osada, M. & Sasaki, T. A- and B-site modified perovskite nanosheets and their integrations into high-κ dielectric thin films. Int. J. Appl. Ceram. Technol. 9, 29–36 (2012).

    Article  CAS  Google Scholar 

  185. Li, B. W. et al. Atomic layer engineering of high-κ ferroelectricity in 2D perovskites. J. Am. Chem. Soc. 139, 10868–10874 (2017).

    Article  CAS  Google Scholar 

  186. Zeumault, A. & Subramanian, V. Mobility enhancement in solution-processed transparent conductive oxide TFTs due to electron donation from traps in high-k gate dielectrics. Adv. Funct. Mater. 26, 955–963 (2016).

    Article  CAS  Google Scholar 

  187. Wang, B. et al. High-k gate dielectrics for emerging flexible and stretchable electronics. Chem. Rev. 118, 5690–5754 (2018).

    Article  CAS  Google Scholar 

  188. Grancini, G. et al. One-year stable perovskite solar cells by 2D/3D interface engineering. Nat. Commun. 8, 15684 (2017).

    Article  CAS  Google Scholar 

  189. Sire, C. et al. Flexible gigahertz transistors derived from solution-based single-layer graphene. Nano Lett. 12, 1184–1188 (2012).

    Article  CAS  Google Scholar 

  190. Torrisi, F. et al. Inkjet-printed graphene electronics. ACS Nano 6, 2992–3006 (2012).

    Article  CAS  Google Scholar 

  191. Gao, X. et al. Thin-film transistors from electrochemically exfoliated In2Se3 nanosheets. Micromachines 13, 956 (2022).

    Article  Google Scholar 

  192. Liu, N. et al. Large-area atomically thin MoS2 nanosheets prepared using electrochemical exfoliation. ACS Nano 8, 6902–6910 (2014).

    Article  CAS  Google Scholar 

  193. Lee, K. et al. Electrical characteristics of molybdenum disulfide flakes produced by liquid exfoliation. Adv. Mater. 23, 4178–4182 (2011).

    Article  CAS  Google Scholar 

  194. Ren, X. et al. Gate-tuned insulator–metal transition in electrolyte-gated transistors based on tellurene. Nano Lett. 19, 4738–4744 (2019).

    Article  CAS  Google Scholar 

  195. Kang, J. et al. Solvent exfoliation of electronic-grade, two-dimensional black phosphorus. ACS Nano 9, 3596–3604 (2015).

    Article  CAS  Google Scholar 

  196. Yang, S. et al. A delamination strategy for thinly layered defect-free high-mobility black phosphorus flakes. Angew. Chem. Int. Ed. 57, 4677–4681 (2018).

    Article  CAS  Google Scholar 

  197. Nakano, H., Ito, K., Miura, A. & Majima, Y. Solution‐processed silicane field‐effect transistor: operation due to stacking defects on the channel. Adv. Funct. Mater. 30, 1908746 (2020).

    Article  CAS  Google Scholar 

  198. Wang, N. et al. Electrochemical delamination of ultralarge few-layer black phosphorus with a hydrogen-free intercalation mechanism. Adv. Mater. 33, 2005815 (2021).

    Article  CAS  Google Scholar 

  199. Biacchi, A. J. et al. Contact and noncontact measurement of electronic transport in individual 2d SnS colloidal semiconductor nanocrystals. ACS Nano 12, 10045–10060 (2018).

    Article  CAS  Google Scholar 

  200. Kang, J. et al. Solution-based processing of optoelectronically active indium selenide. Adv. Mater. 30, 1802990 (2018).

    Article  Google Scholar 

  201. Yang, S. et al. Topochemical synthesis of two-dimensional transition-metal phosphides using phosphorene templates. Angew. Chem. Int. Ed. 59, 465–470 (2020).

    Article  CAS  Google Scholar 

  202. Li, J., Naiini, M. M., Vaziri, S., Lemme, M. C. & Östling, M. Inkjet printing of MoS2. Adv. Funct. Mater. 24, 6524–6531 (2014). This article reports high-quality inkjet-printed MoS2 nanosheets for electronic and photonic devices.

    Article  CAS  Google Scholar 

  203. Zheng, J. et al. High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide. Nat. Commun. 5, 2995 (2014).

    Article  Google Scholar 

  204. Li, J. et al. Ultrafast electrochemical expansion of black phosphorus toward high-yield synthesis of few-layer phosphorene. Chem. Mater. 30, 2742–2749 (2018).

    Article  CAS  Google Scholar 

  205. Higgins, T. M. et al. Electrolyte‐gated n‐type transistors produced from aqueous inks of WS2 nanosheets. Adv. Funct. Mater. 29, 1804387 (2018).

    Article  Google Scholar 

  206. O’Suilleabhain, D. et al. Effect of the gate volume on the performance of printed nanosheet network-based transistors. ACS Appl. Electron. Mater. 2, 2164–2170 (2020).

    Article  Google Scholar 

  207. Chhowalla, M., Jena, D. & Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 1, 16052 (2016).

    Article  CAS  Google Scholar 

  208. Wells, R. A. et al. High performance semiconducting nanosheets via a scalable powder-based electrochemical exfoliation technique. ACS Nano 16, 5719–5730 (2022).

    Article  CAS  Google Scholar 

  209. Zeng, X., Hirwa, H., Metel, S., Nicolosi, V. & Wagner, V. Solution processed thin film transistor from liquid phase exfoliated MoS2 flakes. Solid. State Electron. 141, 58–64 (2018).

    Article  CAS  Google Scholar 

  210. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011).

    Article  CAS  Google Scholar 

  211. He, Q. et al. Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications. Small 8, 2994–2999 (2012).

    Article  CAS  Google Scholar 

  212. Ippolito, S. et al. Covalently interconnected transition metal dichalcogenide networks via defect engineering for high-performance electronic devices. Nat. Nanotechnol. 16, 592–598 (2021). This article reports a functionalization strategy able to enhance the conductivity on 2D material networks and tailor their properties according to the applications.

    Article  CAS  Google Scholar 

  213. Piatti, E. et al. Charge transport mechanisms in inkjet-printed thin-film transistors based on two-dimensional materials. Nat. Electron. 4, 893–905 (2021). This articles describes the charge transport mechanisms of inkjet-printed thin-film 2D material-based devices investigating the temperature, gate and magnetic-field dependencies of their electrical conductivity.

    Article  CAS  Google Scholar 

  214. Pu, J. et al. Highly flexible MoS2 thin-film transistors with ion gel dielectrics. Nano Lett. 12, 4013–4017 (2012).

    Article  CAS  Google Scholar 

  215. Carey, T. et al. High-mobility flexible transistors with low-temperature solution-processed tungsten dichalcogenides. ACS Nano 17, 2912–2922 (2023). This article reports a WSe2 field-effect transistor fabricated on PET characterized by a good stability of the electrical properties after the application of 1% tensile strain.

    Article  CAS  Google Scholar 

  216. Sedlak, P. et al. The effect of thermal treatment on ac/dc conductivity and current fluctuations of PVDF/NMP/[EMIM][TFSI] solid polymer electrolyte. Sci. Rep. 10, 21140 (2020).

    Article  CAS  Google Scholar 

  217. IRDS. International Roadmap for Devices and Systems — IRDS 2018. IEEE https://irds.ieee.org/editions/2018 (2018).

  218. You, X., Liu, N., Lee, C. J. & Pak, J. J. An electrochemical route to MoS2 nanosheets for device applications. Mater. Lett. 121, 31–35 (2014).

    Article  CAS  Google Scholar 

  219. Neilson, J., Avery, M. P. & Derby, B. Tiled monolayer films of 2D molybdenum disulfide nanoflakes assembled at liquid/liquid interfaces. ACS Appl. Mater. Interfaces 12, 25125–25134 (2020).

    Article  CAS  Google Scholar 

  220. Yang, Y. et al. Semiconductor interfacial carrier dynamics via photoinduced electric fields. Science 350, 1061–1065 (2015).

    Article  CAS  Google Scholar 

  221. Zou, T. et al. High‐performance solution‐processed 2D p‐type WSe2 transistors and circuits through molecular doping. Adv. Mater. 35, 2208934 (2023).

    Article  CAS  Google Scholar 

  222. Zou, T. & Noh, Y.-Y. Efficient P-doping on solution-processed WSe2 nano-flake thin-film transistors for flexible electronics. 2023 7th IEEE Electron Devices Technology & Manufacturing Conference (EDTM) vol. 1, 1–3 (IEEE, 2023).

  223. Ricciardulli, A. G., Wang, Y., Yang, S. & Samorì, P. Two-dimensional violet phosphorus: a p-type semiconductor for (opto)electronics. J. Am. Chem. Soc. 144, 3660–3666 (2022).

    Article  CAS  Google Scholar 

  224. Tang, B. et al. Wafer-scale solution-processed 2D material analog resistive memory array for memory-based computing. Nat. Commun. 13, 3037 (2022).

    Article  CAS  Google Scholar 

  225. Yan, Z. et al. Highly stretchable van der Waals thin films for adaptable and breathable electronic membranes. Science 375, 852–869 (2022). This article demonstrates the integration of ultra-conformable spin-coated MoS2-based devices in living systems.

    Article  CAS  Google Scholar 

  226. Ma, C. et al. Two-dimensional van der waals thin film transistors as active matrix for spatially resolved pressure sensing. Nano Res. 14, 3395–3401 (2021).

    Article  CAS  Google Scholar 

  227. Esfandiari, M., Kamaei, S., Rajabali, M. & Mohajerzadeh, S. High-performance large-area WS2-based transistors by a novel tin-oxide assisted liquid-phase exfoliation: doping adjustment by plasma treatment. 2D Mater. 8, 025013 (2021).

    Article  CAS  Google Scholar 

  228. Molina-Lopez, F. et al. Inkjet-printed stretchable and low voltage synaptic transistor array. Nat. Commun. 10, 2676 (2019).

    Article  CAS  Google Scholar 

  229. Paterson, A. F. et al. Recent progress in high-mobility organic transistors: a reality check. Adv. Mater. 30, 1801079 (2018).

    Article  Google Scholar 

  230. Lee, B. H. et al. Flexible organic transistors with controlled nanomorphology. Nano Lett. 16, 314–319 (2016).

    Article  CAS  Google Scholar 

  231. Liu, A. et al. High-performance inorganic metal halide perovskite transistors. Nat. Electron. 5, 78–83 (2022).

    Article  CAS  Google Scholar 

  232. Jana, S., Carlos, E., Panigrahi, S., Martins, R. & Fortunato, E. Toward stable solution-processed high-mobility P-type thin film transistors based on halide perovskites. ACS Nano 14, 14790–14797 (2020).

    Article  CAS  Google Scholar 

  233. Matsushima, T. et al. Solution-processed organic–inorganic perovskite field-effect transistors with high hole mobilities. Adv. Mater. 28, 10275–10281 (2016).

    Article  CAS  Google Scholar 

  234. Jing, X. et al. Engineering field effect transistors with 2D semiconducting channels: status and prospects. Adv. Funct. Mater. 30, 1901971 (2020).

    Article  CAS  Google Scholar 

  235. Cannavò, E., Marian, D., Marín, E. G., Iannaccone, G. & Fiori, G. Transport properties in partially overlapping van der Waals junctions through a multiscale investigation. Phys. Rev. B 104, 085433 (2021).

    Article  Google Scholar 

  236. Perucchini, M. et al. Electronic transport in 2D‐based printed FETs from a multiscale perspective. Adv. Electron. Mater. 8, 2100972 (2022).

    Article  CAS  Google Scholar 

  237. Schleder, G. R., Padilha, A. C. M., Acosta, C. M., Costa, M. & Fazzio, A. From DFT to machine learning: recent approaches to materials science — a review. J. Phys. Mater. 2, 032001 (2019).

    Article  CAS  Google Scholar 

  238. Zschieschang, U. & Klauk, H. Organic transistors on paper: a brief review. J. Mater. Chem. C 7, 5522–5533 (2019).

    Article  CAS  Google Scholar 

  239. Al-Dulaimi, N. et al. Sequential bottom-up and top-down processing for the synthesis of transition metal dichalcogenide nanosheets: the case of rhenium disulfide (ReS2). ChemComm 52, 7878–7881 (2016).

    CAS  Google Scholar 

  240. Peng, L., Ye, S., Song, J. & Qu, J. Solution-phase synthesis of few-layer hexagonal antimonene nanosheets via anisotropic growth. Angew. Chem. Int. Ed. 58, 9891–9896 (2019).

    Article  CAS  Google Scholar 

  241. Sahatiya, P. & Badhulika, S. Wireless, smart, human motion monitoring using solution processed fabrication of graphene-MoS2 transistors on paper. Adv. Electron. Mater. 4, 1700388 (2018).

    Article  Google Scholar 

  242. Veeralingam, S. & Badhulika, S. 2D-SnSe2 nanoflakes on paper with 1D-NiO gate insulator based MISFET as multifunctional NIR photo switch and flexible temperature sensor. Mater. Sci. Semicond. Process. 105, 104738 (2020).

    Article  CAS  Google Scholar 

  243. Tan, C. & Zhang, H. Wet-chemical synthesis and applications of non-layer structured two-dimensional nanomaterials. Nat. Commun. 6, 7873 (2015).

    Article  CAS  Google Scholar 

  244. Zarattini, M. et al. Synthesis of 2D anatase TiO2 with highly reactive facets by fluorine-free topochemical conversion of 1T-TiS2 nanosheets. J. Mater. Chem. A 10, 13884–13894 (2022).

    Article  CAS  Google Scholar 

  245. Zeng, M. & Zhang, Y. Colloidal nanoparticle inks for printing functional devices: emerging trends and future prospects. J. Mater. Chem. A 7, 23301–23336 (2019).

    Article  CAS  Google Scholar 

  246. Rajan, K. et al. Silver nanoparticle ink technology: state of the art. Nanotechnol. Sci. Appl. 9, 1–13 (2016).

    CAS  Google Scholar 

  247. Magdassi, S. The Chemistry of Inkjet Inks (World Scientific, 2009).

  248. Kamyshny, A. & Magdassi, S. Conductive nanomaterials for 2D and 3D printed flexible electronics. Chem. Soc. Rev. 48, 1712–1740 (2019).

    Article  CAS  Google Scholar 

  249. Xi, Y. et al. Fabrication of MoS2 thin film transistors via selective-area solution deposition methods. J. Mater. Chem. C 3, 3842–3847 (2015).

    Article  CAS  Google Scholar 

  250. Kwack, Y. J., Can, T. T. T. & Choi, W. S. Bottom-up water-based solution synthesis for a large MoS2 atomic layer for thin-film transistor applications. npj 2D Mater. Appl. 5, 84 (2021).

    Article  CAS  Google Scholar 

  251. Lim, Y. R. et al. Wafer-scale, homogeneous MoS2 layers on plastic substrates for flexible visible-light photodetectors. Adv. Mater. 28, 5025–5030 (2016).

    Article  CAS  Google Scholar 

  252. Gomes, F. O. V. et al. High mobility solution processed MoS2 thin film transistors. Solid State Electron. 158, 75–84 (2019).

    Article  CAS  Google Scholar 

  253. Robertson, J. et al. Rapid-throughput solution-based production of wafer-scale 2D MoS2. Appl. Phys. Lett. 114, 163102 (2019).

    Article  Google Scholar 

  254. Can, T. T. T., Kwack, Y.-J. & Choi, W.-S. Drop-on-demand patterning of MoS2 using electrohydrodynamic jet printing for thin-film transistors. Mater. Des. 199, 109408 (2021).

    Article  CAS  Google Scholar 

  255. Park, S. et al. Layer-selective synthesis of MoS2 and WS2 structures under ambient conditions for customized electronics. ACS Nano 14, 8485–8494 (2020).

    Article  CAS  Google Scholar 

  256. Abbas, O. A. et al. Solution-based synthesis of few-layer WS2 large area continuous films for electronic applications. Sci. Rep. 10, 1696 (2020).

    Article  CAS  Google Scholar 

  257. Can, T. T. T. & Choi, W.-S. Stacked printed MoS2 and Ag electrodes using electrohydrodynamic jet printing for thin-film transistors. Sci. Rep. 12, 22469 (2022).

    Article  CAS  Google Scholar 

  258. The Graphene Market Report 2021 (Future Markets, 2021).

  259. Harrington, E., Dhople, S., Wang, X., Choi, J. & Koester, S. Sustainability for semiconductors. Issues Sci. Technol. XXXIX, 42–43 (2022).

    Google Scholar 

  260. Munuera, J., Britnell, L., Santoro, C., Cuéllar-Franca, R. & Casiraghi, C. A review on sustainable production of graphene and related life cycle assessment. 2D Mater. 9, 012002 (2022).

    Article  CAS  Google Scholar 

  261. Waltl, M. et al. Perspective of 2D integrated electronic circuits: scientific pipe dream or disruptive technology? Adv. Mater. 34, e2201082 (2022).

    Article  Google Scholar 

  262. Gao, Y., Yu, L., Yeo, J. C. & Lim, C. T. Flexible hybrid sensors for health monitoring: materials and mechanisms to render wearability. Adv. Mater. 32, 1902133 (2020).

    Article  CAS  Google Scholar 

  263. Iqbal, S. M. A., Mahgoub, I., Du, E., Leavitt, M. A. & Asghar, W. Advances in healthcare wearable devices. npj Flex. Electron. 5, 9 (2021).

    Article  Google Scholar 

  264. Pimpolari, L. et al. 1/f noise characterization of bilayer MoS2 field-effect transistors on paper with inkjet-printed contacts and hbn dielectrics. Adv. Electron. Mater. 7, 2100283 (2021).

    Article  CAS  Google Scholar 

  265. Sarycheva, A. et al. 2D titanium carbide (MXene) for wireless communication. Sci. Adv. 4, eaau0920 (2018).

    Article  Google Scholar 

  266. Scheideler, W. J., McPhail, M. W., Kumar, R., Smith, J. & Subramanian, V. Scalable, high-performance printed InOx transistors enabled by ultraviolet-annealed printed high-k AlOx gate dielectrics. ACS Appl. Mater. Interfaces 10, 37277–37286 (2018).

    Article  CAS  Google Scholar 

  267. Li, X. et al. Highly conducting graphene sheets and Langmuir–Blodgett films. Nat. Nanotechnol. 3, 538–542 (2008).

    Article  CAS  Google Scholar 

  268. Zhang, Y. et al. Langmuir films and uniform, large area, transparent coatings of chemically exfoliated MoS2 single layers. J. Mater. Chem. C 5, 11275–11287 (2017).

    Article  CAS  Google Scholar 

  269. Petukhov, D. I. et al. Spontaneous MXene monolayer assembly at the liquid–air interface. Nanoscale 11, 9980–9986 (2019).

    Article  CAS  Google Scholar 

  270. Yim, H. et al. Defect-controlled, scalable layer-by-layer assembly of high-k perovskite oxide nanosheets for all two-dimensional nanoelectronics. Chem. Mater. 33, 8685–8692 (2021).

    Article  CAS  Google Scholar 

  271. Li, H. et al. Layer-by-layer assembly and UV photoreduction of graphene–polyoxometalate composite films for electronics. J. Am. Chem. Soc. 133, 9423–9429 (2011).

    Article  CAS  Google Scholar 

  272. Hwang, H. et al. Highly tunable charge transport in layer-by-layer assembled graphene transistors. ACS Nano 6, 2432–2440 (2012).

    Article  CAS  Google Scholar 

  273. Joo, P. et al. Functional polyelectrolyte nanospaced MoS2 multilayers for enhanced photoluminescence. Nano Lett. 14, 6456–6462 (2014).

    Article  CAS  Google Scholar 

  274. Echols, I. J. et al. Conformal layer-by-layer assembly of Ti3C2Tz MXene-only thin films for optoelectronics and energy storage. Chem. Mater. 34, 4884–4895 (2022).

    Article  CAS  Google Scholar 

  275. Cai, X. et al. Efficient photoinduced charge accumulation in reduced graphene oxide coupled with titania nanosheets to show highly enhanced and persistent conductance. ACS Appl. Mater. Interfaces 7, 11436–11443 (2015).

    Article  CAS  Google Scholar 

  276. Eda, G., Fanchini, G. & Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 3, 270–274 (2008). This article reports the first demonstration of large-area reduced graphene oxide nanosheets.

    Article  CAS  Google Scholar 

  277. Wang, Y. et al. Engineering 3D ion transport channels for flexible MXene films with superior capacitive performance. Adv. Funct. Mater. 29, 1900326 (2019).

    Article  Google Scholar 

  278. Lipatov, A. et al. Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Adv. Electron. Mater. 2, 1600255 (2016).

    Article  Google Scholar 

  279. Wu, Z. S., Parvez, K., Feng, X. & Müllen, K. Graphene-based in-plane micro-supercapacitors with high power and energy densities. Nat. Commun. 4, 2487 (2013).

    Article  Google Scholar 

  280. Lin, Z. et al. Solution processable colloidal nanoplates as building blocks for high-performance electronic thin films on flexible substrates. Nano Lett. 14, 6547–6553 (2014).

    Article  CAS  Google Scholar 

  281. Matsuba, K. et al. Neat monolayer tiling of molecularly thin two-dimensional materials in 1 min. Sci. Adv. 3, e1700414 (2017).

    Article  Google Scholar 

  282. Liu, R. et al. All-carbon-based field effect transistors fabricated by aerosol jet printing on flexible substrates. J. Micromech. Microeng. 23, 065027 (2013).

    Article  CAS  Google Scholar 

  283. Rowley-Neale, S. J., Smith, G. C. & Banks, C. E. Mass-producible 2D-MoS2-impregnated screen-printed electrodes that demonstrate efficient electrocatalysis toward the oxygen reduction reaction. ACS Appl. Mater. Interfaces 9, 22539–22548 (2017).

    Article  CAS  Google Scholar 

  284. Secor, E. B. et al. Gravure printing of graphene for large-area flexible electronics. Adv. Mater. 26, 4533–4538 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the ERC PEP2D (Contract No. 770047) and the Graphene Flagship Core 3 (Contract No. 881603). This work was partially supported by the Italian Ministry of Education and Research (MIUR) in the framework of the FoReLab project (Departments of Excellence).

Author information

Authors and Affiliations

Authors

Contributions

S.C., G.C., K.P. and L.P. researched data for the article. S.C. and F.P. contributed substantially to discussion of the content. All authors wrote the article. S.C., F.P., C.C. and G.F. reviewed and edited the manuscript before submission.

Corresponding authors

Correspondence to Cinzia Casiraghi or Gianluca Fiori.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Mario Lanza and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Conti, S., Calabrese, G., Parvez, K. et al. Printed transistors made of 2D material-based inks. Nat Rev Mater 8, 651–667 (2023). https://doi.org/10.1038/s41578-023-00585-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-023-00585-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing