Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Electrified water treatment: fundamentals and roles of electrode materials

Abstract

Electrified processes are a versatile way of removing a wide range of contaminants from water, especially those that are difficult to treat using conventional methods. Electrified processes do not need treatment chemicals and use renewable energy more efficiently. In this Review, we present the fundamental principles of several electrified water treatment processes, discuss the crucial role of electrode materials in the interfacial processes that drive contaminant transport and transformation, and comprehensively review the state of knowledge in electrode material development. Further, we analyse the advantages and limitations of current and emerging electrode materials and discuss strategies for developing advanced electrode materials. Finally, we outline a path towards next-generation water and wastewater treatment systems based on electrified processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Principles of the main electrified processes for water and wastewater treatment.
Fig. 2: Common organic contaminants and anode catalytic materials.
Fig. 3: Common ERP reactions and typical materials utilized for ERPs in water treatment.
Fig. 4: Typical processes, materials and performance for electrosorption of ions.
Fig. 5: Rational electrode design from atomic to device scale.

Similar content being viewed by others

References

  1. National Academy of Engineering. Greatest engineering achievements of the 20th century. National Academy of Sciences http://www.greatachievements.org/ (2022).

  2. Werber, J. R., Osuji, C. O. & Elimelech, M. Materials for next-generation desalination and water purification membranes. Nat. Rev. Mater. https://doi.org/10.1038/natrevmats.2016.18 (2016).

    Article  Google Scholar 

  3. Radjenovic, J. & Sedlak, D. L. Challenges and opportunities for electrochemical processes as next-generation technologies for the treatment of contaminated water. Environ. Sci. Technol. 49, 11292–11302 (2015).

    Article  CAS  Google Scholar 

  4. Sires, I., Brillas, E., Oturan, M. A., Rodrigo, M. A. & Panizza, M. Electrochemical advanced oxidation processes: today and tomorrow. a review. Environ. Sci. Pollut. Res. 21, 8336–8367 (2014).

    Article  CAS  Google Scholar 

  5. Vecitis, C. D., Schnoor, M. H., Rahaman, M. S., Schiffman, J. D. & Elimelech, M. Electrochemical multiwalled carbon nanotube filter for viral and bacterial removal and inactivation. Environ. Sci. Technol. 45, 3672–3679 (2011).

    Article  CAS  Google Scholar 

  6. Mollah, M. Y. A., Schennach, R., Parga, J. R. & Cocke, D. L. Electrocoagulation (EC) — science and applications. J. Hazard. Mater. 84, 29–41 (2001).

    Article  CAS  Google Scholar 

  7. Moreira, F. C., Boaventura, R. A. R., Brillas, E. & Vilar, V. J. P. Electrochemical advanced oxidation processes: a review on their application to synthetic and real wastewaters. Appl. Catal. B 202, 217–261 (2017).

    Article  CAS  Google Scholar 

  8. Vecitis, C. D., Gao, G. & Liu, H. Electrochemical carbon nanotube filter for adsorption, desorption, and oxidation of aqueous dyes and anions. J. Phys. Chem. C 115, 3621–3629 (2011).

    Article  CAS  Google Scholar 

  9. Martinez-Huitle, C. A. & Ferro, S. Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chem. Soc. Rev. 35, 1324–1340 (2006).

    Article  CAS  Google Scholar 

  10. Su, X. et al. Electrochemically-mediated selective capture of heavy metal chromium and arsenic oxyanions from water. Nat. Commun. 9, 4701 (2018).

    Article  Google Scholar 

  11. Suss, M. E. et al. Water desalination via capacitive deionization: what is it and what can we expect from it? Energy Environ. Sci. 8, 2296–2319 (2015).

    Article  CAS  Google Scholar 

  12. Gamaethiralalage, J. G. et al. Recent advances in ion selectivity with capacitive deionization. Energy Environ. Sci. 14, 1095–1120 (2021).

    Article  CAS  Google Scholar 

  13. Strathmann, H. Electrodialysis, a mature technology with a multitude of new applications. Desalination 264, 268–288 (2010).

    Article  CAS  Google Scholar 

  14. Chaplin, B. P. The prospect of electrochemical technologies advancing worldwide water treatment. Acc. Chem. Res. 52, 596–604 (2019).

    Article  CAS  Google Scholar 

  15. Garcia-Segura, S., Ocon, J. D. & Chong, M. N. Electrochemical oxidation remediation of real wastewater effluents — a review. Process. Saf. Environ. Prot. 113, 48–67 (2018).

    Article  CAS  Google Scholar 

  16. Bhattacharyya, B. in Electrochemical Micromachining For Nanofabrication, MEMS And Nanotechnology (ed. Bhattacharyya, B.) 25–52 (William Andrew Publishing, 2015).

  17. Radjenovic, J., Duinslaeger, N., Avval, S. S. & Chaplin, B. P. Facing the challenge of poly- and perfluoroalkyl substances in water: is electrochemical oxidation the answer. Environ. Sci. Technol. 54, 14815–14829 (2020).

    Article  CAS  Google Scholar 

  18. Armstrong, D. A. et al. Standard electrode potentials involving radicals in aqueous solution: inorganic radicals (IUPAC Technical Report). Pure Appl. Chem. 87, 1139–1150 (2015).

    Article  CAS  Google Scholar 

  19. Lin, Q. & Deng, Y. Is sulfate radical a ROS? Environ. Sci. Technol. 55, 15010–15012 (2021).

    Article  CAS  Google Scholar 

  20. Gozmen, B., Oturan, M. A., Oturan, N. & Erbatur, O. Indirect electrochemical treatment of bisphenol a in water via electrochemically generated Fenton’s reagent. Environ. Sci. Technol. 37, 3716–3723 (2003).

    Article  Google Scholar 

  21. Garcia-Segura, S., Lanzarini-Lopes, M., Hristovski, K. & Westerhoff, P. Electrocatalytic reduction of nitrate: fundamentals to full-scale water treatment applications. Appl. Catal. B 236, 546–568 (2018).

    Article  CAS  Google Scholar 

  22. Garcia-Segura, S. et al. Opportunities for nanotechnology to enhance electrochemical treatment of pollutants in potable water and industrial wastewater — a perspective. Environ. Sci. Nano. 7, 2178–2194 (2020).

    Article  CAS  Google Scholar 

  23. Mousset, E. & Doudrick, K. A review of electrochemical reduction processes to treat oxidized contaminants in water. Curr. Opin. Electrochem. 22, 221–227 (2020).

    Article  CAS  Google Scholar 

  24. Yang, Q. et al. Catalytic and electrocatalytic reduction of perchlorate in water — a review. Chem. Eng. J. 306, 1081–1091 (2016).

    Article  CAS  Google Scholar 

  25. van Langevelde, P. H., Katsounaros, I. & Koper, M. T. M. Electrocatalytic nitrate reduction for sustainable ammonia production. Joule 5, 290–294 (2021).

    Article  Google Scholar 

  26. Xia, C., Xia, Y., Zhu, P., Fan, L. & Wang, H. Direct electrosynthesis of pure aqueous H2O2 solutions up to 20% by weight using a solid electrolyte. Science 366, 226–231 (2019).

    Article  CAS  Google Scholar 

  27. Xu, J. et al. Organic wastewater treatment by a single-atom catalyst and electrolytically produced H2O2. Nat. Sustain. 4, 233–241 (2021).

    Article  Google Scholar 

  28. Wang, Y., Wang, C., Li, M., Yu, Y. & Zhang, B. Nitrate electroreduction: mechanism insight, in situ characterization, performance evaluation, and challenges. Chem. Soc. Rev. 50, 6720–6733 (2021).

    Article  CAS  Google Scholar 

  29. Jung, W. & Hwang, Y. J. Material strategies in the electrochemical nitrate reduction reaction to ammonia production. Mater. Chem. Front. 5, 6803–6823 (2021).

    Article  CAS  Google Scholar 

  30. Mao, R., Zhao, X., Lan, H., Liu, H. & Qu, J. Graphene-modified Pd/C cathode and Pd/GAC particles for enhanced electrocatalytic removal of bromate in a continuous three-dimensional electrochemical reactor. Water Res. 77, 1–12 (2015).

    Article  CAS  Google Scholar 

  31. Ujvári, M. & Láng, G. G. in Encyclopedia of Interfacial Chemistry (ed. Wandelt, K.) 95–106 (Elsevier, 2018).

  32. Liu, T. et al. Electrocatalytic dechlorination of halogenated antibiotics via synergistic effect of chlorine–cobalt bond and atomic H. J. Hazard. Mater. 358, 294–301 (2018).

    Article  CAS  Google Scholar 

  33. Fu, F. & Wang, Q. Removal of heavy metal ions from wastewaters: a review. J. Environ. Manag. 92, 407–418 (2011).

    Article  CAS  Google Scholar 

  34. Maarof, H. I., Daud, W. M. A. W. & Aroua, M. K. Recent trends in removal and recovery of heavy metals from wastewater by electrochemical technologies. Rev. Chem. Eng. 33, 359–386 (2017).

    Article  CAS  Google Scholar 

  35. Hunsom, M., Pruksathorn, K., Damronglerd, S., Vergnes, H. & Duverneuil, P. Electrochemical treatment of heavy metals (Cu2+, Cr6+, Ni2+) from industrial effluent and modeling of copper reduction. Water Res. 39, 610–616 (2005).

    Article  CAS  Google Scholar 

  36. Dabo, P. et al. Electrocatalytic dehydrochlorination of pentachlorophenol to phenol or cyclohexanol. Environ. Sci. Technol. 34, 1265–1268 (2000).

    Article  CAS  Google Scholar 

  37. Cheng, I. F., Fernando, Q. & Korte, N. Electrochemical dechlorination of 4-chlorophenol to phenol. Environ. Sci. Technol. 31, 1074–1078 (1997).

    Article  CAS  Google Scholar 

  38. Bunce, N. J., Merica, S. G. & Lipkowski, J. Prospects for the use of electrochemical methods for the destruction of aromatic organochlorine wastes. Chemosphere 35, 2719–2726 (1997).

    Article  CAS  Google Scholar 

  39. Connors, T. F. & Rusling, J. F. Removal of chloride from 4-chlorobiphenyl and 4,4’-dichlorobiphenyl by electrocatalytic reduction. J. Electrochem. Soc. 130, 1120–1121 (1983).

    Article  CAS  Google Scholar 

  40. Floner, D., Laglaine, L. & Moinet, C. Indirect electrolysis involving an ex-cell two-phase process. Reduction of nitrobenzenes with a titanium complex as mediator. Electrochim. Acta 42, 525–529 (1997).

    Article  CAS  Google Scholar 

  41. Zaghdoudi, M. et al. Direct and indirect electrochemical reduction prior to a biological treatment for dimetridazole removal. J. Hazard. Mater. 335, 10–17 (2017).

    Article  CAS  Google Scholar 

  42. Yang, S. et al. Toward the decentralized electrochemical production of H2O2: a focus on the catalysis. ACS Catal. 8, 4064–4081 (2018).

    Article  CAS  Google Scholar 

  43. Perry, S. C. et al. Electrochemical synthesis of hydrogen peroxide from water and oxygen. Nat. Rev. Chem. 3, 442–458 (2019).

    Article  CAS  Google Scholar 

  44. Zhang, X., Xia, Y., Xia, C. & Wang, H. T. Insights into practical-scale electrochemical H2O2 synthesis. Trends Chem. 2, 942–953 (2020).

    Article  Google Scholar 

  45. Brillas, E., Sires, I. & Oturan, M. A. Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chem. Rev. 109, 6570–6631 (2009).

    Article  CAS  Google Scholar 

  46. Gabelich, C. J., Tran, T. D. & Suffet, I. H. Electrosorption of inorganic salts from aqueous solution using carbon aerogels. Environ. Sci. Technol. 36, 3010–3019 (2002).

    Article  CAS  Google Scholar 

  47. Srimuk, P., Su, X., Yoon, J., Aurbach, D. & Presser, V. Charge-transfer materials for electrochemical water desalination, ion separation and the recovery of elements. Nat. Rev. Mater. 5, 517–538 (2020).

    Article  CAS  Google Scholar 

  48. Porada, S., Zhao, R., van der Wal, A., Presser, V. & Biesheuvel, P. M. Review on the science and technology of water desalination by capacitive deionization. Prog. Mater. Sci. 58, 1388–1442 (2013).

    Article  CAS  Google Scholar 

  49. Oren, Y. Capacitive deionization (CDI) for desalination and water treatment — past, present and future (a review). Desalination 228, 10–29 (2008).

    Article  CAS  Google Scholar 

  50. Porada, S. et al. Direct prediction of the desalination performance of porous carbon electrodes for capacitive deionization. Energy Environ. Sci. 6, 3700–3712 (2013).

    Article  CAS  Google Scholar 

  51. Zhang, X., Zuo, K., Zhang, X., Zhang, C. & Liang, P. Selective ion separation by capacitive deionization (CDI) based technologies: a state-of-the-art review. Environ. Sci. Water Res. Technol. https://doi.org/10.1039/c9ew00835g (2020).

    Article  Google Scholar 

  52. Zuo, K. et al. Selective membranes in water and wastewater treatment: role of advanced materials. Mater. Today https://doi.org/10.1016/j.mattod.2021.06.013 (2021).

    Article  Google Scholar 

  53. Zuo, K. et al. A hybrid metal–organic framework–reduced graphene oxide nanomaterial for selective removal of chromate from water in an electrochemical process. Environ. Sci. Technol. 54, 13322–13332 (2020).

    Article  CAS  Google Scholar 

  54. Zuo, K. C. et al. Novel composite electrodes for selective removal of sulfate by the capacitive deionization process. Environ. Sci. Technol. 52, 9486–9494 (2018).

    Article  CAS  Google Scholar 

  55. Kim, J. et al. Removal of calcium ions from water by selective electrosorption using target-ion specific nanocomposite electrode. Water Res. 160, 445–453 (2019).

    Article  CAS  Google Scholar 

  56. McLaughlin, M. H. S., Corcoran, E., Pakpour-Tabrizi, A. C., de Faria, D. C. & Jackman, R. B. Influence of temperature on the electrochemical window of boron doped diamond: a comparison of commercially available electrodes. Sci. Rep. 10, 15707 (2020).

    Article  CAS  Google Scholar 

  57. Polcari, D., Dauphin-Ducharme, P. & Mauzeroll, J. Scanning electrochemical microscopy: a comprehensive review of experimental parameters from 1989 to 2015. Chem. Rev. 116, 13234–13278 (2016).

    Article  CAS  Google Scholar 

  58. Sánchez-Sánchez, C. M., Rodríguez-López, J. & Bard, A. J. Scanning electrochemical microscopy. 60. Quantitative calibration of the SECM substrate generation/tip collection mode and its use for the study of the oxygen reduction mechanism. Anal. Chem. 80, 3254–3260 (2008).

    Article  Google Scholar 

  59. Sánchez-Sánchez, C. M. et al. Imaging structure sensitive catalysis on different shape-controlled platinum nanoparticles. J. Am. Chem. Soc. 132, 5622–5624 (2010).

    Article  Google Scholar 

  60. Cuesta, A. ATR-SEIRAS for time-resolved studies of electrode–electrolyte interfaces. Curr. Opin. Electrochem. 35, 101041 (2022).

    Article  CAS  Google Scholar 

  61. Li, Y. et al. Operando infrared spectroscopic insights into the dynamic evolution of liquid–solid (photo)electrochemical interfaces. Nano Energy 77, 105121 (2020).

    Article  CAS  Google Scholar 

  62. Liu, S., D’Amario, L., Jiang, S. & Dau, H. Selected applications of operando Raman spectroscopy in electrocatalysis research. Curr. Opin. Electrochem. 35, 101042 (2022).

    Article  CAS  Google Scholar 

  63. Chen, M. et al. In-situ/operando Raman techniques for in-depth understanding on electrocatalysis. Chem. Eng. J. 461, 141939 (2023).

    Article  CAS  Google Scholar 

  64. Hetterscheid, D. G. H. In operando studies on the electrochemical oxidation of water mediated by molecular catalysts. Chem. Commun. 53, 10622–10631 (2017).

    Article  CAS  Google Scholar 

  65. Mesa, C. A., Pastor, E. & Francàs, L. UV–vis operando spectroelectrochemistry for (photo)electrocatalysis: principles and guidelines. Curr. Opin. Electrochem. 35, 101098 (2022).

    Article  CAS  Google Scholar 

  66. Mostafa, E., Reinsberg, P., Garcia-Segura, S. & Baltruschat, H. Chlorine species evolution during electrochlorination on boron-doped diamond anodes: in-situ electrogeneration of Cl2, Cl2O and ClO2. Electrochim. Acta 281, 831–840 (2018).

    Article  CAS  Google Scholar 

  67. Jeon, T. H., Koo, M. S., Kim, H. & Choi, W. Dual-functional photocatalytic and photoelectrocatalytic systems for energy- and resource-recovering water treatment. ACS Catal. 8, 11542–11563 (2018).

    Article  CAS  Google Scholar 

  68. Salazar-Banda, G. R., Santos, G. D. S., Gonzaga, I. M. D., Doria, A. R. & Eguiluz, K. I. B. Developments in electrode materials for wastewater treatment. Curr. Opin. Electrochem. 26, 100663 (2021).

    Article  CAS  Google Scholar 

  69. Brillas, E. Recent development of electrochemical advanced oxidation of herbicides. A review on its application to wastewater treatment and soil remediation. J. Clean. Prod. https://doi.org/10.1016/j.jclepro.2021.125841 (2021).

    Article  Google Scholar 

  70. Reid, L. M., Li, T., Cao, Y. & Berlinguette, C. P. Organic chemistry at anodes and photoanodes. Sustain. Energ. Fuels 2, 1905–1927 (2018).

    Article  CAS  Google Scholar 

  71. Heard, D. M. & Lennox, A. J. J. Electrode materials in modern organic electrochemistry. Angew. Chem. 59, 18866–18884 (2020).

    Article  CAS  Google Scholar 

  72. Scheuermann, A. G., Prange, J. D., Gunji, M., Chidsey, C. E. D. & McIntyre, P. C. Effects of catalyst material and atomic layer deposited TiO2 oxide thickness on the water oxidation performance of metal–insulator–silicon anodes. Energy Environ. Sci. 6, 2487–2496 (2013).

    Article  CAS  Google Scholar 

  73. Rüetschi, P. & Cahan, B. D. Electrochemical properties of PbO2 and the anodic corrosion of lead and lead alloys. J. Electrochem. Soc. 105, 369 (1958).

    Article  Google Scholar 

  74. Kötz, R., Stucki, S. & Carcer, B. Electrochemical waste water treatment using high overvoltage anodes. Part I: Physical and electrochemical properties of SnO2 anodes. J. Appl. Electrochem. 21, 14–20 (1991).

    Article  Google Scholar 

  75. Comninellis, C. Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste-water treatment. Electrochim. Acta 39, 1857–1862 (1994).

    Article  CAS  Google Scholar 

  76. Ristein, J. Surface transfer doping of semiconductors. Science 313, 1057–1058 (2006).

    Article  CAS  Google Scholar 

  77. Xu, J. et al. Peer reviewed: boron-doped diamond thin-film electrodes. Anal. Chem. 69, 591A–597A (1997).

    Article  CAS  Google Scholar 

  78. Muzyka, K. et al. Boron-doped diamond: current progress and challenges in view of electroanalytical applications. Anal. Methods 11, 397–414 (2019).

    Article  CAS  Google Scholar 

  79. Alsac, A. A., Yildiz, A., Serin, T. & Serin, N. Improved conductivity of Sb-doped SnO2 thin films. J. Appl. Phys. 113, 063701 (2013).

    Article  Google Scholar 

  80. Kong, J., Shi, S., Kong, L., Zhu, X. & Ni, J. Preparation and characterization of PbO2 electrodes doped with different rare earth oxides. Electrochim. Acta 53, 2048–2054 (2007).

    Article  CAS  Google Scholar 

  81. You, S. et al. Monolithic porous Magnéli-phase Ti4O7 for electro-oxidation treatment of industrial wastewater. Electrochim. Acta 214, 326–335 (2016).

    Article  CAS  Google Scholar 

  82. Kesselman, J. M., Weres, O., Lewis, N. S. & Hoffmann, M. R. Electrochemical production of hydroxyl radical at polycrystalline Nb-doped TiO2 electrodes and estimation of the partitioning between hydroxyl radical and direct hole oxidation pathways. J. Phys. Chem. B 101, 2637–2643 (1997).

    Article  CAS  Google Scholar 

  83. Comninellis, C. et al. Advanced oxidation processes for water treatment: advances and trends for R&D. J. Chem. Technol. Biotechnol. 83, 769–776 (2008).

    Article  CAS  Google Scholar 

  84. Panizza, M. & Cerisola, G. Direct and mediated anodic oxidation of organic pollutants. Chem. Rev. 109, 6541–6569 (2009).

    Article  CAS  Google Scholar 

  85. Santos, G. O. S., Eguiluz, K. I. B., Salazar-Banda, G. R., Sáez, C. & Rodrigo, M. A. Understanding the electrolytic generation of sulfate and chlorine oxidative species with different boron-doped diamond anodes. J. Electroanal. Chem. 857, 113756 (2020).

    Article  CAS  Google Scholar 

  86. Bergmann, M. E. H. & Rollin, J. Product and by-product formation in laboratory studies on disinfection electrolysis of water using boron-doped diamond anodes. Catal. Today 124, 198–203 (2007).

    Article  CAS  Google Scholar 

  87. Jasper, J. T., Yang, Y. & Hoffmann, M. R. Toxic byproduct formation during electrochemical treatment of latrine wastewater. Environ. Sci. Technol. 51, 7111–7119 (2017).

    Article  CAS  Google Scholar 

  88. Tanaka, T. et al. Electrochemical disinfection of fish pathogens in seawater without the production of a lethal concentration of chlorine using a flow reactor. J. Biosci. Bioeng. 116, 480–484 (2013).

    Article  CAS  Google Scholar 

  89. Ghernaout, D., Naceur, M. W. & Aouabed, A. On the dependence of chlorine by-products generated species formation of the electrode material and applied charge during electrochemical water treatment. Desalination 270, 9–22 (2011).

    Article  CAS  Google Scholar 

  90. Wang, Y. T., Zhou, W., Jia, R. R., Yu, Y. F. & Zhang, B. Unveiling the activity origin of a copper-based electrocatalyst for selective nitrate reduction to ammonia. Angew. Chem. Int. Ed. 59, 5350–5354 (2020).

    Article  CAS  Google Scholar 

  91. Chen, G. F. et al. Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper-molecular solid catalyst. Nat. Energy 5, 605–613 (2020).

    Article  CAS  Google Scholar 

  92. Chen, F. Y. et al. Efficient conversion of low-concentration nitrate sources into ammonia on a Ru-dispersed Cu nanowire electrocatalyst. Nat. Nanotechnol. 17, 759–767 (2022).

    Article  CAS  Google Scholar 

  93. Wang, Y. H. et al. Enhanced nitrate-to-ammonia activity on copper-nickel alloys via tuning of intermediate adsorption. J. Am. Chem. Soc. 142, 5702–5708 (2020).

    Article  CAS  Google Scholar 

  94. Hao, R. et al. Pollution to solution: a universal electrocatalyst for reduction of all NOx-based species to NH3. Chem. Catal. 2, 622–638 (2022).

    Article  CAS  Google Scholar 

  95. Jeon, T. H. et al. Cobalt-copper nanoparticles on three-dimensional substrate for efficient ammonia synthesis via electrocatalytic nitrate reduction. J. Phys. Chem. C 126, 6982–6989 (2022).

    Article  CAS  Google Scholar 

  96. Hu, Q. et al. Reaction intermediate-mediated electrocatalyst synthesis favors specified facet and defect exposure for efficient nitrate–ammonia conversion. Energy Environ. Sci. 14, 4989–4997 (2021).

    Article  CAS  Google Scholar 

  97. Daiyan, R. et al. Nitrate reduction to ammonium: from CuO defect engineering to waste NOx-to-NH3 economic feasibility. Energy Environ. Sci. 14, 3588–3598 (2021).

    Article  CAS  Google Scholar 

  98. McEnaney, J. M. et al. Electrolyte engineering for efficient electrochemical nitrate reduction to ammonia on a titanium electrode. ACS Sustain. Chem. Eng. 8, 2672–2681 (2020).

    Article  CAS  Google Scholar 

  99. Jia, R. R. et al. Boosting selective nitrate electroreduction to ammonium by constructing oxygen vacancies in TiO2. ACS Catal. 10, 3533–3540 (2020).

    Article  CAS  Google Scholar 

  100. Li, J. C. et al. Atomically dispersed Fe atoms anchored on S and N-codoped carbon for efficient electrochemical denitrification. Proc. Natl Acad. Sci. USA 118, e2105628118 (2021).

    Article  CAS  Google Scholar 

  101. Li, P. P., Jin, Z. Y., Fang, Z. W. & Yu, G. H. A single-site iron catalyst with preoccupied active centers that achieves selective ammonia electrosynthesis from nitrate. Energy Environ. Sci. 14, 3522–3531 (2021).

    Article  CAS  Google Scholar 

  102. Wu, Z. Y. et al. Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst. Nat. Commun. 12, 2870 (2021).

    Article  CAS  Google Scholar 

  103. Rusanova, M. Y., Polášková, P., Muzikař, M. & Fawcett, W. R. Electrochemical reduction of perchlorate ions on platinum-activated nickel. Electrochim. Acta 51, 3097–3101 (2006).

    Article  CAS  Google Scholar 

  104. Láng, G. G., Sas, N. S., Ujvári, M. & Horányi, G. The kinetics of the electrochemical reduction of perchlorate ions on rhodium. Electrochim. Acta 53, 7436–7444 (2008).

    Article  Google Scholar 

  105. Hassan, H. H. Perchlorate and oxygen reduction during Zn corrosion in a neutral medium. Electrochim. Acta 51, 5966–5972 (2006).

    Article  CAS  Google Scholar 

  106. Wang, D. M., Huang, C. P., Chen, J. G., Lin, H. Y. & Shah, S. I. Reduction of perchlorate in dilute aqueous solutions over monometallic nano-catalysts: exemplified by tin. Sep. Purif. Technol. 58, 129–137 (2007).

    Article  CAS  Google Scholar 

  107. Wang, P. Y., Chen, C. L. & Huang, C. P. Catalytic electrochemical reduction of perchlorate over Rh-Cu/SS and Rh-Ru/SS electrodes in dilute aqueous solution. J. Environ. Eng. https://doi.org/10.1061/(Asce)Ee.1943-7870.0001545 (2019).

    Article  Google Scholar 

  108. Lan, H. C. et al. Enhanced electroreductive removal of bromate by a supported Pd-In bimetallic catalyst: kinetics and mechanism investigation. Environ. Sci. Technol. 50, 11872–11878 (2016).

    Article  CAS  Google Scholar 

  109. Yao, F. et al. Electrochemical reduction of bromate using noble metal-free nanoscale zero-valent iron immobilized activated carbon fiber electrode. Chem. Eng. J. 389, 123588 (2020).

    Article  CAS  Google Scholar 

  110. Traube, M. Electrolytic preparation of hydrogen peroxide at the cathode. Ber. Kgl. Akad. Wiss. Berl. 1041, 185 (1887).

    Google Scholar 

  111. Siahrostami, S. et al. Enabling direct H2O2 production through rational electrocatalyst design. Nat. Mater. 12, 1137–1143 (2013).

    Article  CAS  Google Scholar 

  112. Verdaguer-Casadevall, A. et al. Trends in the electrochemical synthesis of H2O2: enhancing activity and selectivity by electrocatalytic site engineering. Nano Lett. 14, 1603–1608 (2014).

    Article  CAS  Google Scholar 

  113. Jirkovsky, J. S. et al. Single atom hot-spots at Au-Pd nanoalloys for electrocatalytic H2O2 production. J. Am. Chem. Soc. 133, 19432–19441 (2011).

    Article  CAS  Google Scholar 

  114. Zheng, Z., Ng, Y. H., Wang, D. W. & Amal, R. Epitaxial growth of Au–Pt–Ni nanorods for direct high selectivity H2O2 production. Adv. Mater. 28, 9949–9955 (2016).

    Article  CAS  Google Scholar 

  115. Zhao, Z. H., Li, M. T., Zhang, L. P., Dai, L. M. & Xia, Z. H. Design principles for heteroatom-doped carbon nanomaterials as highly efficient catalysts for fuel cells and metal-air batteries. Adv. Mater. 27, 6834–6840 (2015).

    Article  CAS  Google Scholar 

  116. Yang, S., Kim, J., Tak, Y. J., Soon, A. & Lee, H. Single-atom catalyst of platinum supported on titanium nitride for selective electrochemical reactions. Angew. Chem. Int. Ed. 55, 2058–2062 (2016).

    Article  CAS  Google Scholar 

  117. Shen, R. et al. High-concentration single atomic Pt sites on hollow CuSx for selective O2 reduction to H2O2 in acid solution. Chem 5, 2099–2110 (2019).

    Article  CAS  Google Scholar 

  118. Jiang, K. et al. Highly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordination. Nat. Commun. 10, 3997 (2019).

    Article  Google Scholar 

  119. Gao, J. et al. Enabling direct H2O2 production in acidic media through rational design of transition metal single atom catalyst. Chem 6, 658–674 (2020).

    Article  CAS  Google Scholar 

  120. Wu, K. H. et al. Highly selective hydrogen peroxide electrosynthesis on carbon: in situ interface engineering with surfactants. Chem 6, 1443–1458 (2020).

    Article  CAS  Google Scholar 

  121. Lu, Z. Y. et al. High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nat. Catal. 1, 156–162 (2018).

    Article  CAS  Google Scholar 

  122. Kim, H. W. et al. Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts. Nat. Catal. 1, 282–290 (2018).

    Article  Google Scholar 

  123. Xia, Y. et al. Highly active and selective oxygen reduction to H2O2 on boron-doped carbon for high production rates. Nat. Commun. 12, 4225 (2021).

    Article  CAS  Google Scholar 

  124. Coria, G., Perez, T., Sires, I. & Nava, J. L. Mass transport studies during dissolved oxygen reduction to hydrogen peroxide in a filter-press electrolyzer using graphite felt, reticulated vitreous carbon and boron-doped diamond as cathodes. J. Electroanal. Chem. 757, 225–229 (2015).

    Article  CAS  Google Scholar 

  125. Iglesias, D. et al. N-doped graphitized carbon nanohorns as a forefront electrocatalyst in highly selective O2 reduction to H2O2. Chem 4, 106–123 (2018).

    Article  CAS  Google Scholar 

  126. Park, J., Nabae, Y., Hayakawa, T. & Kakimoto, M. A. Highly selective two-electron oxygen reduction catalyzed by mesoporous nitrogen-doped carbon. ACS Catal. 4, 3749–3754 (2014).

    Article  CAS  Google Scholar 

  127. Sun, Y. Y. et al. Efficient electrochemical hydrogen peroxide production from molecular oxygen on nitrogen-doped mesoporous carbon catalysts. ACS Catal. 8, 2844–2856 (2018).

    Article  CAS  Google Scholar 

  128. Zhao, K. et al. Enhanced H2O2 production by selective electrochemical reduction of O2 on fluorine-doped hierarchically porous carbon. J. Catal. 357, 118–126 (2018).

    Article  Google Scholar 

  129. Su, Y. M. et al. Potential-driven electron transfer lowers the dissociation energy of the C–F bond and facilitates reductive defluorination of perfluorooctane sulfonate (PFOS). ACS Appl. Mater. Interf. 11, 33913–33922 (2019).

    Article  CAS  Google Scholar 

  130. Durante, C. et al. Electrochemical activation of carbon–halogen bonds: electrocatalysis at silver/copper nanoparticles. Appl. Catal. B 158–159, 286–295 (2014).

    Article  Google Scholar 

  131. Scialdone, O., Corrado, E., Galia, A. & Sirés, I. Electrochemical processes in macro and microfluidic cells for the abatement of chloroacetic acid from water. Electrochim. Acta 132, 15–24 (2014).

    Article  CAS  Google Scholar 

  132. Peverly, A. A., Karty, J. A. & Peters, D. G. Electrochemical reduction of (1R,2r,3S,4R,5r,6S)-hexachlorocyclohexane (Lindane) at silver cathodes in organic and aqueous–organic media. J. Electroanal. Chem. 692, 66–71 (2013).

    Article  CAS  Google Scholar 

  133. Bellomunno, C. et al. Building up an electrocatalytic activity scale of cathode materials for organic halide reductions. Electrochim. Acta 50, 2331–2341 (2005).

    Article  CAS  Google Scholar 

  134. Scialdone, O., Galia, A., Guarisco, C. & La Mantia, S. Abatement of 1,1,2,2-tetrachloroethane in water by reduction at silver cathode and oxidation at boron doped diamond anode in micro reactors. Chem. Eng. J. 189-190, 229–236 (2012).

    Article  CAS  Google Scholar 

  135. Fan, J. et al. Interstitial hydrogen atom modulation to boost hydrogen evolution in Pd-based alloy nanoparticles. ACS Nano 13, 12987–12995 (2019).

    Article  CAS  Google Scholar 

  136. Sun, C. et al. Electrocatalytic dechlorination of 2,4-dichlorophenoxyacetic acid using nanosized titanium nitride doped palladium/nickel foam electrodes in aqueous solutions. Appl. Catal. B 158-159, 38–47 (2014).

    Article  CAS  Google Scholar 

  137. Lou, Z. et al. MnO2 enhances electrocatalytic hydrodechlorination by Pd/Ni foam electrodes and reduces Pd needs. Chem. Eng. J. 352, 549–557 (2018).

    Article  CAS  Google Scholar 

  138. Ma, H., Xu, Y., Ding, X., Liu, Q. & Ma, C.-A. Electrocatalytic dechlorination of chloropicolinic acid mixtures by using palladium-modified metal cathodes in aqueous solutions. Electrochim. Acta 210, 762–772 (2016).

    Article  CAS  Google Scholar 

  139. Martin, E. T., McGuire, C. M., Mubarak, M. S. & Peters, D. G. Electroreductive remediation of halogenated environmental pollutants. Chem. Rev. 116, 15198–15234 (2016).

    Article  CAS  Google Scholar 

  140. Ahmed Basha, C., Bhadrinarayana, N. S., Anantharaman, N. & Meera Sheriffa Begum, K. M. Heavy metal removal from copper smelting effluent using electrochemical cylindrical flow reactor. J. Hazard. Mater. 152, 71–78 (2008).

    Article  CAS  Google Scholar 

  141. Issabayeva, G., Aroua, M. K. & Sulaiman, N. M. Electrodeposition of copper and lead on palm shell activated carbon in a flow-through electrolytic cell. Desalination 194, 192–201 (2006).

    Article  CAS  Google Scholar 

  142. Tang, W. W. et al. Various cell architectures of capacitive deionization: recent advances and future trends. Water Res. 150, 225–251 (2019).

    Article  CAS  Google Scholar 

  143. Farmer, J. C., Fix, D. V., Mack, G. V., Pekala, R. W. & Poco, J. F. Capacitive deionization of NaCl and NaNO3 solutions with carbon aerogel electrodes. J. Electrochem. Soc. 143, 159 (1996).

    Article  CAS  Google Scholar 

  144. Wu, T. T. et al. Starch derived porous carbon nanosheets for high-performance photovoltaic capacitive deionization. Environ. Sci. Technol. 51, 9244–9251 (2017).

    Article  CAS  Google Scholar 

  145. Guyes, E. N., Shocron, A. N., Chen, Y., Diesendruck, C. E. & Suss, M. E. Long-lasting, monovalent-selective capacitive deionization electrodes. npj Clean Water 4, 22 (2021).

    Article  CAS  Google Scholar 

  146. Forrestal, C., Xu, P. & Ren, Z. Y. Sustainable desalination using a microbial capacitive desalination cell. Energy Environ. Sci. 5, 7161–7167 (2012).

    Article  CAS  Google Scholar 

  147. El-Deen, A. G. et al. Flexible 3D nanoporous graphene for desalination and bio-decontamination of brackish water via asymmetric capacitive deionization. ACS Appl. Mater. Interf. 8, 25313–25325 (2016).

    Article  CAS  Google Scholar 

  148. Wang, H. et al. In situ creating interconnected pores across 3D graphene architectures and their application as high performance electrodes for flow-through deionization capacitors. J. Mater. Chem. A 4, 4908–4919 (2016).

    Article  CAS  Google Scholar 

  149. Li, Z. et al. 3D porous graphene with ultrahigh surface area for microscale capacitive deionization. Nano Energy 11, 711–718 (2015).

    Article  CAS  Google Scholar 

  150. Xu, X. T., Wang, M., Liu, Y., Lu, T. & Pan, L. K. Metal–organic framework-engaged formation of a hierarchical hybrid with carbon nanotube inserted porous carbon polyhedra for highly efficient capacitive deionization. J. Mater. Chem. A 4, 5467–5473 (2016).

    Article  CAS  Google Scholar 

  151. Liu, Y. et al. Enhanced desalination efficiency in modified membrane capacitive deionization by introducing ion-exchange polymers in carbon nanotubes electrodes. Electrochim. Acta 130, 619–624 (2014).

    Article  CAS  Google Scholar 

  152. Liu, Y. et al. Nitrogen-doped carbon nanorods with excellent capacitive deionization ability. J. Mater. Chem. A 3, 17304–17311 (2015).

    Article  CAS  Google Scholar 

  153. Tian, S., Wu, J., Zhang, X., Ostrikov, K. & Zhang, Z. Capacitive deionization with nitrogen-doped highly ordered mesoporous carbon electrodes. Chem. Eng. J. 380, 122514 (2020).

    Article  CAS  Google Scholar 

  154. Zhang, H. et al. Nitrogen, phosphorus co-doped eave-like hierarchical porous carbon for efficient capacitive deionization. J. Mater. Chem. A 9, 12807–12817 (2021).

    Article  CAS  Google Scholar 

  155. Liu, Y. et al. Nitrogen-doped porous carbon spheres for highly efficient capacitive deionization. Electrochim. Acta 158, 403–409 (2015).

    Article  CAS  Google Scholar 

  156. Gao, F., Shi, W., Dai, R. B. & Wang, Z. W. Effective and selective removal of phosphate from wastewater using guanidinium-functionalized polyelectrolyte-modified electrodes in capacitive deionization. ACS EST Water 2, 237–246 (2022).

    Article  CAS  Google Scholar 

  157. Xiang, S. H., Mao, H. J., Geng, W. S., Xu, Y. S. & Zhou, H. J. Selective removal of Sr(II) from saliferous radioactive wastewater by capacitive deionization. J. Hazard. Mater. https://doi.org/10.1016/j.jhazmat.2022.128591 (2022).

    Article  Google Scholar 

  158. Zhang, J. et al. Enhanced capacitive deionization of saline water using N-doped rod-like porous carbon derived from dual-ligand metal–organic frameworks. Environ. Sci. Nano 7, 926–937 (2020).

    Article  CAS  Google Scholar 

  159. Kim, J., Kim, J., Kim, J. H. & Park, H. S. Hierarchically open-porous nitrogen-incorporated carbon polyhedrons derived from metal–organic frameworks for improved CDI performance. Chem. Eng. J. 382, 122996 (2020).

    Article  CAS  Google Scholar 

  160. Zhang, Y., Ji, L., Zheng, Y., Liu, H. & Xu, X. Nanopatterned metal–organic framework electrodes with improved capacitive deionization properties for highly efficient water desalination. Sep. Purif. Technol. 234, 116124 (2020).

    Article  CAS  Google Scholar 

  161. Wang, K. et al. Metal-organic-frameworks-derived NaTi2(PO4)(3)/carbon composites for efficient hybrid capacitive deionization. J. Mater. Chem. A 7, 12126–12133 (2019).

    Article  CAS  Google Scholar 

  162. Wang, K. et al. Controlled synthesis of NaTi2(PO4)3/carbon composite derived from metal-organic-frameworks as highly-efficient electrodes for hybrid capacitive deionization. Sep. Purif. Technol. 278, 119565 (2021).

    Article  Google Scholar 

  163. Shang, X. H. et al. LiNi0.5Mn1.5O4-based hybrid capacitive deionization for highly selective adsorption of lithium from brine. Sep. Purif. Technol. https://doi.org/10.1016/j.seppur.2020.118009 (2021).

    Article  Google Scholar 

  164. Mao, M. et al. Selective capacitive removal of Pb2+ from wastewater over redox-active electrodes. Environ. Sci. Technol. 55, 730–737 (2021).

    Article  CAS  Google Scholar 

  165. Hu, B. et al. Lithium ion sieve modified three-dimensional graphene electrode for selective extraction of lithium by capacitive deionization. J. Colloid Interf. Sci. 612, 392–400 (2022).

    Article  CAS  Google Scholar 

  166. Lee, J., Kim, S., Kim, C. & Yoon, J. Hybrid capacitive deionization to enhance the desalination performance of capacitive techniques. Energy Environ. Sci. 7, 3683–3689 (2014).

    Article  CAS  Google Scholar 

  167. Sun, J., Mu, Q., Wang, T., Qi, J. & Hu, C. Selective electrosorption of Ca2+ by MXene cathodes coupled with NiAl-LMO anodes through ion intercalation. J. Colloid Interf. Sci. 590, 539–547 (2021).

    Article  CAS  Google Scholar 

  168. Xing, F. et al. Chemically exfoliated MoS2 for capacitive deionization of saline water. Nano Energy 31, 590–595 (2017).

    Article  CAS  Google Scholar 

  169. Han, J. et al. Capacitive deionization of saline water by using MoS2–graphene hybrid electrodes with high volumetric adsorption capacity. Environ. Sci. Technol. 53, 12668–12676 (2019).

    Article  CAS  Google Scholar 

  170. Su, X., Kulik, H. J., Jamison, T. F. & Hatton, T. A. Anion-selective redox electrodes: electrochemically mediated separation with heterogeneous organometallic interfaces. Adv. Funct. Mater. 26, 3394–3404 (2016).

    Article  CAS  Google Scholar 

  171. Song, Z., Garg, S., Ma, J. & Waite, T. D. Selective arsenic removal from groundwaters using redox-active polyvinylferrocene-functionalized electrodes: role of oxygen. Environ. Sci. Technol. 54, 12081–12091 (2020).

    Article  CAS  Google Scholar 

  172. Kim, Y., Lin, Z., Jeon, I., Van Voorhis, T. & Swager, T. M. Polyaniline nanofiber electrodes for reversible capture and release of mercury(II) from water. J. Am. Chem. Soc. 140, 14413–14420 (2018).

    Article  CAS  Google Scholar 

  173. Cui, H. et al. Defluoridation of water via electrically controlled anion exchange by polyaniline modified electrode reactor. Water Res. 45, 5736–5744 (2011).

    Article  CAS  Google Scholar 

  174. Miao, L. et al. Pseudocapacitive deionization with polypyrrole grafted CMC carbon aerogel electrodes. Sep. Purif. Technol. 296, 121441 (2022).

    Article  CAS  Google Scholar 

  175. Kim, S., Yoon, H., Shin, D., Lee, J. & Yoon, J. Electrochemical selective ion separation in capacitive deionization with sodium manganese oxide. J. Colloid Interf. Sci. 506, 644–648 (2017).

    Article  CAS  Google Scholar 

  176. Ma, X. et al. Anions-capture materials for electrochemical electrode deionization: mechanism, performance, and development prospects. Desalination 520, 115336 (2021).

    Article  CAS  Google Scholar 

  177. Donaghue, A. & Chaplin, B. P. Effect of select organic compounds on perchlorate formation at boron-doped diamond film anodes. Environ. Sci. Technol. 47, 12391–12399 (2013).

    Article  CAS  Google Scholar 

  178. Pals, J. A., Ang, J. K., Wagner, E. D. & Plewa, M. J. Biological mechanism for the toxicity of haloacetic acid drinking water disinfection byproducts. Environ. Sci. Technol. 45, 5791–5797 (2011).

    Article  CAS  Google Scholar 

  179. Wu, W., Huang, Z.-H. & Lim, T.-T. Recent development of mixed metal oxide anodes for electrochemical oxidation of organic pollutants in water. Appl. Catal. A 480, 58–78 (2014).

    Article  CAS  Google Scholar 

  180. Bewer, G., Debrodt, H. & Herbst, H. Titanium for electrochemical processes. J. Met. 34, 37–41 (1982).

    CAS  Google Scholar 

  181. Lei, Y. et al. Electrochemical phosphorus removal and recovery from cheese wastewater: function of polarity reversal. ACS EST Eng. 2, 2187–2195 (2022).

    Article  CAS  Google Scholar 

  182. Cho, Y. et al. A novel three-dimensional desalination system utilizing honeycomb-shaped lattice structures for flow-electrode capacitive deionization. Energy Environ. Sci. 10, 1746–1750 (2017).

    Article  CAS  Google Scholar 

  183. Skulason, E. et al. Modeling the electrochemical hydrogen oxidation and evolution reactions on the basis of density functional theory calculations. J. Phys. Chem. C 114, 18182–18197 (2010).

    Article  CAS  Google Scholar 

  184. Seh, Z. W. et al. Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad4998 (2017).

    Article  Google Scholar 

  185. Greeley, J., Jaramillo, T. F., Bonde, J., Chorkendorff, I. & Nørskov, J. K. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 5, 909–913 (2006).

    Article  CAS  Google Scholar 

  186. Skúlason, E. et al. Density functional theory calculations for the hydrogen evolution reaction in an electrochemical double layer on the Pt(111) electrode. Phys. Chem. Chem. Phys. 9, 3241–3250 (2007).

    Article  Google Scholar 

  187. Greeley, J. & Mavrikakis, M. Alloy catalysts designed from first principles. Nat. Mater. 3, 810–815 (2004).

    Article  CAS  Google Scholar 

  188. Jaramillo, T. F. et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317, 100–102 (2007).

    Article  CAS  Google Scholar 

  189. Greeley, J., Norskov, J. K., Kibler, L. A., El-Aziz, A. M. & Kolb, D. M. Hydrogen evolution over bimetallic systems: understanding the trends. ChemPhysChem 7, 1032–1035 (2006).

    Article  CAS  Google Scholar 

  190. Niu, H. et al. Theoretical insights into the mechanism of selective nitrate-to-ammonia electroreduction on single-atom catalysts. Adv. Funct. Mater. https://doi.org/10.1002/adfm.202008533 (2021).

    Article  Google Scholar 

  191. Liu, J.-X., Richards, D., Singh, N. & Goldsmith, B. R. Activity and selectivity trends in electrocatalytic nitrate reduction on transition metals. ACS Catal. 9, 7052–7064 (2019).

    Article  CAS  Google Scholar 

  192. Tran, R. et al. Screening of bimetallic electrocatalysts for water purification with machine learning. J. Chem. Phys. 157, 074102 (2022).

    Article  CAS  Google Scholar 

  193. Hawks, S. A. et al. Using ultramicroporous carbon for the selective removal of nitrate with capacitive deionization. Environ. Sci. Technol. 53, 10863–10870 (2019).

    Article  CAS  Google Scholar 

  194. Eliad, L., Salitra, G., Soffer, A. & Aurbach, D. Ion sieving effects in the electrical double layer of porous carbon electrodes: estimating effective Ion size in electrolytic solutions. J. Phys. Chem. B 105, 6880–6887 (2001).

    Article  CAS  Google Scholar 

  195. Uwayid, R. et al. Perfect divalent cation selectivity with capacitive deionization. Water Res. https://doi.org/10.1016/j.watres.2021.117959 (2022).

    Article  Google Scholar 

  196. Guyes, E. N., Malka, T. & Suss, M. E. Enhancing the ion-size-based selectivity of capacitive deionization electrodes. Environ. Sci. Technol. 53, 8447–8454 (2019).

    Article  CAS  Google Scholar 

  197. Yang, J., Zou, L. & Choudhury, N. R. Ion-selective carbon nanotube electrodes in capacitive deionisation. Electrochim. Acta 91, 11–19 (2013).

    Article  CAS  Google Scholar 

  198. Han, N. et al. Selective recovery of lithium ions from acidic medium based on capacitive deionization-enhanced imprinted polymers. J. Clean. Prod. https://doi.org/10.1016/j.jclepro.2022.133773 (2022).

    Article  Google Scholar 

  199. Yang, S., Wu, G., Song, J. & Hu, B. Preparation of chitosan-based asymmetric electrodes by co-imprinting technology for simultaneous electro-adsorption of multi-radionuclides. Sep. Purif. Technol. https://doi.org/10.1016/j.seppur.2022.121568 (2022).

    Article  Google Scholar 

  200. Nakajima, M., Hayamizu, T. & Nishimura, H. Effect of oxygen concentration on the rates of denitratification and denitrification in the sediments of an eutrophic lake. Water Res. 18, 335–338 (1984).

    Article  CAS  Google Scholar 

  201. Goyal, A., Marcandalli, G., Mints, V. A. & Koper, M. T. M. Competition between CO2 reduction and hydrogen evolution on a gold electrode under well-defined mass transport conditions. J. Am. Chem. Soc. 142, 4154–4161 (2020).

    Article  CAS  Google Scholar 

  202. Sun, M. et al. Electrified membranes for water treatment applications. ACS EST Eng. 1, 725–752 (2021).

    Article  CAS  Google Scholar 

  203. Katuri, K. P. et al. A microfiltration polymer-based hollow-fiber cathode as a promising advanced material for simultaneous recovery of energy and water. Adv. Mater. 28, 9504–9511 (2016).

    Article  CAS  Google Scholar 

  204. Li, Y., Ma, J. X., Waite, T. D., Hoffmann, M. R. & Wang, Z. W. Development of a mechanically flexible 2D-MXene membrane cathode for selective electrochemical reduction of nitrate to N2: mechanisms and implications. Environ. Sci. Technol. 55, 10695–10703 (2021).

    Article  CAS  Google Scholar 

  205. Zhu, X. B. & Jassby, D. Electroactive membranes for water treatment: enhanced treatment functionalities, energy considerations, and future challenges. Acc. Chem. Res. 52, 1177–1186 (2019).

    Article  CAS  Google Scholar 

  206. Su, Y., Muller, K. R., Yoshihara-Saint, H., Najm, I. & Jassby, D. Nitrate removal in an electrically charged granular-activated carbon column. Environ. Sci. Technol. 55, 16597–16606 (2021).

    Article  CAS  Google Scholar 

  207. Liu, Z. W. et al. Electrochemically mediated nitrate reduction on nanoconfined zerovalent iron: properties and mechanism. Water Res. 173, 115596 (2020).

    Article  CAS  Google Scholar 

  208. Zhao, Y. et al. Emerging challenges and opportunities for electrified membranes to enhance water treatment. Environ. Sci. Technol. 56, 3832–3835 (2022).

    Article  CAS  Google Scholar 

  209. Liu, Y., Gao, G. & Vecitis, C. D. Prospects of an electroactive carbon nanotube membrane toward environmental applications. Acc. Chem. Res. 53, 2892–2902 (2020).

    Article  CAS  Google Scholar 

  210. Wang, X. et al. In situ electrochemical generation of reactive chlorine species for efficient ultrafiltration membrane self-cleaning. Environ. Sci. Technol. 54, 6997–7007 (2020).

    Article  CAS  Google Scholar 

  211. Liu, H., Zuo, K. C. & Vecitis, C. D. Titanium dioxide-coated carbon nanotube network filter for rapid and effective arsenic sorption. Environ. Sci. Technol. 48, 13871–13879 (2014).

    Article  CAS  Google Scholar 

  212. Liu, H. et al. Carbon fiber-based flow-through electrode system (FES) for water disinfection via direct oxidation mechanism with a sequential reduction–oxidation process. Environ. Sci. Technol. 53, 3238–3249 (2019).

    Article  CAS  Google Scholar 

  213. Zheng, J., Wang, Z., Ma, J., Xu, S. & Wu, Z. Development of an electrochemical ceramic membrane filtration system for efficient contaminant removal from waters. Environ. Sci. Technol. 52, 4117–4126 (2018).

    Article  CAS  Google Scholar 

  214. Mameda, N., Park, H.-J. & Choo, K.-H. Membrane electro-oxidizer: a new hybrid membrane system with electrochemical oxidation for enhanced organics and fouling control. Water Res. 126, 40–49 (2017).

    Article  CAS  Google Scholar 

  215. Zheng, J. et al. Contaminant removal from source waters using cathodic electrochemical membrane filtration: mechanisms and implications. Environ. Sci. Technol. 51, 2757–2765 (2017).

    Article  CAS  Google Scholar 

  216. Li, Y., Ma, J. X., Wu, Z. C. & Wang, Z. W. Direct electron transfer coordinated by oxygen vacancies boosts selective nitrate reduction to N2 on a Co-CuOx electroactive filter. Environ. Sci. Technol. 56, 8673–8681 (2022).

    Article  CAS  Google Scholar 

  217. Huo, Z. Y. et al. Nanowire-modified three-dimensional electrode enabling low-voltage electroporation for water disinfection. Environ. Sci. Technol. 50, 7641–7649 (2016).

    Article  CAS  Google Scholar 

  218. Almassi, S., Ren, C. X., Liu, J. Y. & Chaplin, B. P. Electrocatalytic perchlorate reduction using an oxorhenium complex supported on a Ti4O7 reactive electrochemical membrane. Environ. Sci. Technol. 56, 3267–3276 (2022).

    Article  CAS  Google Scholar 

  219. Gayen, P., Chen, C., Abiade, J. T. & Chaplin, B. P. Electrochemical oxidation of atrazine and clothianidin on Bi-doped SnO2-TinO2n-1 electrocatalytic reactive electrochemical membranes. Environ. Sci. Technol. 52, 12675–12684 (2018).

    Article  CAS  Google Scholar 

  220. Liu, M. et al. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 537, 382–386 (2016).

    Article  CAS  Google Scholar 

  221. Huo, Z.-Y. et al. Triboelectrification induced self-powered microbial disinfection using nanowire-enhanced localized electric field. Nat. Commun. 12, 3693 (2021).

    Article  CAS  Google Scholar 

  222. Tan, X., Hu, C., Zhu, Z., Liu, H. & Qu, J. Electrically pore‐size‐tunable polypyrrole membrane for antifouling and selective separation. Adv. Funct. Mater. 29, 1903081 (2019).

    Article  Google Scholar 

  223. Chaplin, B. P. Critical review of electrochemical advanced oxidation processes for water treatment applications. Environ. Sci. Process. Impacts 16, 1182–1203 (2014).

    Article  CAS  Google Scholar 

  224. Zhang, S., Hedtke, T., Zhou, X., Elimelech, M. & Kim, J.-H. Environmental applications of engineered materials with nanoconfinement. ACS EST Eng. 1, 706–724 (2021).

    Article  CAS  Google Scholar 

  225. Yang, Z., Qian, J., Yu, A. & Pan, B. Singlet oxygen mediated iron-based Fenton-like catalysis under nanoconfinement. Proc. Natl Acad. Sci. USA 116, 6659–6664 (2019).

    Article  CAS  Google Scholar 

  226. Grommet, A. B., Feller, M. & Klajn, R. Chemical reactivity under nanoconfinement. Nat. Nanotechnol. 15, 256–271 (2020).

    Article  CAS  Google Scholar 

  227. Almassi, S. et al. Simultaneous adsorption and electrochemical reduction of N-nitrosodimethylamine using carbon-Ti4O7 composite reactive electrochemical membranes. Environ. Sci. Technol. 53, 928–937 (2019).

    Article  CAS  Google Scholar 

  228. Fan, X. F. et al. Enhanced permeability, selectivity, and antifouling ability of CNTs/Al2O3 membrane under electrochemical assistance. Environ. Sci. Technol. 49, 2293–2300 (2015).

    Article  CAS  Google Scholar 

  229. Zhao, Y. et al. Janus electrocatalytic flow-through membrane enables highly selective singlet oxygen production. Nat. Commun. 11, 6228 (2020).

    Article  CAS  Google Scholar 

  230. Huo, Z. et al. Synergistic nanowire-enhanced electroporation and electro-chlorination for highly efficient water disinfection. Environ. Sci. Technol. https://doi.org/10.1021/acs.est.2c01793 (2022).

    Article  Google Scholar 

  231. Rao, U. et al. Mineral scale prevention on electrically conducting membrane distillation membranes using induced electrophoretic mixing. Environ. Sci. Technol. 54, 3678–3690 (2020).

    Article  CAS  Google Scholar 

  232. Yang, Y. et al. Novel functionalized nano-TiO2 loading electrocatalytic membrane for oily wastewater treatment. Environ. Sci. Technol. 46, 6815–6821 (2012).

    Article  CAS  Google Scholar 

  233. Ganzenko, O., Huguenot, D., van Hullebusch, E. D., Esposito, G. & Oturan, M. A. Electrochemical advanced oxidation and biological processes for wastewater treatment: a review of the combined approaches. Environ. Sci. Pollut. Res. 21, 8493–8524 (2014).

    Article  CAS  Google Scholar 

  234. Park, H., Choo, K.-H., Park, H.-S., Choi, J. & Hoffmann, M. R. Electrochemical oxidation and microfiltration of municipal wastewater with simultaneous hydrogen production: influence of organic and particulate matter. Chem. Eng. J. 215–216, 802–810 (2013).

    Article  Google Scholar 

  235. Li, H. et al. A novel modification to boron-doped diamond electrode for enhanced, selective detection of dopamine in human serum. Carbon 171, 16–28 (2021).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

K.Z., S.G.-S., G.A.C.-C., F.-Y.C., X.T., X.W., X.H. and Q.L. researched data for the article. K.Z., S.G.-S., H.W., P.J.J.A., J.L., M.E. and Q.L. contributed substantially to discussion of the content. K.Z., S.G.-S., G.A.C.-C., F.-Y.C., X.T., X.W., X.H. and Q.L. wrote the article. K.Z., S.G.-S., H.W., P.J.J.A., J.L., M.E. and Q.L. reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Qilin Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Jiuhui Qu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, K., Garcia-Segura, S., Cerrón-Calle, G.A. et al. Electrified water treatment: fundamentals and roles of electrode materials. Nat Rev Mater 8, 472–490 (2023). https://doi.org/10.1038/s41578-023-00564-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-023-00564-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing