Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Towards two-dimensional van der Waals ferroelectrics

Abstract

The discovery of ferroelectricity in two-dimensional (2D) van der Waals (vdW) materials has brought important functionalities to the 2D materials family, and may trigger a revolution in next-generation nanoelectronics and spintronics. In this Perspective, we briefly review recent progress in the field of 2D vdW ferroelectrics, focusing on the mechanisms that drive spontaneous polarization in 2D systems, unique properties brought about by the reduced lattice dimensionality and promising applications of 2D vdW ferroelectrics. We finish with an outlook for challenges that need to be addressed and our view on possible future research directions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Different mechanisms of spontaneous polarization in 2D vdW ferroelectrics.
Fig. 2: Effects of reduced lattice dimensionality on ferroelectricity in 2D systems.
Fig. 3: Prototype devices based on 2D vdW ferroelectrics.

Similar content being viewed by others

References

  1. Valasek, J. Piezo-electric and allied phenomena in Rochelle salt. Phys. Rev. 17, 475–481 (1921).

    Article  CAS  Google Scholar 

  2. Lines M. E. & Glass A. M. Principles and Applications of Ferroelectrics and Related Materials (Oxford Univ. Press, 2001).

  3. Dawber, M., Rabe, K. & Scott, J. Physics of thin-film ferroelectric oxides. Rev. Mod. Phys. 77, 1083–1130 (2005).

    Article  CAS  Google Scholar 

  4. Gao, W., Zhu, Y., Wang, Y., Yuan, G. & Liu, J.-M. A review of flexible perovskite oxide ferroelectric films and their application. J. Materiomics 6, 1–16 (2020).

    Article  Google Scholar 

  5. Pawley, G., Cochran, W., Cowley, R. & Dolling, G. Diatomic ferroelectrics. Phys. Rev. Lett. 17, 753–755 (1966).

    Article  CAS  Google Scholar 

  6. Brec, R. in Intercalation in Layered Materials (ed. Dresselhaus, M. S.) 93–124 (Springer, 1986).

  7. Liu, F. et al. Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes. Nat. Commun. 7, 12357 (2016).

    Article  CAS  Google Scholar 

  8. Chang, K. et al. Discovery of robust in-plane ferroelectricity in atomic-thick SnTe. Science 353, 274–278 (2016).

    Article  CAS  Google Scholar 

  9. Ding, W. et al. Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials. Nat. Commun. 8, 14956 (2017).

    Article  CAS  Google Scholar 

  10. Zhou, Y. et al. Out-of-plane piezoelectricity and ferroelectricity in layered α-In2Se3 nanoflakes. Nano Lett. 17, 5508–5513 (2017).

    Article  CAS  Google Scholar 

  11. You, L. et al. In‐plane ferroelectricity in thin flakes of van der Waals hybrid perovskite. Adv. Mater. 30, 1803249 (2018).

    Article  Google Scholar 

  12. Fei, Z. et al. Ferroelectric switching of a two-dimensional metal. Nature 560, 336–339 (2018).

    Article  CAS  Google Scholar 

  13. Yang, Q., Wu, M. & Li, J. Origin of two-dimensional vertical ferroelectricity in WTe2 bilayer and multilayer. J. Phys. Chem. Lett. 9, 7160–7164 (2018).

    Article  CAS  Google Scholar 

  14. Yuan, S. et al. Room-temperature ferroelectricity in MoTe2 down to the atomic monolayer limit. Nat. Commun. 10, 1775 (2019).

    Article  Google Scholar 

  15. Barraza-Lopez, S., Fregoso, B. M., Villanova, J. W., Parkin, S. S. & Chang, K. Colloquium: Physical properties of group-IV monochalcogenide monolayers. Rev. Mod. Phys. 93, 011001 (2021).

    Article  CAS  Google Scholar 

  16. Zheng, Z. et al. Unconventional ferroelectricity in moiré heterostructures. Nature 588, 71–76 (2020).

    Article  CAS  Google Scholar 

  17. Yasuda, K., Wang, X., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Stacking-engineered ferroelectricity in bilayer boron nitride. Science 372, 1458–1462 (2021).

    Article  CAS  Google Scholar 

  18. Vizner Stern, M. et al. Interfacial ferroelectricity by van der Waals sliding. Science 372, 1462–1466 (2021).

    Article  CAS  Google Scholar 

  19. Varotto, S. et al. Room-temperature ferroelectric switching of spin-to-charge conversion in germanium telluride. Nat. Electron. 4, 740–747 (2021).

    Article  CAS  Google Scholar 

  20. Andersen, T. I. et al. Excitons in a reconstructed moiré potential in twisted WSe2/WSe2 homobilayers. Nat. Mater. 20, 480–487 (2021).

    Article  CAS  Google Scholar 

  21. Wang, X. et al. Interfacial ferroelectricity in rhombohedral-stacked bilayer transition metal dichalcogenides. Nat. Nanotechnol. 17, 367–371 (2022).

    Article  CAS  Google Scholar 

  22. Park, C. B. et al. Observation of spin‐induced ferroelectricity in a layered van der Waals antiferromagnet CuCrP2S6. Adv. Electron. Mater. 8, 2101072 (2022).

    Article  CAS  Google Scholar 

  23. Son, S. et al. Multiferroic enabled magnetic‐exciton in 2D quantum-entangled van der Waals antiferromagnet NiI2. Adv. Mater. 34, 2109144 (2021).

    Article  Google Scholar 

  24. Song, Q. et al. Evidence for a single-layer van der Waals multiferroic. Nature 602, 601–605 (2022).

    Article  CAS  Google Scholar 

  25. Cohen, R. E. Origin of ferroelectricity in perovskite oxides. Nature 358, 136–138 (1992).

    Article  CAS  Google Scholar 

  26. Liu, K., Lu, J., Picozzi, S., Bellaiche, L. & Xiang, H. Intrinsic origin of enhancement of ferroelectricity in SnTe ultrathin films. Phys. Rev. Lett. 121, 027601 (2018).

    Article  Google Scholar 

  27. Zhou, S. et al. Van der Waals layered ferroelectric CuInP2S6: physical properties and device applications. Front. Phys. 16, 13301 (2021).

    Article  Google Scholar 

  28. Shirodkar, S. N. & Waghmare, U. V. Emergence of ferroelectricity at a metal-semiconductor transition in a 1T monolayer of MoS2. Phys. Rev. Lett. 112, 157601 (2014).

    Article  Google Scholar 

  29. Leng, K., Fu, W., Liu, Y., Chhowalla, M. & Loh, K. P. From bulk to molecularly thin hybrid perovskites. Nat. Rev. Mater. 5, 482–500 (2020).

    Article  CAS  Google Scholar 

  30. Hlinka, J. et al. Coexistence of the phonon and relaxation soft modes in the terahertz dielectric response of tetragonal BaTiO3. Phys. Rev. Lett. 101, 167402 (2008).

    Article  CAS  Google Scholar 

  31. Li, L. & Wu, M. Binary compound bilayer and multilayer with vertical polarizations: two-dimensional ferroelectrics, multiferroics, and nanogenerators. ACS Nano 11, 6382–6388 (2017).

    Article  CAS  Google Scholar 

  32. Rogée, L. et al. Ferroelectricity in untwisted heterobilayers of transition metal dichalcogenides. Science 376, 973–978 (2022).

    Article  Google Scholar 

  33. Wang, J. (ed.) Multiferroic Materials: Properties, Techniques, and Applications (CRC, 2016).

  34. Kimura, T. et al. Magnetic control of ferroelectric polarization. Nature 426, 55–58 (2003).

    Article  CAS  Google Scholar 

  35. Zhang, J.-J. et al. Type-II multiferroic Hf2VC2F2 MXene monolayer with high transition temperature. J. Am. Chem. Soc. 140, 9768–9773 (2018).

    Article  CAS  Google Scholar 

  36. Stengel, M. & Spaldin, N. A. Origin of the dielectric dead layer in nanoscale capacitors. Nature 443, 679–682 (2006).

    Article  CAS  Google Scholar 

  37. You, L. et al. Origin of giant negative piezoelectricity in a layered van der Waals ferroelectric. Sci. Adv. 5, eaav3780 (2019).

    Article  CAS  Google Scholar 

  38. Qi, Y. & Rappe, A. M. Widespread negative longitudinal piezoelectric responses in ferroelectric crystals with layered structures. Phys. Rev. Lett. 126, 217601 (2021).

    Article  CAS  Google Scholar 

  39. Katsouras, I. et al. The negative piezoelectric effect of the ferroelectric polymer poly(vinylidene fluoride). Nat. Mater. 15, 78–84 (2016).

    Article  CAS  Google Scholar 

  40. Kim, J., Rabe, K. M. & Vanderbilt, D. Negative piezoelectric response of van der Waals layered bismuth tellurohalides. Phys. Rev. B 100, 104115 (2019).

    Article  CAS  Google Scholar 

  41. Brehm, J. A. et al. Tunable quadruple-well ferroelectric van der Waals crystals. Nat. Mater. 19, 43–48 (2020).

    Article  CAS  Google Scholar 

  42. Anderson, P. W. & Blount, E. Symmetry considerations on martensitic transformations: ‘ferroelectric’ metals? Phys. Rev. Lett. 14, 217–219 (1965).

    Article  CAS  Google Scholar 

  43. Shi, Y. et al. A ferroelectric-like structural transition in a metal. Nat. Mater. 12, 1024–1027 (2013).

    Article  CAS  Google Scholar 

  44. Kim, T. et al. Polar metals by geometric design. Nature 533, 68–72 (2016).

    Article  CAS  Google Scholar 

  45. Garcia, V. & Bibes, M. Ferroelectric tunnel junctions for information storage and processing. Nat. Commun. 5, 4289 (2014).

    Article  CAS  Google Scholar 

  46. Wu, J. et al. High tunnelling electroresistance in a ferroelectric van der Waals heterojunction via giant barrier height modulation. Nat. Electron. 3, 466–472 (2020).

    Article  Google Scholar 

  47. Su, Y. et al. Van der Waals multiferroic tunnel junctions. Nano Lett. 21, 175–181 (2020).

    Article  Google Scholar 

  48. Khan, A. I., Keshavarzi, A. & Datta, S. The future of ferroelectric field-effect transistor technology. Nat. Electron. 3, 588–597 (2020).

    Article  Google Scholar 

  49. Reiner, J. W. et al. Crystalline oxides on silicon. Adv. Mater. 22, 2919–2938 (2010).

    Article  CAS  Google Scholar 

  50. Huang, W. et al. Gate‐coupling‐enabled robust hysteresis for nonvolatile memory and programmable rectifier in van der Waals ferroelectric heterojunctions. Adv. Mater. 32, 1908040 (2020).

    Article  CAS  Google Scholar 

  51. Si, M. et al. A ferroelectric semiconductor field-effect transistor. Nat. Electron. 2, 580–586 (2019).

    Article  CAS  Google Scholar 

  52. Wong, J. C. & Salahuddin, S. Negative capacitance transistors. Proc. IEEE 107, 49–62 (2018).

    Article  Google Scholar 

  53. Wang, X. et al. Van der Waals negative capacitance transistors. Nat. Commun. 10, 3037 (2019).

    Article  Google Scholar 

  54. Manchon, A., Koo, H. C., Nitta, J., Frolov, S. & Duine, R. New perspectives for Rashba spin–orbit coupling. Nat. Mater. 14, 871–882 (2015).

    Article  CAS  Google Scholar 

  55. Fang, M. et al. Recent advances in tunable spin–orbit coupling using ferroelectricity. APL Mater. 9, 060704 (2021).

    Article  CAS  Google Scholar 

  56. Di Sante, D., Barone, P., Bertacco, R. & Picozzi, S. Electric control of the giant Rashba effect in bulk GeTe. Adv. Mater. 25, 509–513 (2013).

    Article  Google Scholar 

  57. Resta, R. Macroscopic polarization in crystalline dielectrics: the geometric phase approach. Rev. Mod. Phys. 66, 899–915 (1994).

    Article  CAS  Google Scholar 

  58. Vanderbilt, D. Berry Phases in Electronic Structure Theory: Electric Polarization, Orbital Magnetization and Topological Insulators (Cambridge Univ. Press, 2018).

  59. Wang, H. & Qian, X. Ferroelectric nonlinear anomalous Hall effect in few-layer WTe2. npj Comput. Mater. 5, 119 (2019).

    Article  CAS  Google Scholar 

  60. Xiao, J. et al. Berry curvature memory through electrically driven stacking transitions. Nat. Phys. 16, 1028–1034 (2020).

    Article  CAS  Google Scholar 

  61. Spaldin, N. A. & Ramesh, R. Advances in magnetoelectric multiferroics. Nat. Mater. 18, 203–212 (2019).

    Article  CAS  Google Scholar 

  62. Zhong, T., Li, X., Wu, M. & Liu, J.-M. Room-temperature multiferroicity and diversified magnetoelectric couplings in 2D materials. Natl Sci. Rev. 7, 373–380 (2020).

    Article  CAS  Google Scholar 

  63. Liu, X., Pyatakov, A. P. & Ren, W. Magnetoelectric coupling in multiferroic bilayer VS2. Phys. Rev. Lett. 125, 247601 (2020).

    Article  CAS  Google Scholar 

  64. Xu, C. et al. Electric-field switching of magnetic topological charge in type-I multiferroics. Phys. Rev. Lett. 125, 037203 (2020).

    Article  CAS  Google Scholar 

  65. Huang, C. et al. Prediction of intrinsic ferromagnetic ferroelectricity in a transition-metal halide monolayer. Phys. Rev. Lett. 120, 147601 (2018).

    Article  Google Scholar 

  66. Fert, A., Reyren, N. & Cros, V. Magnetic skyrmions: advances in physics and potential applications. Nat. Rev. Mater. 2, 17031 (2017).

    Article  CAS  Google Scholar 

  67. Banerjee, S., Rowland, J., Erten, O. & Randeria, M. Enhanced stability of skyrmions in two-dimensional chiral magnets with Rashba spin–orbit coupling. Phys. Rev. X 4, 031045 (2014).

    CAS  Google Scholar 

  68. Das, S. et al. Observation of room-temperature polar skyrmions. Nature 568, 368–372 (2019).

    Article  CAS  Google Scholar 

  69. Lin, L.-F., Zhang, Y., Moreo, A., Dagotto, E. & Dong, S. Frustrated dipole order induces noncollinear proper ferrielectricity in two dimensions. Phys. Rev. Lett. 123, 067601 (2019).

    Article  CAS  Google Scholar 

  70. Zhao, H. J., Chen, P., Prosandeev, S., Artyukhin, S. & Bellaiche, L. Dzyaloshinskii–Moriya-like interaction in ferroelectrics and antiferroelectrics. Nat. Mater. 20, 341–345 (2021).

    Article  CAS  Google Scholar 

  71. Tagantsev, A. K., Stolichnov, I., Setter, N., Cross, J. S. & Tsukada, M. Non-Kolmogorov–Avrami switching kinetics in ferroelectric thin films. Phys. Rev. B 66, 214109 (2002).

    Article  Google Scholar 

  72. Jiang, X. et al. Manipulation of current rectification in van der Waals ferroionic CuInP2S6. Nat. Commun. 13, 574 (2022).

    Article  CAS  Google Scholar 

  73. Xue, F. et al. Two-dimensional ferroelectricity and antiferroelectricity for next-generation computing paradigms. Matter 5, 1999–2014 (2022).

    Article  CAS  Google Scholar 

  74. Cui, C. et al. Intercorrelated in-plane and out-of-plane ferroelectricity in ultrathin two-dimensional layered semiconductor In2Se3. Nano Lett. 18, 1253–1258 (2018).

    Article  CAS  Google Scholar 

  75. Xiao, J. et al. Intrinsic two-dimensional ferroelectricity with dipole locking. Phys. Rev. Lett. 120, 227601 (2018).

    Article  CAS  Google Scholar 

  76. Vasudevan, R. K., Balke, N., Maksymovych, P., Jesse, S. & Kalinin, S. V. Ferroelectric or non-ferroelectric: why so many materials exhibit ‘ferroelectricity’ on the nanoscale. Appl. Phys. Rev. 4, 021302 (2017).

    Article  Google Scholar 

  77. Paillard, C. et al. Photovoltaics with ferroelectrics: current status and beyond. Adv. Mater. 28, 5153–5168 (2016).

    Article  CAS  Google Scholar 

  78. Spanier, J. E. et al. Power conversion efficiency exceeding the Shockley–Queisser limit in a ferroelectric insulator. Nat. Photon. 10, 611–616 (2016).

  79. Akamatsu, T. et al. A van der Waals interface that creates in-plane polarization and a spontaneous photovoltaic effect. Science 372, 68–72 (2021).

    Article  CAS  Google Scholar 

  80. Jiang, J. et al. Flexo-photovoltaic effect in MoS2. Nat. Nanotechnol. 16, 894–901 (2021).

    Article  CAS  Google Scholar 

  81. Li, Y. et al. Enhanced bulk photovoltaic effect in two-dimensional ferroelectric CuInP2S6. Nat. Commun. 12, 5896 (2021).

    Article  CAS  Google Scholar 

  82. Choi, S. H. et al. Large-scale synthesis of graphene and other 2D materials towards industrialization. Nat. Commun. 13, 1484 (2022).

    Article  CAS  Google Scholar 

  83. Koma, A. Van der Waals epitaxy for highly lattice-mismatched systems. J. Cryst. Growth 201, 236–241 (1999).

    Article  Google Scholar 

  84. Chu, Y. H. et al. Domain control in multiferroic BiFeO3 through substrate vicinality. Adv. Mater. 19, 2662–2666 (2007).

    Article  CAS  Google Scholar 

  85. Nguyen, V. L. et al. Layer-controlled single-crystalline graphene film with stacking order via Cu–Si alloy formation. Nat. Nanotechnol. 15, 861–867 (2020).

    Article  CAS  Google Scholar 

  86. Wang, L. et al. Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper. Nature 570, 91–95 (2019).

    Article  CAS  Google Scholar 

  87. Xu, X. et al. Seeded 2D epitaxy of large-area single-crystal films of the van der Waals semiconductor 2H MoTe2. Science 372, 195–200 (2021).

    Article  CAS  Google Scholar 

  88. Wu, Z. et al. Large-scale growth of few-layer two-dimensional black phosphorus. Nat. Mater. 20, 1203–1209 (2021).

    Article  CAS  Google Scholar 

  89. Poh, S. M. et al. Molecular-beam epitaxy of two-dimensional In2Se3 and its giant electroresistance switching in ferroresistive memory junction. Nano Lett. 18, 6340–6346 (2018).

    Article  CAS  Google Scholar 

  90. Wang, X., Sun, Y. & Liu, K. Chemical and structural stability of 2D layered materials. 2D Mater. 6, 042001 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J.W. acknowledges supports from the National Natural Science Foundation of China (Grant No. 12074164), Guangdong Provincial Key Laboratory Program (2021B1212040001) from the Department of Science and Technology of Guangdong Province, and the startup grant from the Southern University of Science and Technology (SUSTech), China. C.W. acknowledges the support from the Shenzhen Science and Technology Program (Grant No. RCBS20210706092215023). L.Y. acknowledges financial support from National Natural Science Foundation of China under Grant No. 12074278, the Natural Science Foundation of the Jiangsu Higher Education Institution of China under Grant No. 20KJA140001, Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions and Jiangsu Specially-Appointed Professors Program. D.C. was supported by Programmable Quantum Materials, an Energy Frontier Research Center funded by the US Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), award DE-SC0019443.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lu You or Junling Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Lain-Jong Li and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., You, L., Cobden, D. et al. Towards two-dimensional van der Waals ferroelectrics. Nat. Mater. 22, 542–552 (2023). https://doi.org/10.1038/s41563-022-01422-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-022-01422-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing