Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Reducing environmental plastic pollution by designing polymer materials for managed end-of-life

Abstract

Plastics are a ubiquitous class of synthetic polymer materials used in virtually all commercial and industrial sectors. The majority of global plastics consists of polymers with carbon–carbon backbones, whose environmental persistence and low cost have resulted in a massive reservoir of plastic waste that resides in landfills and the environment. Although plastic debris contaminating the ocean has been documented for decades, details about plastic debris composition, distribution, impact and ultimate fate in the environment remain elusive. In this Review, we present an overview of environmental plastic contamination and discuss the origin (feedstock) and degradation behaviour of plastics to help inform material design principles addressing end-of-life management. We argue that designing materials to be ‘marine biodegradable’ or universally biodegradable is not, in itself, a solution to plastic pollution. Instead, material and product design principles must include a feasible plan for recovery and treatment based upon existing (or, possibly, simultaneously developed) systems.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Global plastic production.
Fig. 2: Global plastics production and cumulative plastic waste generation since 1950.
Fig. 3: Polymer characterization according to carbon feedstock and biodegradability.
Fig. 4: Existing and proposed pathways for treatment of plastics in municipal solid waste.
Fig. 5: Requirements for polymer design.

References

  1. 1.

    Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017).

    Article  CAS  Google Scholar 

  2. 2.

    International Energy Agency (IEA). The future of petrochemicals. IEA https://www.iea.org/reports/the-future-of-petrochemicals (2018).

  3. 3.

    Horton, A. A., Walton, A., Spurgeon, D. J., Lahive, E. & Svendsen, C. Microplastics in freshwater and terrestrial environments: evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci. Total Environ. 586, 127–141 (2017).

    CAS  Article  Google Scholar 

  4. 4.

    Law, K. L. Plastics in the marine environment. Ann. Rev. Mar. Sci. 9, 205–229 (2017).

    Article  Google Scholar 

  5. 5.

    Jambeck, J. R. et al. Plastic waste inputs from land into the ocean. Science 347, 768–771 (2015).

    CAS  Article  Google Scholar 

  6. 6.

    Kaza, S., Yao, L., Bhada-Tata, P. & Van Woerden, F. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050 (World Bank, 2018).

  7. 7.

    Law, K. L. et al. The United States’ contribution of plastic waste to land and ocean. Sci. Adv. 6, eabd0288 (2020).

    Article  Google Scholar 

  8. 8.

    Carr, S. A., Liu, J. & Tesoro, A. G. Transport and fate of microplastic particles in wastewater treatment plants. Water Res. 91, 174–182 (2016).

    CAS  Article  Google Scholar 

  9. 9.

    World Health Organization (WHO). Microplastics in drinking-water. WHO https://apps.who.int/iris/handle/10665/326499. License: CC BY-NC-SA 3.0 IGO (2019).

  10. 10.

    Zubris, K. A. V. & Richards, B. K. Synthetic fibers as an indicator of land application of sludge. Environ. Poll. 138, 201–211 (2005).

    CAS  Article  Google Scholar 

  11. 11.

    Dris, R. et al. Microplastic contamination in an urban area: a case study in Greater Paris. Environ. Chem. 12, 529–599 (2015).

    Google Scholar 

  12. 12.

    Bergmann, M. et al. White and wonderful? Microplastics prevail in snow from the Alps to the Arctic. Sci. Adv. 5, eaax1157 (2019).

    CAS  Article  Google Scholar 

  13. 13.

    Brahney, J., Hallerud, M., Heim, E., Hahnenberger, M. & Sukumaran, S. Plastic rain in protected areas of the United States. Science 368, 1257–1260 (2020).

    CAS  Article  Google Scholar 

  14. 14.

    Sharma, R. & Ghoshal, G. Emerging trends in food packaging. Nutr. Food Sci. 48, 764–779 (2018).

    Article  Google Scholar 

  15. 15.

    Matthews, C., Moran, F. & Jaiswal, A. K. A review on European Union’s strategy for plastics in a circular economy and its impact on food safety. J. Clean. Prod. 283, 125263 (2021).

    Article  Google Scholar 

  16. 16.

    Kenyon, K. W. & Kridler, E. Laysan albatrosses swallow indigestible matter. Auk 86, 339–343 (1969).

    Article  Google Scholar 

  17. 17.

    Kartar, S., Milne, R. A. & Sainsbury, M. Polystyrene waste in the Severn Estuary. Mar. Pollut. Bull. 4, 144 (1973).

    Article  Google Scholar 

  18. 18.

    Buchanan, J. B. Pollution by synthetic fibres. Mar. Pollut. Bull. 2, 23 (1971).

    Article  Google Scholar 

  19. 19.

    Carpenter, E. J., Anderson, S. J., Harvey, G. R., Miklas, H. P. & Peck, B. B. Polystyrene spherules in coastal waters. Science 178, 749–750 (1972).

    CAS  Article  Google Scholar 

  20. 20.

    Carpenter, E. J. & Smith, K. L. Plastics on the Sargasso sea surface. Science 175, 1240–1241 (1972).

    CAS  Article  Google Scholar 

  21. 21.

    Holmstrom, A. Plastic films on the bottom of the Skagerack. Nature 255, 622–623 (1975).

    CAS  Article  Google Scholar 

  22. 22.

    Venrick, E. L. et al. Man-made objects on the surface of the central North Pacific Ocean. Nature 241, 271 (1973).

    Article  Google Scholar 

  23. 23.

    National Research Council. Assessing Potential Ocean Pollutants: A Report of the Study Panel on Assessing Potential Ocean Pollutants to the Ocean Affairs Board, Commission on Natural Resources, National Research Council (National Academy of Sciences, 1975).

  24. 24.

    Rochman, C. M. et al. The ecological impacts of marine debris: unraveling the demonstrated evidence from what is perceived. Ecology 97, 302–312 (2016).

    Article  Google Scholar 

  25. 25.

    Bucci, K., Tulio, M. & Rochman, C. M. What is known and unknown about the effects of plastic pollution: a meta-analysis and systematic review. Ecol. Appl. 2, e02044 (2020).

    Google Scholar 

  26. 26.

    Zhang, D. et al. Plastic pollution in croplands threatens long-term food security. Glob. Change Biol. 26, 3356–3367 (2020).

    Article  Google Scholar 

  27. 27.

    Zhang, Q. et al. A review of microplastics in table salt, drinking water, and air: direct human exposure. Environ. Sci. Technol. 54, 3740–3751 (2020).

    CAS  Article  Google Scholar 

  28. 28.

    Rochman, C. M. et al. Anthropogenic debris in seafood: plastic debris and fibers from textiles in fish and bivalves sold for human consumption. Sci. Rep. 5, 14340 (2015).

    CAS  Article  Google Scholar 

  29. 29.

    Ribeiro, F. et al. Quantitative analysis of selected plastics in high-commercial-value Australian seafood by pyrolysis gas chromatography mass spectrometry. Environ. Sci. Technol. 54, 9408–9417 (2020).

    CAS  Article  Google Scholar 

  30. 30.

    Mintenig, S. M., Löder, M. G. J., Primpke, S. & Gerdts, G. Low numbers of microplastics detected in drinking water from ground water sources. Sci. Total Environ. 648, 631–635 (2019).

    CAS  Article  Google Scholar 

  31. 31.

    Cox, K. D. et al. Human consumption of microplastics. Environ. Sci. Technol. 53, 7068–7074 (2019).

    CAS  Article  Google Scholar 

  32. 32.

    Woodall, L. C. et al. Using a forensic science approach to minimize environmental contamination and to identify microfibres in marine sediments. Mar. Pollut. Bull. 95, 40–46 (2015).

    CAS  Article  Google Scholar 

  33. 33.

    Allen, S. et al. Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nat. Geosci. 12, 339–344 (2019).

    CAS  Article  Google Scholar 

  34. 34.

    United States Environmental Protection Agency. Plastic Pellets in the Aquatic Environment: Sources and Recommendations (United States Environmental Protection Agency, 1993).

  35. 35.

    Sutton, R., et al. Understanding microplastic levels, pathways, and transport in the San Francisco Bay region. San Francisco Estuary Institute (SFEI) https://www.sfei.org/documents/understanding-microplastics. SFEI Contribution No. 950 (2019).

  36. 36.

    Sherrington, C. Plastics in the marine environment. Eunomia https://www.eunomia.co.uk/reports-tools/plastics-in-the-marine-environment/ (2016).

  37. 37.

    Boucher, J. & Friot, D. Primary microplastics in the oceans: a global evaluation of sources. International Union for Conservation of Nature (IUCN) https://www.iucn.org/content/primary-microplastics-oceans (2017).

  38. 38.

    Lebreton, L. C. M. et al. River plastic emissions to the world’s oceans. Nat. Commun. 8, 15611 (2017).

    CAS  Article  Google Scholar 

  39. 39.

    Schmidt, C., Krauth, T. & Wagner, S. Export of plastic debris by rivers into the sea. Environ. Sci. Technol. 51, 12246–12253 (2017).

    CAS  Article  Google Scholar 

  40. 40.

    Hoellein, T. J. & Rochman, C. M. The “plastic cycle”: a watershed-scale model of plastic pools and fluxes. Front. Ecol. Environ. 19, 176–183 (2021).

    Article  Google Scholar 

  41. 41.

    van Sebille, E. et al. The physical oceanography of the transport of floating marine debris. Environ. Res. Lett. 15, 023003 (2020).

    Article  Google Scholar 

  42. 42.

    Ribic, C. A., Sheavly, S. B., Rugg, D. J. & Erdmann, E. S. Trends and drivers of marine debris on the Atlantic coast of the United States 1997–2007. Mar. Pollut. Bull. 60, 1231–1242 (2010).

    CAS  Article  Google Scholar 

  43. 43.

    Day, R. H., Shaw, D. G. & Ignell, S. E. in Proceedings of the Second International Conference on Marine Debris (eds Shomura, R. S. & Godfrey, M. L.) 185–211 (U.S. Department of Commerce, 1990).

  44. 44.

    Pham, C. K. et al. Marine litter distribution and density in European seas, from the shelves to deep basins. PLoS ONE 9, e95839 (2014).

    Article  CAS  Google Scholar 

  45. 45.

    Hidalgo-Ruz, V., Gutow, L., Thompson, R. C. & Thiel, M. Microplastics in the marine environment: a review of the methods used for identification and quantification. Environ. Sci. Technol. 46, 3060–3075 (2012).

    CAS  Article  Google Scholar 

  46. 46.

    Zhu, X. et al. Identification of microfibers in the environment using multiple lines of evidence. Environ. Sci. Technol. 53, 11877–11887 (2019).

    CAS  Article  Google Scholar 

  47. 47.

    Primpke, S., Lorenz, C., Rascher-Friesenhausen, R. & Gerdts, G. An automated approach for microplastics analysis using focal plane array (FPA) FTIR microscopy and image analysis. Anal. Methods 9, 1499–1511 (2017).

    CAS  Article  Google Scholar 

  48. 48.

    Morét-Ferguson, S. et al. The size, mass, and composition of plastic debris in the western North Atlantic Ocean. Mar. Pollut. Bull. 60, 1873–1878 (2010).

    Article  CAS  Google Scholar 

  49. 49.

    Bergmann, M. et al. High quantities of microplastic in Arctic deep-sea sediments from the HAUSGARTEN observatory. Environ. Sci. Technol. 51, 11000–11010 (2017).

    CAS  Article  Google Scholar 

  50. 50.

    Lehner, R., Weder, C., Petri-Fink, A. & Rothen-Rutishauser, B. Emergence of nanoplastic in the environment and possible impact on human health. Environ. Sci. Technol. 53, 1748–1765 (2019).

    CAS  Article  Google Scholar 

  51. 51.

    Andrady, A. L. Microplastics in the marine environment. Mar. Pollut. Bull. 62, 1596–1605 (2011).

    CAS  Article  Google Scholar 

  52. 52.

    Ward, C. P., Armstrong, C. J., Walsh, A. N., Jackson, J. H. & Reddy, C. M. Sunlight converts polystyrene to carbon dioxide and dissolved organic carbon. Environ. Sci. Technol. Lett. 6, 669–674 (2019).

    CAS  Article  Google Scholar 

  53. 53.

    Zhu, L., Zhao, S., Bittar, T. B., Stubbins, A. & Li, D. Photochemical dissolution of buoyant microplastics to dissolved organic carbon: rates and microbial impacts. J. Hazard. Mater. 383, 121065 (2020).

    CAS  Article  Google Scholar 

  54. 54.

    Lebreton, L. et al. Evidence that the Great Pacific Garbage Patch is rapidly accumulating plastic. Sci. Rep. 8, 4666 (2018).

    CAS  Article  Google Scholar 

  55. 55.

    Andrady, A. L. The plastic in microplastics: a review. Mar. Pollut. Bull. 119, 12–22 (2017).

    CAS  Article  Google Scholar 

  56. 56.

    ter Halle, A. et al. Understanding the fragmentation pattern of marine plastic debris. Environ. Sci. Technol. 50, 5668–5675 (2016).

    Article  CAS  Google Scholar 

  57. 57.

    Ward, C. P. & Reddy, C. M. Opinion: we need better data about the environmental persistence of plastic goods. Proc. Natl Acad. Sci. USA 117, 14618–14621 (2020).

    CAS  Article  Google Scholar 

  58. 58.

    Jahnke, A. et al. Reducing uncertainty and confronting ignorance about the possible impacts of weathering plastic in the marine environment. Environ. Sci. Technol. Lett. 4, 85–90 (2017).

    CAS  Article  Google Scholar 

  59. 59.

    Chamas, A. et al. Degradation rates of plastics in the environment. ACS Sustain. Chem. Eng. 8, 3494–3511 (2020).

    CAS  Article  Google Scholar 

  60. 60.

    Bioplastics Magazine. The global bio-based polymer market in 2019–a revised view. Bioplastics Magazine https://www.bioplasticsmagazine.com/en/news/meldungen/20200127-The-global-bio-based-polymer-market-in-2019-A-revised-view.php (2020).

  61. 61.

    Narayan, R. Carbon footprint of bioplastics using biocarbon content analysis and life-cycle assessment. MRS Bull. 36, 716–721 (2011).

    CAS  Article  Google Scholar 

  62. 62.

    Folino, A., Karageorgiou, A., Calabrò, P. S. & Komilis, D. Biodegradation of wasted bioplastics in natural and industrial environments: a review. Sustainability 12, 6030 (2020).

    CAS  Article  Google Scholar 

  63. 63.

    Albertsson, A.-C. & Hakkarainen, M. Designed to degrade. Science 358, 872–873 (2017).

    CAS  Article  Google Scholar 

  64. 64.

    Zumstein, M. T., Narayan, R., Kohler, H.-P. E., McNeill, K. & Sander, M. Dos and do nots when assessing the biodegradation of plastics. Environ. Sci. Technol. 53, 9967–9969 (2019).

    CAS  Article  Google Scholar 

  65. 65.

    Yang, Y. et al. Biodegradation and mineralization of polystyrene by plastic-eating mealworms: part 1. Chemical and physical characterization and isotopic tests. Environ. Sci. Technol. 49, 12080–12086 (2015).

    CAS  Article  Google Scholar 

  66. 66.

    Pagga, U., Schäfer, A., Müller, R.-J. & Pantke, M. Determination of the aerobic biodegradability of polymeric material in aquatic batch tests. Chemosphere 42, 319–331 (2001).

    CAS  Article  Google Scholar 

  67. 67.

    Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C. & Wang, W. An improved in situ and satellite SST analysis for climate. J. Clim. 15, 1609–1625 (2002).

    Article  Google Scholar 

  68. 68.

    Narayan, R. in Soil Degradable Bioplastics for a Sustainable Modern Agriculture Ch. 2 (ed. Malinconico, M.) 23–34 (Springer, 2017).

  69. 69.

    Harrison, J. P., Boardman, C., O’Callaghan, K., Delort, A.-M. & Song, J. Biodegradability standards for carrier bags and plastic films in aquatic environments: a critical review. R. Soc. Open Sci. 5, 171792 (2018).

    Article  CAS  Google Scholar 

  70. 70.

    Borrelle, S. B. et al. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science 369, 1515–1518 (2020).

    CAS  Article  Google Scholar 

  71. 71.

    Lau, W. W. Y. et al. Evaluating scenarios toward zero plastic pollution. Science 369, 1455–1461 (2020).

    CAS  Article  Google Scholar 

  72. 72.

    Stahel, W. R. Circular economy. Nature 531, 435–438 (2016).

    CAS  Article  Google Scholar 

  73. 73.

    Ellen MacArthur Foundation. The new plastics economy: rethinking the future of plastics. Ellen MacArthur Foundation https://ellenmacarthurfoundation.org/the-new-plastics-economy-rethinking-the-future-of-plastics (2016).

  74. 74.

    Zink, T. & Geyer, R. Circular economy rebound: circular economy rebound. J. Ind. Ecol. 21, 593–602 (2017).

    Article  Google Scholar 

  75. 75.

    Hong, M. & Chen, E. Y.-X. Future directions for sustainable polymers. Trends Chem. 1, 148–151 (2019).

    CAS  Article  Google Scholar 

  76. 76.

    Zumstein, M. T. et al. Biodegradation of synthetic polymers in soils: tracking carbon into CO2 and microbial biomass. Sci. Adv. 4, eaas9024 (2018).

    CAS  Article  Google Scholar 

  77. 77.

    Sintim, H. Y. & Flury, M. Is biodegradable plastic mulch the solution to agriculture’s plastic problem? Environ. Sci. Technol. 51, 1068–1069 (2017).

    CAS  Article  Google Scholar 

  78. 78.

    Wierckx, N. et al. Plastic waste as a novel substrate for industrial biotechnology: plastic waste as substrate for biotechnology. Microb. Biotechnol. 8, 900–903 (2015).

    Article  Google Scholar 

  79. 79.

    Wei, R. & Zimmermann, W. Microbial enzymes for the recycling of recalcitrant petroleum-based plastics: how far are we? Microb. Biotechnol. 10, 1308–1322 (2017).

    CAS  Article  Google Scholar 

  80. 80.

    Yoshida, S. et al. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 351, 1196–1199 (2016).

    CAS  Article  Google Scholar 

  81. 81.

    Austin, H. P. et al. Characterization and engineering of a plastic-degrading aromatic polyesterase. Proc. Natl Acad. Sci. USA 115, E4350–E4357 (2018).

    CAS  Article  Google Scholar 

  82. 82.

    Knott, B. C. et al. Characterization and engineering of a two-enzyme system for plastics depolymerization. Proc. Natl Acad. Sci. USA 117, 25476–25485 (2020).

    CAS  Article  Google Scholar 

  83. 83.

    Tournier, V. et al. An engineered PET depolymerase to break down and recycle plastic bottles. Nature 580, 216–219 (2020).

    CAS  Article  Google Scholar 

  84. 84.

    Rorrer, N. A. et al. Combining reclaimed PET with bio-based monomers enables plastics upcycling. Joule 3, 1006–1027 (2019).

    CAS  Article  Google Scholar 

  85. 85.

    Goldstein, N. Quantifying Existing Food Waste Composting Infrastructure in the U.S. (BioCycle, 2019).

  86. 86.

    International Solid Waste Association (ISWA). Waste and Climate Change: ISWA White Paper (International Solid Waste Association, 2009).

  87. 87.

    Rodrigues, L. C. et al. The impact of improper materials in biowaste on the quality of compost. J. Clean. Prod. 251, 119601 (2020).

    Article  Google Scholar 

  88. 88.

    Bandini, F. et al. Fate of biodegradable polymers under industrial conditions for anaerobic digestion and aerobic composting of food waste. J. Polym. Environ. 28, 2539–2550 (2020).

    CAS  Article  Google Scholar 

  89. 89.

    Taufik, D., Reinders, M. J., Molenveld, K. & Onwezen, M. C. The paradox between the environmental appeal of bio-based plastic packaging for consumers and their disposal behaviour. Sci. Total Environ. 705, 135820 (2020).

    CAS  Article  Google Scholar 

  90. 90.

    Coates, G. W. & Getzler, Y. D. Y. L. Chemical recycling to monomer for an ideal, circular polymer economy. Nat. Rev. Mater. 5, 501–516 (2020).

    CAS  Article  Google Scholar 

  91. 91.

    Zhang, X., Fevre, M., Jones, G. O. & Waymouth, R. M. Catalysis as an enabling science for sustainable polymers. Chem. Rev. 118, 839–885 (2018).

    CAS  Article  Google Scholar 

  92. 92.

    Zhu, J.-B., Watson, E. M., Tang, J. & Chen, E. Y.-X. A synthetic polymer system with repeatable chemical recyclability. Science 360, 398–403 (2018).

    CAS  Article  Google Scholar 

  93. 93.

    Rahimi, A. & García, J. M. Chemical recycling of waste plastics for new materials production. Nat. Rev. Chem. 1, 0046 (2017).

    Article  CAS  Google Scholar 

  94. 94.

    Ragaert, K., Delva, L. & Van Geem, K. Mechanical and chemical recycling of solid plastic waste. Waste Manag. 69, 24–58 (2017).

    CAS  Article  Google Scholar 

  95. 95.

    Thiounn, T. & Smith, R. C. Advances and approaches for chemical recycling of plastic waste. J. Polym. Sci. 58, 1347–1364 (2020).

    CAS  Article  Google Scholar 

  96. 96.

    Anastas, P. T. & Zimmerman, J. B. Design through the 12 principles of green engineering. Environ. Sci. Technol. 37, 94A–101A (2003).

    Article  Google Scholar 

  97. 97.

    Nicholson, S. R., Rorrer, N. A., Carpenter, A. C. & Beckham, G. T. Manufacturing energy and greenhouse gas emissions associated with plastics consumption. Joule 5, 1–14 (2021).

    Article  CAS  Google Scholar 

  98. 98.

    Al-Salem, S. M., Lettieri, P. & Baeyens, J. Recycling and recovery routes of plastic solid waste (PSW): a review. Waste Manag. 29, 2625–2643 (2009).

    CAS  Article  Google Scholar 

  99. 99.

    Ignatyev, I. A., Thielemans, W. & Vander Beke, B. Recycling of polymers: a review. ChemSusChem 7, 1579–1593 (2014).

    CAS  Article  Google Scholar 

  100. 100.

    Rogoff, M. J. & Ross, D. E. The future of recycling in the United States. Waste Manag. Res. 34, 181–183 (2016).

    Article  Google Scholar 

  101. 101.

    Waste Management. WM Report on Recycling (Waste Management, 2020).

  102. 102.

    Zink, T. & Geyer, R. Material recycling and the myth of landfill diversion. J. Ind. Ecol. 23, 541–548 (2019).

    CAS  Article  Google Scholar 

  103. 103.

    Britt, P. F. et al. Report of the Basic Energy Sciences Roundtable on Chemical Upcycling of Polymers (U.S. Department of Energy, 2019).

  104. 104.

    Fullerton, D. & Wu, W. Policies for green design. J. Environ. Econ. Manag. 36, 131–148 (1998).

    Article  Google Scholar 

  105. 105.

    Allwood, J. M. Sustainable materials. Nat. Rev. Mater. 1, 15009 (2016).

    CAS  Article  Google Scholar 

  106. 106.

    Mitrano, D. M. & Wohlleben, W. Microplastic regulation should be more precise to incentivize both innovation and environmental safety. Nat. Commun. 11, 5324 (2020).

    CAS  Article  Google Scholar 

  107. 107.

    Jakovcevic, A. et al. Charges for plastic bags: motivational and behavioral effects. J. Environ. Psychol. 40, 372–380 (2014).

    Article  Google Scholar 

  108. 108.

    Consumer Brands Association. Achieving America’s Recycling Future: Consumer Brands Association Position on the Optimal Recycling System (Consumer Brands Association, 2020).

  109. 109.

    Coelho, P. M., Corona, B., ten Klooster, R. & Worrell, E. Sustainability of reusable packaging–Current situation and trends. Resour. Conserv. Recycl. X 6, 100037 (2020).

    Google Scholar 

  110. 110.

    Kuhn, S., Bravo Rebolledo E. L. & van Franeker, J. A. in Marine Anthropogenic Litter Ch. 4 (eds. Bergmann, M., Gutow, L., & Klages, M.) 75–115 (Springer Open, 2015).

  111. 111.

    Fowler, C. Marine debris and northern fur seals: a case study. Mar. Pollut. Bull. 18, 326–335 (1987).

    Article  Google Scholar 

  112. 112.

    Nava, V. & Leoni, B. A critical review of interactions between microplastics, microalgae and aquatic ecosystem function. Water Res. 188, 116476 (2021).

    CAS  Article  Google Scholar 

  113. 113.

    Amaral-Zettler, L. A., Zettler, E. R. & Mincer, T. J. Ecology of the plastisphere. Nat. Rev. Microbiol. 18, 139–151 (2020).

    CAS  Article  Google Scholar 

  114. 114.

    Goldstein, M. C. & Goodwin, D. S. Gooseneck barnacles (Lepas spp.) ingest microplastic debris in the North Pacific Subtropical Gyre. PeerJ 1, e184 (2013).

    Article  Google Scholar 

  115. 115.

    Kiessling, T., Gutow, L., Thiel, M. in Marine Anthropogenic Litter Ch. 6 (eds. Bergmann, M., Gutow, L., & Klages, M.) 141–181 (Springer Open, 2015).

  116. 116.

    Carlton, J. T. et al. Tsunami-driven rafting: transoceanic species dispersal and implications for marine biogeography. Science 357, 1402–1406 (2017).

    CAS  Article  Google Scholar 

  117. 117.

    de Stephanis, R., Giménez, J., Carpinelli, E., Gutierrez-Exposito, C. & Cañadas, A. As main meal for sperm whales: plastics debris. Mar. Pollut. Bull. 69, 206–214 (2013).

    Article  CAS  Google Scholar 

  118. 118.

    Rochman, C. M., Kurobe, T., Flores, I. & Teh, S. J. Early warning signs of endocrine disruption in adult fish from the ingestion of polyethylene with and without sorbed chemical pollutants from the marine environment. Sci. Total Environ. 493, 656–661 (2014).

    CAS  Article  Google Scholar 

  119. 119.

    Browne, M. A., Niven, S. J., Galloway, T. S., Rowland, S. J. & Thompson, R. C. Microplastic moves pollutants and additives to worms, reducing functions linked to health and biodiversity. Curr. Biol. 23, 2388–2392 (2013).

    CAS  Article  Google Scholar 

  120. 120.

    Hirai, H. et al. Organic micropollutants in marine plastics debris from the open ocean and remote and urban beaches. Mar. Pollut. Bull. 62, 1683–1692 (2011).

    CAS  Article  Google Scholar 

  121. 121.

    Sussarellu, R. et al. Oyster reproduction is affected by exposure to polystyrene microplastics. Proc. Natl Acad. Sci. USA 113, 2430–2435 (2016).

    CAS  Article  Google Scholar 

  122. 122.

    Ogonowski, M., Schür, C., Jarsén, Å. & Gorokhova, E. The effects of natural and anthropogenic microparticles on individual fitness in Daphnia magna. PLoS One 11, e0155063 (2016).

    Article  CAS  Google Scholar 

  123. 123.

    Burns, E. E. & Boxall, A. B. A. Microplastics in the aquatic environment: evidence for or against adverse impacts and major knowledge gaps: microplastics in the environment. Environ. Toxicol. Chem. 37, 2776–2796 (2018).

    CAS  Article  Google Scholar 

  124. 124.

    Hanke, U. M., Ward, C. P. & Reddy, C. M. Leveraging lessons learned from black carbon research to study plastics in the environment. Environ. Sci. Technol. 53, 6599–6600 (2019).

    CAS  Article  Google Scholar 

  125. 125.

    Koelmans, A. A. et al. Risks of plastic debris: unravelling fact, opinion, perception, and belief. Environ. Sci. Technol. 51, 11513–11519 (2017).

    CAS  Article  Google Scholar 

  126. 126.

    Thompson, R. C. et al. Lost at sea: where is all the plastic? Science 304, 838–838 (2004).

    CAS  Article  Google Scholar 

  127. 127.

    Arthur, C., Baker, J. & Bamford, H. in Proceedings of the International Research Workshop on the Occurrence, Effects, and Fate of Microplastic Marine Debris (eds Baker, C. J. & Bamford, H.) 49 (National Oceanic and Atmospheric Administration, 2009).

  128. 128.

    Enders, K., Lenz, R., Stedmon, C. A. & Nielsen, T. G. Abundance, size and polymer composition of marine microplastics ≥10 μm in the Atlantic Ocean and their modelled vertical distribution. Mar. Pollut. Bull. 100, 70–81 (2015).

    CAS  Article  Google Scholar 

  129. 129.

    Hartmann, N. B. et al. Are we speaking the same language? Recommendations for a definition and categorization framework for plastic debris. Environ. Sci. Technol. 53, 1039–1047 (2019).

    CAS  Article  Google Scholar 

  130. 130.

    Filella, M. Questions of size and numbers in environmental research on microplastics: methodological and conceptual aspects. Environ. Chem. 12, 527–538 (2015).

    CAS  Article  Google Scholar 

  131. 131.

    Lambert, S. & Wagner, M. Characterisation of nanoplastics during the degradation of polystyrene. Chemosphere 145, 265–268 (2016).

    CAS  Article  Google Scholar 

  132. 132.

    ter Halle, A. et al. Nanoplastic in the North Atlantic subtropical gyre. Environ. Sci. Technol. 51, 13689–13697 (2017).

    Article  CAS  Google Scholar 

  133. 133.

    Alimi, O. S., Farner Budarz, J., Hernandez, L. M. & Tufenkji, N. Microplastics and nanoplastics in aquatic environments: aggregation, deposition, and enhanced contaminant transport. Environ. Sci. Technol. 52, 1704–1724 (2018).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Funding for K.L.L. was provided by the March Marine Initiative, a project of March Limited in Hamilton, Bermuda. The authors thank R. Geyer for providing updated global plastic production data (2016–2018) from the model published in Geyer et al. (2017)1. The authors thank Apoorva Kulkarni, PhD student in chemical engineering at Michigan State University, for compiling data on cellulose biodegradation. They also thank T. R. Siegler and N. Starr for helpful discussion, and E. Wolman and the reviewers for comments that improved the manuscript.

Author information

Affiliations

Authors

Contributions

Both authors contributed to the design and content of the manuscript. K.L.L. wrote the manuscript and both authors edited and revised the manuscript prior to submission.

Corresponding author

Correspondence to Kara Lavender Law.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Materials thanks Denise Mitrano and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Alliance to End Plastic Waste: https://endplasticwaste.org/

ASTM (D6866): https://www.astm.org/Standards/D6866.htm

Biodegradable Products Institute: https://bpiworld.org/

Collection of initiatives: https://www.newplasticseconomy.org/projects/plastics-pact

Industrial composters: https://www.oregon.gov/deq/mm/Documents/MessagefromComposter-En.pdf

ReSouce Plastic: https://resource-plastic.com/

Sustainable development goals: https://www.undp.org/content/undp/en/home/sustainable-development-goals/goal-12-responsible-consumption-and-production.html

The Association of Plastic Recyclers (APR) Design Guide for Plastics Recyclability: https://plasticsrecycling.org/apr-design-guide

TÜV Austria: https://www.tuv-at.be/green-marks/certifications/

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Law, K.L., Narayan, R. Reducing environmental plastic pollution by designing polymer materials for managed end-of-life. Nat Rev Mater (2021). https://doi.org/10.1038/s41578-021-00382-0

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing