Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Bio-based polymers with performance-advantaged properties


Bio-based compounds with unique chemical functionality can be obtained through selective transformations of plant and other non-fossil, biogenic feedstocks for the development of new polymers to displace those produced from fossil carbon feedstocks. Although substantial efforts have been invested to produce bio-based polymers that are chemically identical to and directly replace those from petroleum, a long-pursued goal is to synthesize new, sustainable, bio-based polymers that either functionally replace or exhibit performance advantages relative to incumbent polymers. Owing to anthropogenic climate change and the environmental consequences of global plastics pollution, the need to realize a bio-based materials economy at scale is critical. To that end, in this Review we describe the concept of performance-advantaged, bio-based polymers (PBPs), highlighting examples wherein superior performance is facilitated by the inherent chemical functionality of bio-based feedstocks. We focus on PBPs with C–O and C–N inter-unit chemical bonds, as these are often readily accessible from bio-based feedstocks, which are heteroatom-rich relative to petroleum-derived feedstocks. Finally, we outline guiding principles and challenges to aid progress in the development of PBPs.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Van Krevelen diagram for select polymers.
Fig. 2: Polymers from biomass.
Fig. 3: Fundamental thermomechanical polymer properties.
Fig. 4: Variety of available bio-based polymer architectures with C–O inter-monomer linkages.
Fig. 5: Design and synthesis of bio-epoxy resins.
Fig. 6: Use of bio-derived functionalities in C–N linked polymers.


  1. 1.

    Andrady, A. L. & Neal, M. A. Applications and societal benefits of plastics. Phil. Trans. R. Soc. B 364, 1977–1984 (2009).

    CAS  Article  Google Scholar 

  2. 2.

    Davis, S. J., Caldeira, K. & Matthews, H. D. Future CO2 emissions and climate change from existing energy infrastructure. Science 329, 1330–1333 (2010).

    CAS  Article  Google Scholar 

  3. 3.

    World Economic Forum, Ellen MacArthur Foundation & McKinsey. The new plastics economy — rethinking the future of plastics (World Economic Forum, 2016).

  4. 4.

    MacArthur, E. Beyond plastic waste. Science 358, 843–843 (2017).

    CAS  Article  Google Scholar 

  5. 5.

    Hermann, B. G., Blok, K. & Patel, M. K. Producing bio-based bulk chemicals using industrial biotechnology saves energy and combats climate change. Environ. Sci. Technol. 41, 7915–7921 (2007).

    CAS  Article  Google Scholar 

  6. 6.

    Dodds, D. R. & Gross, R. A. Chemicals from biomass. Science 318, 1250–1251 (2007).

    CAS  Article  Google Scholar 

  7. 7.

    Bozell, J. J. & Petersen, G. R. Technology development for the production of biobased products from biorefinery carbohydrates — the US Department of Energy’s “top 10” revisited. Green Chem. 12, 539–554 (2010).

    CAS  Article  Google Scholar 

  8. 8.

    Tuck, C. O., Pérez, E., Horváth, I. T., Sheldon, R. A. & Poliakoff, M. Valorization of biomass: deriving more value from waste. Science 337, 695–699 (2012).

    CAS  Article  Google Scholar 

  9. 9.

    Shen, L., Worrell, E. & Patel, M. K. Comparing life cycle energy and GHG emissions of bio-based PET, recycled PET, PLA, and man-made cellulosics. Biofuel Bioprod. Biorefin. 6, 625–639 (2012).

    CAS  Article  Google Scholar 

  10. 10.

    Weiss, M. et al. A review of the environmental impacts of biobased materials. J. Ind. Ecol. 16, S169–S181 (2012).

    CAS  Article  Google Scholar 

  11. 11.

    Chen, G.-Q. & Patel, M. K. Plastics derived from biological sources: present and future: a technical and environmental review. Chem. Rev. 112, 2082–2099 (2012).

    CAS  Article  Google Scholar 

  12. 12.

    Babu, R. P., O’Connor, K. & Seeram, R. Current progress on bio-based polymers and their future trends. Prog. Biomater. 2, 8–23 (2013).

    Article  Google Scholar 

  13. 13.

    Sheldon, R. A. Green and sustainable manufacture of chemicals from biomass: state of the art. Green Chem. 16, 950–963 (2014).

    CAS  Article  Google Scholar 

  14. 14.

    Gandini, A. & Lacerda, T. M. From monomers to polymers from renewable resources: recent advances. Prog. Polym. Sci. 48, 1–39 (2015).

    CAS  Article  Google Scholar 

  15. 15.

    Isikgor, F. H. & Becer, C. R. Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym. Chem. 6, 4497–4559 (2015).

    CAS  Article  Google Scholar 

  16. 16.

    Zhu, Y., Romain, C. & Williams, C. K. Sustainable polymers from renewable resources. Nature 540, 354–362 (2016).

    CAS  Article  Google Scholar 

  17. 17.

    Delidovich, I. et al. Alternative monomers based on lignocellulose and their use for polymer production. Chem. Rev. 116, 1540–1599 (2016).

    CAS  Article  Google Scholar 

  18. 18.

    Galbis, J. A., García-Martín, Md. G., de Paz, M. V. & Galbis, E. Synthetic polymers from sugar-based monomers. Chem. Rev. 116, 1600–1636 (2016).

    CAS  Article  Google Scholar 

  19. 19.

    Hillmyer, M. A. The promise of plastics from plants. Science 358, 868–870 (2017).

    CAS  Article  Google Scholar 

  20. 20.

    Shanks, B. H. & Keeling, P. L. Bioprivileged molecules: creating value from biomass. Green Chem. 19, 3177–3185 (2017).

    CAS  Article  Google Scholar 

  21. 21.

    Zhang, X., Fevre, M., Jones, G. O. & Waymouth, R. M. Catalysis as an enabling science for sustainable polymers. Chem. Rev. 118, 839–885 (2018).

    CAS  Article  Google Scholar 

  22. 22.

    Debuissy, T., Pollet, E. & Avérous, L. Biotic and abiotic synthesis of renewable aliphatic polyesters from short building blocks obtained from biotechnology. ChemSusChem 11, 3836–3870 (2018).

    CAS  Article  Google Scholar 

  23. 23.

    Hong, M. & Chen, E. Y.-X. Future directions for sustainable polymers. Trends Chem. 1, 148–151 (2019).

    CAS  Article  Google Scholar 

  24. 24.

    Nicholson, S. R., Rorrer, N. A., Carpenter, A. C. & Beckham, G. T. Manufacturing energy and greenhouse gas emissions associated with plastics consumption. Joule 5, 673–686 (2021).

    CAS  Article  Google Scholar 

  25. 25.

    Nikolau, B. J., Perera, M. A. D. N., Brachova, L. & Shanks, B. Platform biochemicals for a biorenewable chemical industry. Plant J. 54, 536–545 (2008).

    CAS  Article  Google Scholar 

  26. 26.

    Hermann, B. G. & Patel, M. Today’s and tomorrow’s bio-based bulk chemicals from white biotechnology. Appl. Biochem. Biotechnol. 136, 361–388 (2007).

    CAS  Article  Google Scholar 

  27. 27.

    Fitzgerald, N. D. Chemistry challenges to enable a sustainable bioeconomy. Nat. Rev. Chem. 1, 0080 (2017).

    CAS  Article  Google Scholar 

  28. 28.

    Fitzgerald, N. & Bailey, A. Moving Beyond Drop-in Replacements: Performance-advantaged Biobased Chemicals (US Department of Energy Office of Energy Efficiency and Renewable Energy Bioenergy Technologies Office, 2018).

  29. 29.

    Klemm, D., Heublein, B., Fink, H. P. & Bohn, A. Cellulose: fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed. 44, 3358–3393 (2005).

    CAS  Article  Google Scholar 

  30. 30.

    Upton, B. M. & Kasko, A. M. Strategies for the conversion of lignin to high-value polymeric materials: review and perspective. Chem. Rev. 116, 2275–2306 (2016).

    CAS  Article  Google Scholar 

  31. 31.

    Scheller, H. V. & Ulvskov, P. Hemicelluloses. Annu. Rev. Plant Biol. 61, 263–289 (2010).

    CAS  Article  Google Scholar 

  32. 32.

    Mohnen, D. Pectin structure and biosynthesis. Curr. Opin. Plant Biol. 11, 266–277 (2008).

    CAS  Article  Google Scholar 

  33. 33.

    Boerjan, W., Ralph, J. & Baucher, M. Lignin biosynthesis. Annu. Rev. Plant Biol. 54, 519–546 (2003).

    CAS  Article  Google Scholar 

  34. 34.

    Chundawat, S. P., Beckham, G. T., Himmel, M. E. & Dale, B. E. Deconstruction of lignocellulosic biomass to fuels and chemicals. Annu. Rev. Chem. Biomol. Eng. 2, 121–145 (2011).

    CAS  Article  Google Scholar 

  35. 35.

    Pollard, M., Beisson, F., Li, Y. & Ohlrogge, J. B. Building lipid barriers: biosynthesis of cutin and suberin. Trends Plant Sci. 13, 236–246 (2008).

    CAS  Article  Google Scholar 

  36. 36.

    Rinaudo, M. Chitin and chitosan: properties and applications. Prog. Polym. Sci. 31, 603–632 (2006).

    CAS  Article  Google Scholar 

  37. 37.

    Yan, N. & Chen, X. Sustainability: don’t waste seafood waste. Nature 524, 155–157 (2015).

    CAS  Article  Google Scholar 

  38. 38.

    Hülsey, M. J., Yang, H. & Yan, N. Sustainable routes for the synthesis of renewable heteroatom-containing chemicals. ACS Sus. Chem. Eng. 6, 5694–5707 (2018).

    Article  CAS  Google Scholar 

  39. 39.

    Ma, X. et al. Upcycling chitin-containing waste into organonitrogen chemicals via an integrated process. Proc. Natl Acad. Sci. USA 117, 7719–7728 (2020).

    CAS  Article  Google Scholar 

  40. 40.

    Lee, S. Y. et al. A comprehensive metabolic map for production of bio-based chemicals. Nat. Catal. 2, 18–33 (2019).

    CAS  Article  Google Scholar 

  41. 41.

    Wheeldon, I., Christopher, P. & Blanch, H. Integration of heterogeneous and biochemical catalysis for production of fuels and chemicals from biomass. Curr. Opin. Biotechnol. 45, 127–135 (2017).

    CAS  Article  Google Scholar 

  42. 42.

    Zhou, X. et al. Computational framework for the identification of bioprivileged molecules. ACS Sus. Chem. Eng. 7, 2414–2428 (2019).

    CAS  Article  Google Scholar 

  43. 43.

    Huo, J. & Shanks, B. H. Bioprivileged molecules: integrating biological and chemical catalysis for biomass conversion. Annu. Rev. Chem. Biomol. Eng. 11, 63–85 (2020).

    Article  Google Scholar 

  44. 44.

    Nguyen, H. T. H., Qi, P., Rostagno, M., Feteha, A. & Miller, S. A. The quest for high glass transition temperature bioplastics. J. Mater. Chem. A 6, 9298–9331 (2018).

    CAS  Article  Google Scholar 

  45. 45.

    Gandini, A. & Lacerda, T. M. Polymers from Plant Oils 2nd edn (Scrivener Publishing, 2019).

  46. 46.

    Mahajan, J. S., O’Dea, R. M., Norris, J. B., Korley, L. T. J. & Epps, T. H. Aromatics from lignocellulosic biomass: a platform for high-performance thermosets. ACS Sus. Chem. Eng. 8, 15072–15096 (2020).

    CAS  Article  Google Scholar 

  47. 47.

    Scott, A. Styrene leak in India kills at least 13. Chemical & Engineering News (2020).

  48. 48.

    Terasaki, M., Kazama, T., Shiraishi, F. & Makino, M. Identification and estrogenic characterization of impurities in commercial bisphenol A diglycidyl ether (BADGE). Chemosphere 65, 873–880 (2006).

    CAS  Article  Google Scholar 

  49. 49.

    Shi, M., Sekulovski, N., MacLean, J. A. & Hayashi, K. Effects of bisphenol A analogues on reproductive functions in mice. Reprod. Toxicol. 73, 280–291 (2017).

    CAS  Article  Google Scholar 

  50. 50.

    Ramskov Tetzlaff, C. N., Svingen, T., Vinggaard, A. M., Rosenmai, A. K. & Taxvig, C. Bisphenols B, E, F, and S and 4-cumylphenol induce lipid accumulation in mouse adipocytes similarly to bisphenol A. Environ. Toxicol. 35, 543–552 (2020).

    CAS  Article  Google Scholar 

  51. 51.

    Koelewijn, S. F. et al. Sustainable bisphenols from renewable softwood lignin feedstock for polycarbonates and cyanate ester resins. Green Chem. 19, 2561–2570 (2017).

    CAS  Article  Google Scholar 

  52. 52.

    Rorrer, N. A., Vardon, D. R., Dorgan, J. R., Gjersing, E. J. & Beckham, G. T. Biomass-derived monomers for performance-differentiated fiber reinforced polymer composites. Green Chem. 19, 2812–2825 (2017).

    CAS  Article  Google Scholar 

  53. 53.

    Koelewijn, S. F. et al. Promising bulk production of a potentially benign bisphenol A replacement from a hardwood lignin platform. Green Chem. 20, 1050–1058 (2018).

    CAS  Article  Google Scholar 

  54. 54.

    Patel, A., Maiorana, A., Yue, L., Gross, R. A. & Manas-Zloczower, I. Curing kinetics of biobased epoxies for tailored applications. Macromolecules 49, 5315–5324 (2016).

    CAS  Article  Google Scholar 

  55. 55.

    Kurian, J. V. A new polymer platform for the future — Sorona® from corn derived 1,3-propanediol. Polym. Env. 13, 159–167 (2005).

    CAS  Article  Google Scholar 

  56. 56.

    Sarathchandran, C., Chan, C. H., Karim, S. R. B. A. & Thomas, S. in Physical Chemistry of Macromolecules Ch. 19 (eds Chan, C. H, Chia, C. H. & Thomas, S.) 573–617 (Apple Academic, 2014).

  57. 57.

    Bomgardner, M. Is clarity coming for biobased chemicals? C&EN Glob. Enterp. 98, 28–33 (2020).

    CAS  Google Scholar 

  58. 58.

    Gowda, R. R. & Chen, E. Y.-X. in Encyclopedia of Polymer Science and Technology (Wiley, 2013).

  59. 59.

    Satoh, K. Controlled/living polymerization of renewable vinyl monomers into bio-based polymers. Polym. J. 47, 527–536 (2015).

    CAS  Article  Google Scholar 

  60. 60.

    Winnacker, M. & Rieger, B. Recent progress in sustainable polymers obtained from cyclic terpenes: synthesis, properties, and application potential. ChemSusChem 8, 2455–2471 (2015).

    CAS  Article  Google Scholar 

  61. 61.

    Kristufek, S. L., Wacker, K. T., Tsao, Y.-Y. T., Su, L. & Wooley, K. L. Monomer design strategies to create natural product-based polymer materials. Nat. Prod. Rep. 34, 433–459 (2017).

    CAS  Article  Google Scholar 

  62. 62.

    Winnacker, M. Pinenes: abundant and renewable building blocks for a variety of sustainable polymers. Angew. Chem. Int. Ed. 57, 14362–14371 (2018).

    CAS  Article  Google Scholar 

  63. 63.

    Gilsdorf, R. A., Nicki, M. A. & Chen, E. Y. X. High chemical recyclability of vinyl lactone acrylic bioplastics. Polym. Chem. 11, 4942–4950 (2020).

    CAS  Article  Google Scholar 

  64. 64.

    Hillmyer, M. A. & Tolman, W. B. Aliphatic polyester block polymers: renewable, degradable, and sustainable. Acc. Chem. Res. 47, 2390–2396 (2014).

    CAS  Article  Google Scholar 

  65. 65.

    Muñoz-Guerra, S., Lavilla, C., Japu, C. & Martínez de Ilarduya, A. Renewable terephthalate polyesters from carbohydrate-based bicyclic monomers. Green Chem. 16, 1716–1739 (2014).

    Article  Google Scholar 

  66. 66.

    Tullo, A. H. A biopolymer whose time has come. C&EN Glob. Enterp. 97, 20–21 (2019).

    CAS  Google Scholar 

  67. 67.

    Martínez de Ilarduya, A. & Muñoz Guerra, S. Ring opening polymerization of macrocyclic oligoesters derived from renewable sources. Polym. Chem. 11, 4850–4860 (2020).

    Article  Google Scholar 

  68. 68.

    Gregory, G. L., López-Vidal, E. M. & Buchard, A. Polymers from sugars: cyclic monomer synthesis, ring-opening polymerisation, material properties and applications. ChemComm 53, 2198–2217 (2017).

    CAS  Google Scholar 

  69. 69.

    Muhammadi, Shabina, Afzal, M. & Hameed, S. Bacterial polyhydroxyalkanoates-eco-friendly next generation plastic: production, biocompatibility, biodegradation, physical properties and applications. Green Chem. Lett. Rev. 8, 56–77 (2015).

    Article  CAS  Google Scholar 

  70. 70.

    Anjum, A. et al. Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: a review of recent advancements. Int. J. Biol. Macromol. 89, 161–174 (2016).

    CAS  Article  Google Scholar 

  71. 71.

    Longo, J. M., Sanford, M. J. & Coates, G. W. Ring-opening copolymerization of epoxides and cyclic anhydrides with discrete metal complexes: structure–property relationships. Chem. Rev. 116, 15167–15197 (2016).

    CAS  Article  Google Scholar 

  72. 72.

    Sang, T., Wallis, C. J., Hill, G. & Britovsek, G. J. P. Polyethylene terephthalate degradation under natural and accelerated weathering conditions. Eur. Polym. J. 136, 109873 (2020).

    CAS  Article  Google Scholar 

  73. 73.

    Burgess, S. K., Karvan, O., Johnson, J. R., Kriegel, R. M. & Koros, W. J. Oxygen sorption and transport in amorphous poly(ethylene furanoate). Polymer 55, 4748–4756 (2014).

    CAS  Article  Google Scholar 

  74. 74.

    Eerhart, A. J. J. E., Faaij, A. P. C. & Patel, M. K. Replacing fossil based PET with biobased PEF; process analysis, energy and GHG balance. Energy Environ. Sci. 5, 6407–6422 (2012).

    CAS  Article  Google Scholar 

  75. 75.

    Knoop, R. J. I., Vogelzang, W., van Haveren, J. & van Es, D. S. High molecular weight poly(ethylene-2,5-furanoate); critical aspects in synthesis and mechanical property determination. J. Polym. Sci. A Polym. Chem. 51, 4191–4199 (2013).

    CAS  Article  Google Scholar 

  76. 76.

    Burgess, S. K. et al. Chain mobility, thermal, and mechanical properties of poly(ethylene furanoate) compared to poly(ethylene terephthalate). Macromolecules 47, 1383–1391 (2014).

    CAS  Article  Google Scholar 

  77. 77.

    Xu, C., Arancon, R. A. D., Labidi, J. & Luque, R. Lignin depolymerisation strategies: towards valuable chemicals and fuels. Chem. Soc. Rev. 43, 7485–7500 (2014).

    CAS  Article  Google Scholar 

  78. 78.

    Fache, M. et al. Vanillin, a promising biobased building-block for monomer synthesis. Green Chem. 16, 1987–1998 (2014).

    CAS  Article  Google Scholar 

  79. 79.

    Mialon, L., Pemba, A. G. & Miller, S. A. Biorenewable polyethylene terephthalate mimics derived from lignin and acetic acid. Green Chem. 12, 1704–1706 (2010).

    CAS  Article  Google Scholar 

  80. 80.

    Mialon, L., Vanderhenst, R., Pemba, A. G. & Miller, S. A. Polyalkylenehydroxybenzoates (PAHBs): biorenewable aromatic/aliphatic polyesters from lignin. Macromol. Rapid Commun. 32, 1386–1392 (2011).

    CAS  Article  Google Scholar 

  81. 81.

    Nguyen, H. T. H., Reis, M. H., Qi, P. & Miller, S. A. Polyethylene ferulate (PEF) and congeners: polystyrene mimics derived from biorenewable aromatics. Green Chem. 17, 4512–4517 (2015).

    CAS  Article  Google Scholar 

  82. 82.

    Nguyen, H. T. H., Short, G. N., Qi, P. & Miller, S. A. Copolymerization of lactones and bioaromatics via concurrent ring-opening polymerization/polycondensation. Green Chem. 19, 1877–1888 (2017).

    CAS  Article  Google Scholar 

  83. 83.

    Schijndel, J. et al. Repeatable molecularly recyclable semi-aromatic polyesters derived from lignin. J. Polym. Sci. 58, 1655–1663 (2020).

    Article  CAS  Google Scholar 

  84. 84.

    Kaneko, T., Thi, T. H., Shi, D. J. & Akashi, M. Environmentally degradable, high-performance thermoplastics from phenolic phytomonomers. Nat. Mater. 5, 966–970 (2006).

    CAS  Article  Google Scholar 

  85. 85.

    Nsengiyumva, O. & Miller, S. A. Synthesis, characterization, and water-degradation of biorenewable polyesters derived from natural camphoric acid. Green Chem. 21, 973–978 (2019).

    CAS  Article  Google Scholar 

  86. 86.

    Beckham, G. T., Johnson, C. W., Karp, E. M., Salvachúa, D. & Vardon, D. R. Opportunities and challenges in biological lignin valorization. Curr. Opin. Biotechnol. 42, 40–53 (2016).

    CAS  Article  Google Scholar 

  87. 87.

    Johnson, C. W. et al. Enhancing muconic acid production from glucose and lignin-derived aromatic compounds via increased protocatechuate decarboxylase activity. Metab. Eng. Commun. 3, 111–119 (2016).

    Article  Google Scholar 

  88. 88.

    Settle, A. E. et al. Iodine-catalyzed isomerization of dimethyl muconate. ChemSusChem 11, 1768–1780 (2018).

    CAS  Article  Google Scholar 

  89. 89.

    Johnson, C. W. et al. Innovative chemicals and materials from bacterial aromatic catabolic pathways. Joule 3, 1523–1537 (2019).

    CAS  Article  Google Scholar 

  90. 90.

    Rorrer, N. A. et al. Renewable unsaturated polyesters from muconic acid. ACS Sus. Chem. Eng. 4, 6867–6876 (2016).

    CAS  Article  Google Scholar 

  91. 91.

    Rorrer, N. A. et al. Combining reclaimed PET with bio-based monomers enables plastics upcycling. Joule 3, 1006–1027 (2019).

    CAS  Article  Google Scholar 

  92. 92.

    Quinzler, D. & Mecking, S. Linear semicrystalline polyesters from fatty acids by complete feedstock molecule utilization. Angew. Chem. Int. Ed. 49, 4306–4308 (2010).

    CAS  Article  Google Scholar 

  93. 93.

    Stempfle, F., Quinzler, D., Heckler, I. & Mecking, S. Long-chain linear C19 and C23 monomers and polycondensates from unsaturated fatty acid esters. Macromolecules 44, 4159–4166 (2011).

    CAS  Article  Google Scholar 

  94. 94.

    Stempfle, F., Ritter, B. S., Mülhaupt, R. & Mecking, S. Long-chain aliphatic polyesters from plant oils for injection molding, film extrusion and electrospinning. Green Chem. 16, 2008–2014 (2014).

    CAS  Article  Google Scholar 

  95. 95.

    Roesle, P. et al. Synthetic polyester from algae oil. Angew. Chem. Int. Ed. 53, 6800–6804 (2014).

    CAS  Article  Google Scholar 

  96. 96.

    Stempfle, F., Ortmann, P. & Mecking, S. Long-chain aliphatic polymers to bridge the gap between semicrystalline polyolefins and traditional polycondensates. Chem. Rev. 116, 4597–4641 (2016).

    CAS  Article  Google Scholar 

  97. 97.

    Witt, T., Häußler, M., Kulpa, S. & Mecking, S. Chain multiplication of fatty acids to precise telechelic polyethylene. Angew. Chem. Int. Ed. 56, 7589–7594 (2017).

    CAS  Article  Google Scholar 

  98. 98.

    Genovese, L. et al. Biodegradable long chain aliphatic polyesters containing ether-linkages: synthesis, solid-state, and barrier properties. Ind. Eng. Chem. Res. 53, 10965–10973 (2014).

    CAS  Article  Google Scholar 

  99. 99.

    Jiang, G. et al. Carbon sources for polyhydroxyalkanoates and an integrated biorefinery. Int. J. Mol. Sci. 17, 1157 (2016).

    Article  CAS  Google Scholar 

  100. 100.

    Wang, S. et al. Biodegradation of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) plastic under anaerobic sludge and aerobic seawater conditions: gas evolution and microbial diversity. Environ. Sci. Technol. 52, 5700–5709 (2018).

    CAS  Article  Google Scholar 

  101. 101.

    Winnacker, M. Polyhydroxyalkanoates: recent advances in their synthesis and applications. Eur. J. Lipid Sci. Technol. 121, 1900101 (2019).

    CAS  Article  Google Scholar 

  102. 102.

    Sangroniz, A. et al. Packaging materials with desired mechanical and barrier properties and full chemical recyclability. Nat. Comm. 10, 3559 (2019).

    Article  CAS  Google Scholar 

  103. 103.

    Myung, J., Flanagan, J. C. A., Waymouth, R. M. & Criddle, C. S. Methane or methanol-oxidation dependent synthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by obligate type II methanotrophs. Process Biochem. 51, 561–567 (2016).

    CAS  Article  Google Scholar 

  104. 104.

    Flanagan, J. C. A., Myung, J., Criddle, C. S. & Waymouth, R. M. Poly(hydroxyalkanoate)s from waste biomass: a combined chemical–biological approach. ChemistrySelect 1, 2327–2331 (2016).

    CAS  Article  Google Scholar 

  105. 105.

    Myung, J., Flanagan, J. C. A., Waymouth, R. M. & Criddle, C. S. Expanding the range of polyhydroxyalkanoates synthesized by methanotrophic bacteria through the utilization of ω-hydroxyalkanoate co-substrates. AMB Express 7, 118 (2017).

    Article  CAS  Google Scholar 

  106. 106.

    Tang, X. & Chen, E. Y.-X. Chemical synthesis of perfectly isotactic and high melting bacterial poly(3-hydroxybutyrate) from bio-sourced racemic cyclic diolide. Nat. Commun. 9, 2345 (2018).

    Article  CAS  Google Scholar 

  107. 107.

    Tang, X., Westlie, A. H., Watson, E. M. & Chen, E. Y.-X. Stereosequenced crystalline polyhydroxyalkanoates from diastereomeric monomer mixtures. Science 366, 754–758 (2019).

    CAS  Article  Google Scholar 

  108. 108.

    Tang, X. et al. Biodegradable polyhydroxyalkanoates by stereoselective copolymerization of racemic diolides: stereocontrol and polyolefin-like properties. Angew. Chem. Int. Ed. 59, 7881–7890 (2020).

    CAS  Article  Google Scholar 

  109. 109.

    Westlie, A. H. & Chen, E. Y.-X. Catalyzed chemical synthesis of unnatural aromatic polyhydroxyalkanoate and aromatic–aliphatic PHAs with record-high glass-transition and decomposition temperatures. Macromolecules 53, 9906–9915 (2020).

    CAS  Article  Google Scholar 

  110. 110.

    Haider, T. P., Völker, C., Kramm, J., Landfester, K. & Wurm, F. R. Plastics of the future? The impact of biodegradable polymers on the environment and on society. Angew. Chem. Int. Ed. 58, 50–62 (2019).

    CAS  Article  Google Scholar 

  111. 111.

    Coates, G. W. & Getzler, Y. D. Y. L. Chemical recycling to monomer for an ideal, circular polymer economy. Nat. Rev. Mater. 5, 501–516 (2020).

    CAS  Article  Google Scholar 

  112. 112.

    Lin, B., Hedrick, J. L., Park, N. H. & Waymouth, R. M. Programmable high-throughput platform for the rapid and scalable synthesis of polyester and polycarbonate libraries. J. Am. Chem. Soc. 141, 8921–8927 (2019).

    CAS  Article  Google Scholar 

  113. 113.

    Siracusa, V. Microbial degradation of synthetic biopolymers waste. Polymers 11, 1066 (2019).

    CAS  Article  Google Scholar 

  114. 114.

    Dusselier, M., Van Wouwe, P., Dewaele, A., Jacobs, P. A. & Sels, B. F. Shape-selective zeolite catalysis for bioplastics production. Science 349, 78–80 (2015).

    CAS  Article  Google Scholar 

  115. 115.

    de Roo, G., Kellerhals, M. B., Ren, Q., Witholt, B. & Kessler, B. Production of chiral R-3-hydroxyalkanoic acids and R-3-hydroxyalkanoic acid methylesters via hydrolytic degradation of polyhydroxyalkanoate synthesized by pseudomonads. Biotechnol. Bioeng. 77, 717–722 (2002).

    Article  Google Scholar 

  116. 116.

    van der Meulen, I. et al. Catalytic ring-opening polymerization of renewable macrolactones to high molecular weight polyethylene-like polymers. Macromolecules 44, 4301–4305 (2011).

    Article  CAS  Google Scholar 

  117. 117.

    Witt, T. & Mecking, S. Large-ring lactones from plant oils. Green Chem. 15, 2361–2364 (2013).

    CAS  Article  Google Scholar 

  118. 118.

    Hodge, P. Entropically driven ring-opening polymerization of strainless organic macrocycles. Chem. Rev. 114, 2278–2312 (2014).

    CAS  Article  Google Scholar 

  119. 119.

    Wilson, J. A., Hopkins, S. A., Wright, P. M. & Dove, A. P. Synthesis of ω-pentadecalactone copolymers with independently tunable thermal and degradation behavior. Macromolecules 48, 950–958 (2015).

    CAS  Article  Google Scholar 

  120. 120.

    Myers, D. et al. Ring opening polymerization of macrolactones: high conversions and activities using an yttrium catalyst. Polym. Chem. 8, 5780–5785 (2017).

    CAS  Article  Google Scholar 

  121. 121.

    Witt, T., Häußler, M. & Mecking, S. No strain, no gain? Enzymatic ring-opening polymerization of strainless aliphatic macrolactones. Macromol. Rapid Commun. 38, 1600638 (2017).

    Article  CAS  Google Scholar 

  122. 122.

    Li, C. et al. Lipase-catalyzed ring-opening copolymerization of ω-pentadecalactone and δ-valerolactone by reactive extrusion. Green Chem. 22, 662–668 (2020).

    CAS  Article  Google Scholar 

  123. 123.

    Vendamme, R., Schüwer, N. & Eevers, W. Recent synthetic approaches and emerging bio-inspired strategies for the development of sustainable pressure-sensitive adhesives derived from renewable building blocks. J. Appl. Polym. Sci. 131, 40669 (2014).

    Article  CAS  Google Scholar 

  124. 124.

    Heinrich, L. A. Future opportunities for bio-based adhesives — advantages beyond renewability. Green Chem. 21, 1866–1888 (2019).

    CAS  Article  Google Scholar 

  125. 125.

    Brutman, J. P., De Hoe, G. X., Schneiderman, D. K., Le, T. N. & Hillmyer, M. A. Renewable, degradable, and chemically recyclable cross-linked elastomers. Ind. Eng. Chem. Res. 55, 11097–11106 (2016).

    CAS  Article  Google Scholar 

  126. 126.

    De Hoe, G. X. et al. Sustainable polyester elastomers from lactones: synthesis, properties, and enzymatic hydrolyzability. J. Am. Chem. Soc. 140, 963–973 (2018).

    Article  CAS  Google Scholar 

  127. 127.

    Schneiderman, D. K. et al. Chemically recyclable biobased polyurethanes. ACS Macro Lett. 5, 515–518 (2016).

    CAS  Article  Google Scholar 

  128. 128.

    Shin, J. et al. Pressure-sensitive adhesives from renewable triblock copolymers. Macromolecules 44, 87–94 (2011).

    CAS  Article  Google Scholar 

  129. 129.

    Vendamme, R. et al. Interplay between viscoelastic and chemical tunings in fatty-acid-based polyester adhesives: engineering biomass toward functionalized step-growth polymers and soft networks. Biomacromolecules 13, 1933–1944 (2012).

    CAS  Article  Google Scholar 

  130. 130.

    Shin, J., Lee, Y., Tolman, W. B. & Hillmyer, M. A. Thermoplastic elastomers derived from menthide and tulipalin A. Biomacromolecules 13, 3833–3840 (2012).

    CAS  Article  Google Scholar 

  131. 131.

    Sulley, G. S. et al. Switchable catalysis improves the properties of CO2-derived polymers: poly(cyclohexene carbonate-b-ε-decalactone-b-cyclohexene carbonate) adhesives, elastomers, and toughened plastics. J. Am. Chem. Soc. 142, 4367–4378 (2020).

    CAS  Article  Google Scholar 

  132. 132.

    Winkler, M., Romain, C., Meier, M. A. R. & Williams, C. K. Renewable polycarbonates and polyesters from 1,4-cyclohexadiene. Green Chem. 17, 300–306 (2015).

    CAS  Article  Google Scholar 

  133. 133.

    Xiong, M., Schneiderman, D. K., Bates, F. S., Hillmyer, M. A. & Zhang, K. Scalable production of mechanically tunable block polymers from sugar. Proc. Natl Acad. Sci. USA 111, 8357–8362 (2014).

    CAS  Article  Google Scholar 

  134. 134.

    Watts, A., Kurokawa, N. & Hillmyer, M. A. Strong, resilient, and sustainable aliphatic polyester thermoplastic elastomers. Biomacromolecules 18, 1845–1854 (2017).

    CAS  Article  Google Scholar 

  135. 135.

    Robert, C., de Montigny, F. & Thomas, C. M. Tandem synthesis of alternating polyesters from renewable resources. Nat. Commun. 2, 586 (2011).

    Article  CAS  Google Scholar 

  136. 136.

    Peña Carrodeguas, L., Martín, C. & Kleij, A. W. Semiaromatic polyesters derived from renewable terpene oxides with high glass transitions. Macromolecules 50, 5337–5345 (2017).

    Article  CAS  Google Scholar 

  137. 137.

    Van Zee, N. J. & Coates, G. W. Alternating copolymerization of propylene oxide with biorenewable terpene-based cyclic anhydrides: a sustainable route to aliphatic polyesters with high glass transition temperatures. Angew. Chem. Int. Ed. 54, 2665–2668 (2015).

    Article  CAS  Google Scholar 

  138. 138.

    Sanford, M. J., Peña Carrodeguas, L., Van Zee, N. J., Kleij, A. W. & Coates, G. W. Alternating copolymerization of propylene oxide and cyclohexene oxide with tricyclic anhydrides: access to partially renewable aliphatic polyesters with high glass transition temperatures. Macromolecules 49, 6394–6400 (2016).

    CAS  Article  Google Scholar 

  139. 139.

    Snyder, R. L. et al. Mechanically robust and reprocessable imine exchange networks from modular polyester pre-polymers. Polym. Chem. 11, 5346–5355 (2020).

    CAS  Article  Google Scholar 

  140. 140.

    Sommerfeld, S. D., Zhang, Z., Costache, M. C., Vega, S. L. & Kohn, J. Enzymatic surface erosion of high tensile strength polycarbonates based on natural phenols. Biomacromolecules 15, 830–836 (2014).

    CAS  Article  Google Scholar 

  141. 141.

    Xu, J., Feng, E. & Song, J. Renaissance of aliphatic polycarbonates: new techniques and biomedical applications. J. Appl. Polym. Sci. 131, 39822 (2014).

    Article  CAS  Google Scholar 

  142. 142.

    Byrne, C. M., Allen, S. D., Lobkovsky, E. B. & Coates, G. W. Alternating copolymerization of limonene oxide and carbon dioxide. J. Am. Chem. Soc. 126, 11404–11405 (2004).

    CAS  Article  Google Scholar 

  143. 143.

    Auriemma, F. et al. Stereocomplexed poly(limonene carbonate): a unique example of the cocrystallization of amorphous enantiomeric polymers. Angew. Chem. Int. Ed. 54, 1215–1218 (2015).

    CAS  Article  Google Scholar 

  144. 144.

    Kristufek, T. S. et al. Rapidly-cured isosorbide-based cross-linked polycarbonate elastomers. Polym. Chem. 7, 2639–2644 (2016).

    CAS  Article  Google Scholar 

  145. 145.

    Stößer, T. et al. Bio-derived polymers for coating applications: comparing poly(limonene carbonate) and poly(cyclohexadiene carbonate). Polym. Chem. 8, 6099–6105 (2017).

    Article  Google Scholar 

  146. 146.

    Hauenstein, O., Reiter, M., Agarwal, S., Rieger, B. & Greiner, A. Bio-based polycarbonate from limonene oxide and CO2 with high molecular weight, excellent thermal resistance, hardness and transparency. Green Chem. 18, 760–770 (2016).

    CAS  Article  Google Scholar 

  147. 147.

    von der Assen, N. & Bardow, A. Life cycle assessment of polyols for polyurethane production using CO2 as feedstock: insights from an industrial case study. Green Chem. 16, 3272–3280 (2014).

    Article  Google Scholar 

  148. 148.

    Langanke, J. et al. Carbon dioxide (CO2) as sustainable feedstock for polyurethane production. Green Chem. 16, 1865–1870 (2014).

    CAS  Article  Google Scholar 

  149. 149.

    Allen, S. D. et al. Polycarbonate polyol compositions and methods. US Patent 8,247,520 B2 (2012).

  150. 150.

    Zhang, Z. et al. A non-phosgene process for bioderived polycarbonate with high molecular weight and advanced property profile synthesized using amino acid ionic liquids as catalysts. Green Chem. 22, 2534–2542 (2020).

    CAS  Article  Google Scholar 

  151. 151.

    Park, S.-A. et al. Sustainable and recyclable super engineering thermoplastic from biorenewable monomer. Nat. Commun. 10, 2601 (2019).

    Article  CAS  Google Scholar 

  152. 152.

    Li, C., Sablong, R. J., van Benthem, R. A. T. M. & Koning, C. E. Unique base-initiated depolymerization of limonene-derived polycarbonates. ACS Macro Lett. 6, 684–688 (2017).

    CAS  Article  Google Scholar 

  153. 153.

    Neumann, S., Leitner, L.-C., Schmalz, H., Agarwal, S. & Greiner, A. Unlocking the processability and recyclability of biobased poly(limonene carbonate). ACS Sus. Chem. Eng. 8, 6442–6448 (2020).

    CAS  Article  Google Scholar 

  154. 154.

    Ma, S. & Webster, D. C. Naturally occurring acids as cross-linkers to yield VOC-free, high-performance, fully bio-based, degradable thermosets. Macromolecules 48, 7127–7137 (2015).

    CAS  Article  Google Scholar 

  155. 155.

    Hevus, I., Ricapito, N. G., Tymoshenko, S., Raja, S. N. & Webster, D. C. Biobased carboxylic acids as components of sustainable and high-performance coating systems. ACS Sus. Chem. Eng. 8, 5750–5762 (2020).

    CAS  Article  Google Scholar 

  156. 156.

    Zhang, S. et al. Preparation of a lignin-based vitrimer material and its potential use for recoverable adhesives. Green Chem. 20, 2995–3000 (2018).

    CAS  Article  Google Scholar 

  157. 157.

    Toldy, A., Szolnoki, B. & Marosi, G. Flame retardancy of fibre-reinforced epoxy resin composites for aerospace applications. Polym. Degrad. Stab. 96, 371–376 (2011).

    CAS  Article  Google Scholar 

  158. 158.

    Maiorana, A., Spinella, S. & Gross, R. A. Bio-based alternative to the diglycidyl ether of bisphenol A with controlled materials properties. Biomacromolecules 16, 1021–1031 (2015).

    CAS  Article  Google Scholar 

  159. 159.

    Zago, E. et al. Synthesis of bio-based epoxy monomers from natural allyl- and vinyl phenols and the estimation of their affinity to the estrogen receptor α by molecular docking. New J. Chem. 40, 7701–7710 (2016).

    CAS  Article  Google Scholar 

  160. 160.

    Winne, J. M., Leibler, L. & Du Prez, F. E. Dynamic covalent chemistry in polymer networks: a mechanistic perspective. Polym. Chem. 10, 6091–6108 (2019).

    CAS  Article  Google Scholar 

  161. 161.

    Scheutz, G. M., Lessard, J. J., Sims, M. B. & Sumerlin, B. S. Adaptable crosslinks in polymeric materials: resolving the intersection of thermoplastics and thermosets. J. Am. Chem. Soc. 141, 16181–16196 (2019).

    CAS  Article  Google Scholar 

  162. 162.

    Liu, X. & Zhang, J. High-performance biobased epoxy derived from rosin. Polym. Int. 59, 607–609 (2010).

    CAS  Article  Google Scholar 

  163. 163.

    Pan, X., Sengupta, P. & Webster, D. C. High biobased content epoxy–anhydride thermosets from epoxidized sucrose esters of fatty acids. Biomacromolecules 12, 2416–2428 (2011).

    CAS  Article  Google Scholar 

  164. 164.

    Chrysanthos, M., Galy, J. & Pascault, J.-P. Preparation and properties of bio-based epoxy networks derived from isosorbide diglycidyl ether. Polymer 52, 3611–3620 (2011).

    CAS  Article  Google Scholar 

  165. 165.

    Hong, J., Radojč, D., Ionescu, M., Petrovič, Z. S. & Eastwood, E. Advanced materials from corn: isosorbide-based epoxy resins. Polym. Chem. 5, 5360–5368 (2014).

    CAS  Article  Google Scholar 

  166. 166.

    Hu, F., La Scala, J. J., Sadler, J. M. & Palmese, G. R. Synthesis and characterization of thermosetting furan-based epoxy systems. Macromolecules 47, 3332–3342 (2014).

    CAS  Article  Google Scholar 

  167. 167.

    Liu, W., Zhou, R., Goh, H. L. S., Huang, S. & Lu, X. From waste to functional additive: toughening epoxy resin with lignin. ACS Appl. Mater. Interfaces 6, 5810–5817 (2014).

    CAS  Article  Google Scholar 

  168. 168.

    Qin, J., Liu, H., Zhang, P., Wolcott, M. & Zhang, J. Use of eugenol and rosin as feedstocks for biobased epoxy resins and study of curing and performance properties. Polym. Int. 63, 760–765 (2014).

    CAS  Article  Google Scholar 

  169. 169.

    Gandini, A., Lacerda, T. M., Carvalho, A. J. F. & Trovatti, E. Progress of polymers from renewable resources: furans, vegetable oils, and polysaccharides. Chem. Rev. 116, 1637–1669 (2016).

    CAS  Article  Google Scholar 

  170. 170.

    Zhang, C., Garrison, T. F., Madbouly, S. A. & Kessler, M. R. Recent advances in vegetable oil-based polymers and their composites. Prog. Polym. Sci. 71, 91–143 (2017).

    CAS  Article  Google Scholar 

  171. 171.

    Li, R. et al. Use of hempseed-oil-derived polyacid and rosin-derived anhydride acid as cocuring agents for epoxy materials. ACS Sus. Chem. Eng. 6, 4016–4025 (2018).

    CAS  Article  Google Scholar 

  172. 172.

    Zhao, S., Huang, X., Whelton, A. J. & Abu-Omar, M. M. Renewable epoxy thermosets from fully lignin-derived triphenols. ACS Sus. Chem. Eng. 6, 7600–7608 (2018).

    CAS  Article  Google Scholar 

  173. 173.

    Ocando, C., Ecochard, Y., Decostanzi, M., Caillol, S. & Avérous, L. Dynamic network based on eugenol-derived epoxy as promising sustainable thermoset materials. Eur. Polym. J. 135, 109860 (2020).

    CAS  Article  Google Scholar 

  174. 174.

    Hollande, L. et al. Preparation of renewable epoxy–amine resins with tunable thermo-mechanical properties, wettability and degradation abilities from lignocellulose- and plant oils-derived components. Front. Chem. 7, 159 (2019).

    Article  CAS  Google Scholar 

  175. 175.

    Gandini, A., Carvalho, A. J. F., Trovatti, E., Kramer, R. K. & Lacerda, T. M. Macromolecular materials based on the application of the Diels–Alder reaction to natural polymers and plant oils. Eur. J. Lipid Sci. Technol. 120, 1700091 (2018).

    Article  CAS  Google Scholar 

  176. 176.

    Hernandez, E. D., Bassett, A. W., Sadler, J. M., La Scala, J. J. & Stanzione, J. F. Synthesis and characterization of bio-based epoxy resins derived from vanillyl alcohol. ACS Sus. Chem. Eng. 4, 4328–4339 (2016).

    CAS  Article  Google Scholar 

  177. 177.

    Liu, T. et al. A self-healable high glass transition temperature bioepoxy material based on vitrimer chemistry. Macromolecules 51, 5577–5585 (2018).

    CAS  Article  Google Scholar 

  178. 178.

    Zhao, S. & Abu-Omar, M. M. Recyclable and malleable epoxy thermoset bearing aromatic imine bonds. Macromolecules 51, 9816–9824 (2018).

    CAS  Article  Google Scholar 

  179. 179.

    Yu, Q. et al. Vanillin-based degradable epoxy vitrimers: reprocessability and mechanical properties study. Eur. Polym. J. 117, 55–63 (2019).

    CAS  Article  Google Scholar 

  180. 180.

    Ma, S. et al. Readily recyclable, high-performance thermosetting materials based on a lignin-derived spiro diacetal trigger. J. Mater. Chem. A 7, 1233–1243 (2019).

    CAS  Article  Google Scholar 

  181. 181.

    Wang, S. et al. Facile in situ preparation of high-performance epoxy vitrimer from renewable resources and its application in nondestructive recyclable carbon fiber composite. Green Chem. 21, 1484–1497 (2019).

    CAS  Article  Google Scholar 

  182. 182.

    Marchildon, K. Polyamides — still strong after seventy years. Macromol. React. Eng. 5, 22–54 (2011).

    CAS  Article  Google Scholar 

  183. 183.

    Barnes, C. E. Nylon 4 — development and commercialization. Lenzing. Ber. 62, 62–66 (1987).

    CAS  Google Scholar 

  184. 184.

    Kim, H. T. et al. Development of metabolically engineered corynebacterium glutamicum for enhanced production of cadaverine and its use for the synthesis of bio-polyamide 510. ACS Sus. Chem. Eng. 8, 129–138 (2020).

    Article  CAS  Google Scholar 

  185. 185.

    Lane, J. Terryl, a next-generation fiber: innovative, cost-competitive, biobased polyamide for textiles. Biofuels Digest (2014).

  186. 186.

    Caswell, P. J. Terryl. Presented at the Biotechnology Innovation Organization (BIO) World Congress (2014).

  187. 187.

    Yi, Z., Bingbing, Q. & Chi, L. Blended fiber and preparation method thereof and fabric comprising the blended fiber. CN Patent 105,040,156 A (2014).

  188. 188.

    Winnacker, M. & Rieger, B. Biobased polyamides: recent advances in basic and applied research. Macromol. Rapid Commun. 37, 1391–1413 (2016).

    CAS  Article  Google Scholar 

  189. 189.

    Froidevaux, V., Negrell, C., Caillol, S., Pascault, J.-P. & Boutevin, B. Biobased amines: from synthesis to polymers; present and future. Chem. Rev. 116, 14181–14224 (2016).

    CAS  Article  Google Scholar 

  190. 190.

    Pingen, D. et al. Diamines for polymer materials via direct amination of lipid- and lignocellulose-based alcohols with NH3. ChemCatChem 10, 3027–3033 (2018).

    CAS  Article  Google Scholar 

  191. 191.

    Citoler, J., Derrington, S. R., Galman, J. L., Bevinakatti, H. & Turner, N. J. A biocatalytic cascade for the conversion of fatty acids to fatty amines. Green Chem. 21, 4932–4935 (2019).

    CAS  Article  Google Scholar 

  192. 192.

    Firdaus, M. & Meier, M. A. R. Renewable polyamides and polyurethanes derived from limonene. Green Chem. 15, 370–380 (2013).

    CAS  Article  Google Scholar 

  193. 193.

    Türünç, O., Firdaus, M., Klein, G. & Meier, M. A. R. Fatty acid derived renewable polyamides via thiol–ene additions. Green Chem. 14, 2577–2583 (2012).

    Article  CAS  Google Scholar 

  194. 194.

    Jiang, Y., Maniar, D., Woortman, A. J. J., Alberda van Ekenstein, G. O. R. & Loos, K. Enzymatic polymerization of furan-2,5-dicarboxylic acid-based furanic–aliphatic polyamides as sustainable alternatives to polyphthalamides. Biomacromolecules 16, 3674–3685 (2015).

    CAS  Article  Google Scholar 

  195. 195.

    Mitiakoudis, A. & Gandini, A. Synthesis and characterization of furanic polyamides. Macromolecules 24, 830–835 (1991).

    CAS  Article  Google Scholar 

  196. 196.

    Song, L. et al. Ultra-strong long-chain polyamide elastomers with programmable supramolecular interactions and oriented crystalline microstructures. Nat. Commun. 10, 1315 (2019).

    Article  CAS  Google Scholar 

  197. 197.

    Stockmann, P. N. et al. Biobased chiral semi-crystalline or amorphous high-performance polyamides and their scalable stereoselective synthesis. Nat. Commun. 11, 509 (2020).

    CAS  Article  Google Scholar 

  198. 198.

    Stockmann, P. N. et al. New bio-polyamides from terpenes: α-pinene and (+)-3-carene as valuable resources for lactam production. Macromol. Rapid Commun. 40, 1800903 (2019).

    Article  CAS  Google Scholar 

  199. 199.

    Winnacker, M., Neumeier, M., Zhang, X., Papadakis, C. M. & Rieger, B. Sustainable chiral polyamides with high melting temperature via enhanced anionic polymerization of a menthone-derived lactam. Macromol. Rapid Commun. 37, 851–857 (2016).

    CAS  Article  Google Scholar 

  200. 200.

    Winnacker, M., Sag, J., Tischner, A. & Rieger, B. Sustainable, stereoregular, and optically active polyamides via cationic polymerization of ε-lactams derived from the terpene β-pinene. Macromol. Rapid Commun. 38, 1600787 (2017).

    Article  CAS  Google Scholar 

  201. 201.

    Winnacker, M. & Sag, J. Sustainable terpene-based polyamides via anionic polymerization of a pinene-derived lactam. ChemComm 54, 841–844 (2018).

    CAS  Google Scholar 

  202. 202.

    Maisonneuve, L., Lamarzelle, O., Rix, E., Grau, E. & Cramail, H. Isocyanate-free routes to polyurethanes and poly(hydroxy urethane)s. Chem. Rev. 115, 12407–12439 (2015).

    CAS  Article  Google Scholar 

  203. 203.

    Luo, X., Xiao, Y., Wu, Q. & Zeng, J. Development of high-performance biodegradable rigid polyurethane foams using all bioresource-based polyols: lignin and soy oil-derived polyols. Int. J. Biol. Macromol. 115, 786–791 (2018).

    CAS  Article  Google Scholar 

  204. 204.

    Guo, A., Javni, I. & Petrovic, Z. Rigid polyurethane foams based on soybean oil. J. Appl. Polym. Sci. 77, 467–473 (2000).

    CAS  Article  Google Scholar 

  205. 205.

    Zlatanić, A., Lava, C., Zhang, W. & Petrović, Z. S. Effect of structure on properties of polyols and polyurethanes based on different vegetable oils. J. Polym. Sci. B Polym. Phys. 42, 809–819 (2004).

    Article  CAS  Google Scholar 

  206. 206.

    Babb, D. A. in Synthetic Biodegradable Polymers (eds Rieger, B. et al.) 315–360 (Springer, 2012).

  207. 207.

    Peyrton, J., Chambaretaud, C., Sarbu, A. & Avérous, L. Biobased polyurethane foams based on new polyol architectures from microalgae oil. ACS Sus. Chem. Eng. 8, 12187–12196 (2020).

    CAS  Article  Google Scholar 

  208. 208.

    Lysenko, Z. et al. Vegetable oil based polyols and polyurethanes made therefrom. WO Patent 2,004,096,882 A1 (2004).

  209. 209.

    Gurusamy-Thangavelu, S. A. et al. Polyurethanes based on renewable polyols from bioderived lactones. Polym. Chem. 3, 2941–2948 (2012).

    CAS  Article  Google Scholar 

  210. 210.

    Gunawan, N. R. et al. Rapid biodegradation of renewable polyurethane foams with identification of associated microorganisms and decomposition products. Bioresour. Technol. 11, 100513 (2020).

    Article  Google Scholar 

  211. 211.

    Cornille, A. et al. Promising mechanical and adhesive properties of isocyanate-free poly(hydroxyurethane). Eur. Polym. J. 84, 404–420 (2016).

    CAS  Article  Google Scholar 

  212. 212.

    Zhang, K. et al. Non-isocyanate poly(amide-hydroxyurethane)s from sustainable resources. Green Chem. 18, 4667–4681 (2016).

    CAS  Article  Google Scholar 

  213. 213.

    Carré, C., Ecochard, Y., Caillol, S. & Avérous, L. From the synthesis of biobased cyclic carbonate to polyhydroxyurethanes: a promising route towards renewable non-isocyanate polyurethanes. ChemSusChem 12, 3410–3430 (2019).

    Article  CAS  Google Scholar 

  214. 214.

    Kühnel, I., Saake, B. & Lehnen, R. A new environmentally friendly approach to lignin-based cyclic carbonates. Macromol. Chem. Phys. 219, 1700613 (2018).

    Article  CAS  Google Scholar 

  215. 215.

    Chen, X., Li, L., Jin, K. & Torkelson, J. M. Reprocessable polyhydroxyurethane networks exhibiting full property recovery and concurrent associative and dissociative dynamic chemistry via transcarbamoylation and reversible cyclic carbonate aminolysis. Polym. Chem. 8, 6349–6355 (2017).

    CAS  Article  Google Scholar 

  216. 216.

    Schimpf, V., Ritter, B. S., Weis, P., Parison, K. & Mülhaupt, R. High purity limonene dicarbonate as versatile building block for sustainable non-isocyanate polyhydroxyurethane thermosets and thermoplastics. Macromolecules 50, 944–955 (2017).

    CAS  Article  Google Scholar 

  217. 217.

    Tamami, B., Sohn, S. & Wilkes, G. L. Incorporation of carbon dioxide into soybean oil and subsequent preparation and studies of nonisocyanate polyurethane networks. J. Appl. Polym. Sci. 92, 883–891 (2004).

    CAS  Article  Google Scholar 

  218. 218.

    Liaw, D.-J. et al. Advanced polyimide materials: syntheses, physical properties and applications. Prog. Polym. Sci. 37, 907–974 (2012).

    CAS  Article  Google Scholar 

  219. 219.

    Lau, K. S. Y. in Handbook of Thermoset Plastics 3rd edn Ch. 10 (eds Dodiuk, H. & Goodman, S. H.) 297–424 (William Andrew Publishing, 2014).

  220. 220.

    McNamara, J., Harvey, J. D., Graham, M. J., Scherger, C. Optically transparent polyimides. WO Patent 2019/156,717 A2 (2019).

  221. 221.

    Serber, Z., et al. Microbial strain improvement by a HTP genomic engineering platform. WO Patent 2017/100,377 A1 (2018).

  222. 222.

    Zymergen. Zymergen Reimagines Electronics with Breakthrough Bio-fabricated Materials (Zymergen, 2020).

  223. 223.

    Lane, J. Super clear, super thin, super durable: Zymergen bends it like Beckham, electronics-wise. Biofuels Digest (2020).

  224. 224.

    Santhosh Kumar, K. S. & Reghunadhan Nair, C. P. in Handbook of Thermoset Plastics 3rd edn Ch. 3 (eds Dodiuk, H. & Goodman, S. H.) 45–73 (William Andrew Publishing, 2014).

  225. 225.

    Dumas, L., Bonnaud, L., Olivier, M., Poorteman, M. & Dubois, P. Chavicol benzoxazine: ultrahigh Tg biobased thermoset with tunable extended network. Eur. Polym. J. 81, 337–346 (2016).

    CAS  Article  Google Scholar 

  226. 226.

    Puchot, L. et al. Breaking the symmetry of dibenzoxazines: a paradigm to tailor the design of bio-based thermosets. Green Chem. 18, 3346–3353 (2016).

    CAS  Article  Google Scholar 

  227. 227.

    Teng, N. et al. Making benzoxazine greener and stronger: renewable resource, microwave irradiation, green solvent, and excellent thermal properties. ACS Sus. Chem. Eng. 7, 8715–8723 (2019).

    CAS  Article  Google Scholar 

  228. 228.

    Zhang, K., Liu, Y., Han, M. & Froimowicz, P. Smart and sustainable design of latent catalyst-containing benzoxazine-bio-resins and application studies. Green Chem. 22, 1209–1219 (2020).

    CAS  Article  Google Scholar 

  229. 229.

    Whiteley, J. M., Taynton, P., Zhang, W. & Lee, S.-H. Ultra-thin solid-state Li-ion electrolyte membrane facilitated by a self-healing polymer matrix. Adv. Mater. 27, 6922–6927 (2015).

    CAS  Article  Google Scholar 

  230. 230.

    Taynton, P. et al. Re-healable polyimine thermosets: polymer composition and moisture sensitivity. Polym. Chem. 7, 7052–7056 (2016).

    CAS  Article  Google Scholar 

  231. 231.

    Taynton, P. et al. Repairable woven carbon fiber composites with full recyclability enabled by malleable polyimine networks. Adv. Mater. 28, 2904–2909 (2016).

    CAS  Article  Google Scholar 

  232. 232.

    Dhers, S., Vantomme, G. & Avérous, L. A fully bio-based polyimine vitrimer derived from fructose. Green Chem. 21, 1596–1601 (2019).

    CAS  Article  Google Scholar 

  233. 233.

    Hajj, R., Duval, A., Dhers, S. & Avérous, L. Network design to control polyimine vitrimer properties: physical versus chemical approach. Macromolecules 53, 3796–3805 (2020).

    CAS  Article  Google Scholar 

  234. 234.

    Geng, H. et al. Vanillin-based polyschiff vitrimers: reprocessability and chemical recyclability. ACS Sus. Chem. Eng. 6, 15463–15470 (2018).

    CAS  Article  Google Scholar 

  235. 235.

    Wang, S. et al. Robust, fire-safe, monomer-recovery, highly malleable thermosets from renewable bioresources. Macromolecules 51, 8001–8012 (2018).

    CAS  Article  Google Scholar 

  236. 236.

    Kim, C., Chandrasekaran, A., Huan, T. D., Das, D. & Ramprasad, R. Polymer genome: a data-powered polymer informatics platform for property predictions. J. Phys. Chem. C. 122, 17575–17585 (2018).

    CAS  Article  Google Scholar 

  237. 237.

    Hackett, M., Zang, L., Viciu, L. & Masuda, T. Lactic Acid, Its Salts, and Esters (IHS Markit, 2018).

  238. 238.

    Montazeri, M., Zaimes, G. G., Khanna, V. & Eckelman, M. J. Meta-analysis of life cycle energy and greenhouse gas emissions for priority biobased chemicals. ACS Sus. Chem. Eng. 4, 6443–6454 (2016).

    CAS  Article  Google Scholar 

Download references


This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the US Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the US DOE, Office of Energy Efficiency and Renewable Energy Bioenergy Technologies Office. The views expressed in the article do not necessarily represent the views of the DOE or the US Government. The US Government retains and the publisher, by accepting the article for publication, acknowledges that the US Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for US Government purposes. E.Y.-X.C acknowledges support from the US National Science Foundation (NSF-1955482).

Author information




R.M.C., N.A.R., C.B.H. and G.T.B. wrote the manuscript and designed the figures. G.T.B. and E.Y.-X.C. prepared the initial draft outline. All authors edited the manuscript prior to submission.

Corresponding authors

Correspondence to Gregg T. Beckham or Eugene Y.-X. Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Materials thanks the other anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Nylon 11:

Polymers: A Property Database:

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cywar, R.M., Rorrer, N.A., Hoyt, C.B. et al. Bio-based polymers with performance-advantaged properties. Nat Rev Mater (2021).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing