Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Tailoring inorganic–polymer composites for the mass production of solid-state batteries

Abstract

Solid-state batteries (SSBs) have recently been revived to increase the energy density and eliminate safety concerns associated with conventional Li-ion batteries with flammable liquid electrolytes. To achieve large-scale, low-cost production of SSBs as soon as possible, it would be advantageous to modify the mature manufacturing platform, involving slurry casting and roll-to-roll technologies, used for conventional Li-ion batteries for application to SSBs. However, the manufacturing of SSBs depends on the development of suitable solid electrolytes. Inorganic–polymer composite electrolytes combine the advantages of inorganic and polymer solid electrolytes, making them particularly suitable for the mass production of SSBs. In this Review, we discuss the properties of solid electrolytes comprising inorganic–polymer composites and outline the design of composite electrolytes for realizing high-performance devices. We also assess the challenges of integrating the composite electrolytes into batteries, which will enable the mass production of SSBs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Production processes for Li-ion batteries.
Fig. 2: Ion transport in inorganic–polymer composite electrolytes.
Fig. 3: Stability of inorganic–polymer composite electrolytes.
Fig. 4: Inorganic–polymer composite cathodes and anodes.
Fig. 5: Interfaces between electrode and inorganic–polymer composite electrolyte layers.
Fig. 6: Fabrication of solid-state batteries with inorganic–polymer composite electrolytes.

Similar content being viewed by others

References

  1. Goodenough, J. B. Electrochemical energy storage in a sustainable modern society. Energy Environ. Sci. 7, 14–18 (2014).

    Article  CAS  Google Scholar 

  2. Castelvecchi, D. & Stoye, E. World-changing batteries win Nobel. Nature 574, 308 (2019).

    Article  CAS  Google Scholar 

  3. Dunn, B., Kamath, H. & Tarascon, J.-M. Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011).

    Article  CAS  Google Scholar 

  4. Etacheri, V., Marom, R., Elazari, R., Salitra, G. & Aurbach, D. Challenges in the development of advanced Li-ion batteries: a review. Energy Environ. Sci. 4, 3243–3262 (2011).

    Article  CAS  Google Scholar 

  5. Goodenough, J. B. & Park, K.-S. The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013).

    Article  CAS  Google Scholar 

  6. Liu, K., Liu, Y. Y., Lin, D. C., Pei, A. & Cui, Y. Materials for lithium-ion battery safety. Sci. Adv. 4, eaas9820 (2018).

    Article  CAS  Google Scholar 

  7. Li, W. D., Erickson, E. M. & Manthiram, A. High-nickel layered oxide cathodes for lithium-based automotive batteries. Nat. Energy 5, 26–34 (2020).

    Article  CAS  Google Scholar 

  8. Liu, J. et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 4, 180–186 (2019).

    Article  CAS  Google Scholar 

  9. Janek, J. & Zeier, W. G. A solid future for battery development. Nat. Energy 1, 16141 (2016).

    Article  Google Scholar 

  10. Mauger, A., Julien, C. M., Paolella, A., Armand, M. & Zaghib, K. Building better batteries in the solid state: a review. Materials 12, 3892 (2019).

    Article  CAS  Google Scholar 

  11. Randau, S. et al. Benchmarking the performance of all-solid-state lithium batteries. Nat. Eenrgy 5, 259–270 (2020).

    Article  CAS  Google Scholar 

  12. Choi, J. W. & Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densitie. Nat. Rev. Mater. 1, 16013 (2016).

    Article  CAS  Google Scholar 

  13. Bruce, P. G., Freunberger, S. A., Hardwick, L. J. & Tarascon, J.-M. Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 11, 19–29 (2012).

    Article  CAS  Google Scholar 

  14. Manthiram, A., Yu, X. W. & Wang, S. F. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 16103 (2017).

    Article  CAS  Google Scholar 

  15. Kim, C.-R., Tajitsu, N. & Nussey, S. Toyota set to sell long-range, fast charging electric cars in 2022: paper. Reuters https://www.reuters.com/article/idUSKBN1AA035 (2017).

  16. Lienert, P. QuantumScape’s solid-state battery could power electric planes - director. Reuters https://www.reuters.com/article/idUSKBN28I2Y3 (2020).

  17. Schnella, J. et al. All-solid-state lithium-ion and lithium metal batteries–paving the way to large-scale production. J. Power Sources 382, 160–175 (2018).

    Article  CAS  Google Scholar 

  18. Xu, W. et al. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7, 513–537 (2014).

    Article  CAS  Google Scholar 

  19. Lin, D. C., Liu, Y. Y. & Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017).

    Article  CAS  Google Scholar 

  20. Cheng, X.-B., Zhang, R., Zhao, C.-Z. & Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 117, 10403–10473 (2017).

    Article  CAS  Google Scholar 

  21. Xiao, J. et al. Understanding and applying coulombic efficiency in lithium metal batteries. Nat. Energy 5, 561–568 (2020).

    Article  CAS  Google Scholar 

  22. Varzi, A., Raccichini, R., Passerini, S. & Scrosati, B. Challenges and prospects of the role of solid electrolytes in the revitalization of lithium metal batteries. J. Mater. Chem. 4, 17251–17259 (2016).

    Article  CAS  Google Scholar 

  23. Dorfler, S. et al. Challenges and key parameters of lithium-sulfur batteries on pouch cell level. Joule 4, 539–554 (2020).

    Article  CAS  Google Scholar 

  24. Yang, X., Luo, J. & Sun, X. Towards high-performance solid-state Li–S batteries: from fundamental understanding to engineering design. Chem. Soc. Rev. 49, 2140–2195 (2020).

    Article  CAS  Google Scholar 

  25. Freunberger, S. A. et al. The lithium–oxygen battery with ether-based electrolytes. Angew. Chem. Int. Ed. 50, 8609–8613 (2011).

    Article  CAS  Google Scholar 

  26. Hu, Y. S. Batteries: getting solid. Nat. Energy 1, 16042 (2016).

    Article  CAS  Google Scholar 

  27. Günther, T. et al. The manufacturing of electrodes: key process for the future success of lithium-ion batteries. Adv. Mater. Res. 1140, 304–311 (2016).

    Article  Google Scholar 

  28. Mindemark, J., Lacey, M. J., Bowden, T. & Brandell, D. Beyond PEO — alternative host materials for Li+-conducting solid polymer electrolytes. Prog. Polym. Sci. 81, 114–143 (2018).

    Article  CAS  Google Scholar 

  29. Lopez, J., Mackanic, D. G., Cui, Y. & Bao, Z. N. Designing polymers for advanced battery chemistries. Nat. Rev. Mater. 4, 312–330 (2019).

    Article  CAS  Google Scholar 

  30. Zhao, Q., Stalin, S., Zhao, C.-Z. & Archer, L. A. Designing solid-state electrolytes for safe, energy-dense batteries. Nat. Rev. Mater. 5, 229–252 (2020).

    Article  CAS  Google Scholar 

  31. Famprikis, T., Canepa, P., Dawson, J. A., Islam, M. S. & Masquelier, C. Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 18, 1278–1291 (2019).

    Article  CAS  Google Scholar 

  32. Ren, Y. et al. Oxide electrolytes for lithium batteries. J. Am. Ceram. Soc. 98, 3603–3623 (2015).

    Article  CAS  Google Scholar 

  33. Wang, C. et al. Garnet-type solid-state electrolytes: materials, interfaces, and batteries. Chem. Rev. 120, 4257–4300 (2020).

    Article  CAS  Google Scholar 

  34. Chen, R., Li, Q., Yu, X., Chen, L. & Li, H. Approaching practically accessible solid-state batteries: stability issues related to solid electrolytes and interfaces. Chem. Rev. 120, 6820–6877 (2020).

    Article  CAS  Google Scholar 

  35. Li, X. et al. Progress and perspectives on halide lithium conductors for all-solid-state lithium batteries. Energy Environ. Sci. 13, 1429–1461 (2020).

    Article  CAS  Google Scholar 

  36. Tan, D. H. S., Banerjee, A., Chen, Z. & Meng, Y. S. From nanoscale interface characterization to sustainable energy storage using all-solid-state batteries. Nat. Nanotechnol. 15, 170–180 (2020).

    Article  CAS  Google Scholar 

  37. Zou, Z. et al. Mobile ions in composite solids. Chem. Rev. 120, 4169–4221 (2020).

    Article  CAS  Google Scholar 

  38. Fenton, D. E., Parker, J. M. & Wright, P. V. Complexes of alkali metal ions with poly(ethylene oxide). Polymer 14, 589 (1973).

    Article  CAS  Google Scholar 

  39. Xue, Z. G., He, D. & Xie, X. L. Poly(ethylene oxide)-based electrolytes for lithium ion batteries. J. Mater. Chem. A 3, 19218–19253 (2015).

    Article  CAS  Google Scholar 

  40. Stephan, A. M. Review on gel polymer electrolytes for lithium batteries. Eur. Polym. J. 42, 21–42 (2006).

    Article  CAS  Google Scholar 

  41. Jacoby, M. Batteries get flexible. Chem. Eng. News 91, 13–18 (2013).

    Article  Google Scholar 

  42. Xia, Y. Y., Fujieda, T., Tatsumi, K., Prosini, P. P. & Sakai, T. Thermal and electrochemical stability of cathode materials in solid polymer electrolyte. J. Power Sources 92, 234–243 (2001).

    Article  CAS  Google Scholar 

  43. Li, Q. et al. Cycling performances and interfacial properties of a Li/PEO-Li(CF3SO2)2N-ceramic filler/LiNi0.8Co0.2O2 cell. J. Power Sources 97–98, 795–797 (2001).

    Article  Google Scholar 

  44. Liang, J. et al. Stabilizing and understanding the interface between nickel-rich cathode and PEO-based electrolyte by lithium niobium oxide coating for high-performance all-solid-state batteries. Nano Energy 78, 105107 (2020).

    Article  CAS  Google Scholar 

  45. Kimura, K., Yajima, M. & Tominaga, Y. A highly-concentrated poly(ethylene carbonate)-based electrolyte for all-solid-state Li battery working at room temperature. Electrochem. Commun. 66, 46–48 (2016).

    Article  CAS  Google Scholar 

  46. Brissot, C., Rosso, M., Chazalviel, J.-N. & Lascaud, S. Dendritic growth mechanisms in lithium/polymer cells. J. Power Sources 81, 925–929 (1999).

    Article  Google Scholar 

  47. Harry, K. J., Hallinan, D. T., Parkinson, D. Y., MacDowell, A. A. & Balsara, N. P. Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. Nat. Mater. 13, 69–73 (2014).

    Article  CAS  Google Scholar 

  48. Yang, X. et al. High-areal-capacity all-solid-state lithium batteries enabled by rational design of fast ion transport channels in vertically-aligned composite polymer electrodes. Nano Energy 61, 567–575 (2019).

    Article  CAS  Google Scholar 

  49. Kato, Y. et al. High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 1, 16030 (2016).

    Article  CAS  Google Scholar 

  50. Zhu, Y. Z., He, X. F. & Mo, Y. F. Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first principles calculations. ACS Appl. Mater. Interfaces 7, 23685–23693 (2015).

    Article  CAS  Google Scholar 

  51. Ohtomo, T. & Hayashi, A. Suppression of H2S gas generation from the 75Li2S·25P2S5 glass electrolyte by additives. J. Mater. Sci. 48, 4137–4142 (2013).

    Article  CAS  Google Scholar 

  52. Wenzel, S. et al. Direct observation of the interfacial instability of the fast ionic conductor Li10GeP2S12 at the lithium metal anode. Chem. Mater. 28, 2400–2407 (2016).

    Article  CAS  Google Scholar 

  53. Li, X. et al. Unravelling the chemistry and microstructure evolution of a cathodic interface in sulfide-based all-solid-state Li-ion batteries. ACS Energy Lett. 4, 2480–2488 (2019).

    Article  CAS  Google Scholar 

  54. Haruyama, J., Sodeyama, K., Han, L., Takada, K. & Tateyama, Y. Space–charge layer effect at interface between oxide cathode and sulfide electrolyte in all-solid-state lithium-ion battery. Chem. Mater. 26, 4248–4255 (2014).

    Article  CAS  Google Scholar 

  55. Luntz, A. C., Voss, J. & Reuter, K. Interfacial challenges in solid-state Li ion batteries. J. Phys. Chem. Lett. 6, 4599–4604 (2015).

    Article  CAS  Google Scholar 

  56. Deng, S. et al. Dual-functional interfaces for highly stable Ni-rich layered cathodes in sulfide all-solid-state batteries. Energy Storage Mater. 27, 117–123 (2020).

    Article  Google Scholar 

  57. Lee, Y.-G. et al. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes. Nat. Energy 5, 299–308 (2020).

    Article  CAS  Google Scholar 

  58. Stramare, S., Thangadurai, V. & Weppner, W. Lithium lanthanum titanates: a review. Chem. Mater. 15, 3974–3990 (2003).

    Article  CAS  Google Scholar 

  59. Jian, Z., Hu, Y. S., Ji, X. & Chen, W. NASICON-structured materials for energy storage. Adv. Mater. 29, 1601925 (2017).

    Article  CAS  Google Scholar 

  60. Thangadurai, V., Sumaletha, N. & Dana, P. Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chem. Soc. Rev. 43, 4714–4727 (2014).

    Article  CAS  Google Scholar 

  61. Zhao, N. et al. Solid garnet batteries. Joule 3, 1190–1199 (2019).

    Article  CAS  Google Scholar 

  62. Bates, J. B., Dudney, N. J., Neudecker, B., Ueda, A. & Evans, C. D. Thin-film lithium and lithium-ion batteries. Solid State Ion. 135, 33–45 (2000).

    Article  CAS  Google Scholar 

  63. Sakabe, Y. Multilayer ceramic capacitors. Curr. Opin. Solid State Mater. Sci. 2, 584–587 (1997).

    Article  CAS  Google Scholar 

  64. Dirican, M., Yan, C., Zhu, P. & Zhang, X. Composite solid electrolytes for all-solid-state lithium batteries. Mater. Sci. Eng. R Rep. 136, 27–46 (2019).

    Article  Google Scholar 

  65. Li, S. et al. Progress and perspective of ceramic/polymer composite solid electrolytes for lithium batteries. Adv. Sci. 7, 1903088 (2020).

    Article  CAS  Google Scholar 

  66. Liang, J. et al. Recent progress on solid-state hybrid electrolytes for solid-state lithium batteries. Energy Storage Mater. 21, 308–334 (2019).

    Article  Google Scholar 

  67. Liu, Y. et al. Composition modulation and structure design of inorganic-in-polymer composite solid electrolytes for advanced lithium batteries. Small 16, 1902813 (2019).

    Article  CAS  Google Scholar 

  68. Cui, G. Reasonable design of high-energy-density solid-state lithium-metal batteries. Matter 2, 805–815 (2020).

    Article  Google Scholar 

  69. Gadjourova, Z., Andreev, Y. G., Tunstall, D. P. & Bruce, P. G. Ionic conductivity in crystalline polymer electrolytes. Nature 412, 520–523 (2001).

    Article  CAS  Google Scholar 

  70. Xue, S. et al. Diffusion of lithium ions in amorphous and crystalline poly(ethylene oxide)3:LiCF3SO3 polymer electrolytes. Electrochim. Acta 235, 122–128 (2017).

    Article  CAS  Google Scholar 

  71. Zhou, Q., Ma, J., Dong, S., Li, X. & Cui, G. Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries. Adv. Mater. 31, 1902029 (2019).

    Article  CAS  Google Scholar 

  72. Croce, F., Appetecchi, G. B., Persi, L. & Scrosati, B. Nanocomposite polymer electrolytes for lithium batteries. Nature 394, 456–458 (1998).

    Article  CAS  Google Scholar 

  73. Lin, D. et al. A silica-aerogel-reinforced composite polymer electrolyte with high ionic conductivity and high modulus. Adv. Mater. 30, 1802661 (2018).

    Article  CAS  Google Scholar 

  74. Lin, D. C. et al. High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly(ethylene oxide). Nano Lett. 16, 459–465 (2016).

    Article  CAS  Google Scholar 

  75. Chung, S. C. et al. Enhancement of ion transport in polymer electrolytes by addition of nanoscale inorganic oxides. J. Power Sources 97–98, 644–648 (2001).

    Article  Google Scholar 

  76. Liu, W., Lin, D. C., Sun, J., Zhou, G. M. & Cui, Y. Improved lithium ionic conductivity in composite polymer electrolytes with oxide-ion conducting nanowires. ACS Nano 10, 11407–11413 (2016).

    Article  CAS  Google Scholar 

  77. Huo, H. Y. et al. Anion-immobilized polymer electrolyte achieved by cationic metal-organic framework filler for dendrite-free solid-state batteries. Energy Storage Mater. 18, 59–67 (2019).

    Article  Google Scholar 

  78. Wang, Z. N. et al. Covalently linked metal–organic framework (MOF)-polymer all-solid-state electrolyte membranes for room temperature high performance lithium batteries. J. Mater. Chem. A 6, 17227–17234 (2018).

    Article  CAS  Google Scholar 

  79. Chen, L., Li, W. X., Fan, L.-Z., Nan, C.-W. & Zhang, Q. Intercalated electrolyte with high transference number for dendrite-free solid-state lithium batteries. Adv. Funct. Mater. 29, 1901047 (2019).

    Article  CAS  Google Scholar 

  80. Zhu, Q. Y., Wang, X. M. & Miller, J. D. Advanced nanoclay-based nanocomposite solid polymer electrolyte for lithium iron phosphate batteries. ACS Appl. Mater. Interfaces 11, 8954–8960 (2019).

    Article  CAS  Google Scholar 

  81. Yao, P. C. et al. PVDF/palygorskite nanowire composite electrolyte for 4 V rechargeable lithium batteries with high energy density. Nano Lett. 18, 6113–6120 (2018).

    Article  CAS  Google Scholar 

  82. Wang, Z. X., Huang, X. J. & Chen, L. Q. Understanding of effects of nano-Al2O3 particles on ionic conductivity of composite polymer electrolytes. Electrochem. Solid State Lett. 6, E40–E44 (2003).

    Article  CAS  Google Scholar 

  83. Nan, C. W., Fan, L. Z., Lin, Y. H. & Cai, Q. Enhanced ionic conductivity of polymer electrolytes containing nanocomposite SiO2 particles. Phys. Rev. Lett. 91, 266104 (2003).

    Article  CAS  Google Scholar 

  84. Zhang, X. K. et al. Vertically aligned and continuous nanoscale ceramic–polymer interfaces in composite solid polymer electrolytes for enhanced ionic conductivity. Nano Lett. 18, 3829–3838 (2018).

    Article  CAS  Google Scholar 

  85. Wang, W. M., Yi, E., Fici, A. J., Laine, R. M. & Kieffer, J. Lithium ion conducting poly(ethylene oxide)-based solid electrolytes containing active or passive ceramic nanoparticles. J. Phys. Chem. C 121, 2563–2573 (2017).

    Article  CAS  Google Scholar 

  86. Chen, L. et al. PEO/garnet composite electrolytes for solid-state lithium batteries: from “ceramic-in-polymer” to “polymer-in-ceramic”. Nano Energy 46, 176–184 (2018).

    Article  CAS  Google Scholar 

  87. Zhang, X. et al. Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes. J. Am. Chem. Soc. 139, 13779–13785 (2017).

    Article  CAS  Google Scholar 

  88. Zhang, X. et al. Effects of Li6.75La3Zr1.75Ta0.25O12 on chemical and electrochemical properties of polyacrylonitrile-based solid electrolytes. Solid State Ion. 327, 32–38 (2018).

    Article  CAS  Google Scholar 

  89. Zhang, J. X. et al. Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: dispersion of garnet nanoparticles in insulating polyethylene oxide. Nano Energy 28, 447–454 (2016).

    Article  CAS  Google Scholar 

  90. Zhang, Y. et al. Free-standing sulfide/polymer composite solid electrolyte membranes with high conductance for all-solid-state lithium batteries. Energy Storage Mater. 25, 145–153 (2020).

    Article  CAS  Google Scholar 

  91. Pan, K. et al. A flexible ceramic/polymer hybrid solid electrolyte for solid-state lithium metal batteries. Adv. Mater. 32, 2000399 (2020).

    Article  CAS  Google Scholar 

  92. Zheng, J., Tang, M. X. & Hu, Y.-Y. Lithium ion pathway within Li7La3Zr2O12-polyethylene oxide composite electrolytes. Angew. Chem. Int. Ed. 128, 12726–12730 (2016).

    Article  Google Scholar 

  93. Zheng, J., Dang, H., Feng, X. Y., Chien, P.-H. & Hu, Y.-Y. Li-ion transport in a representative ceramic–polymer–plasticizer composite electrolyte: Li7La3Zr2O12–polyethylene oxide–tetraethylene glycol dimethyl ether. J. Mater. Chem. A 5, 18457–18463 (2017).

    Article  CAS  Google Scholar 

  94. Yang, T., Zheng, J., Cheng, Q., Hu, Y. Y. & Chan, C. K. Composite polymer electrolytes with Li7La3Zr2O12 garnet-type nanowires as ceramic fillers: mechanism of conductivity enhancement and role of doping and morphology. ACS Appl. Mater. Interfaces 9, 21773–21780 (2017).

    Article  CAS  Google Scholar 

  95. Zheng, J. & Hu, Y.-Y. New insights into the compositional dependence of Li-ion transport in polymer–ceramic composite electrolytes. ACS Appl. Mater. Interfaces 10, 4113–4120 (2018).

    Article  CAS  Google Scholar 

  96. Bae, J. et al. A 3D nanostructured hydrogel-framework-derived high-performance composite polymer lithium-ion electrolyte. Angew. Chem. Int. Ed. 57, 2096–2100 (2018).

    Article  CAS  Google Scholar 

  97. Li, Z., Xie, H. X., Zhang, X. Y. & Guo, X. In situ thermally polymerized solid composite electrolytes with a broad electrochemical window for all-solid-state lithium metal batteries. J. Mater. Chem. A 8, 3892–3900 (2020).

    Article  CAS  Google Scholar 

  98. Li, Y., Zhang, W., Dou, Q. Q., Wong, K. W. & Ng, K. M. Li7La3Zr2O12 ceramic nanofiber-incorporated composite polymer electrolytes for lithium metal batteries. J. Mater. Chem. A 7, 3391–3398 (2019).

    Article  CAS  Google Scholar 

  99. Fan, R. et al. Versatile strategy for realizing flexible room-temperature all-solid-state battery through a synergistic combination of salt affluent PEO and Li6.75La3Zr1.75Ta0.25O12 nanofibers. ACS Appl. Mater. Interfaces 12, 7222–7231 (2020).

    Article  CAS  Google Scholar 

  100. Zhu, P. et al. Li0.33La0.557TiO3 ceramic nanofiber-enhanced polyethylene oxide-based composite polymer electrolytes for all-solid-state lithium batteries. J. Mater. Chem. A 6, 4279–4285 (2018).

    Article  CAS  Google Scholar 

  101. Li, B. et al. Li0.35La0.55TiO3 nanofibers enhanced poly(vinylidene fluoride)-based composite polymer electrolytes for all-solid-state batteries. ACS Appl. Mater. Interfaces 11, 42206–42213 (2019).

    Article  CAS  Google Scholar 

  102. Liu, W. et al. Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. Nano Lett. 15, 2740–2745 (2015).

    Article  CAS  Google Scholar 

  103. Pignanelli, F., Romero, M., Faccio, R., Fernández-Werner, L. & Mombrú, A. W. Enhancement of lithium-ion transport in poly(acrylonitrile) with hydrogen titanate nanotube fillers as solid polymer electrolytes for lithium-ion battery applications. J. Phys. Chem. C 122, 1492–1499 (2018).

    Article  CAS  Google Scholar 

  104. Cheng, L. et al. The origin of high electrolyte–electrode interfacial resistances in lithium cells containing garnet type solid electrolytes. Phys. Chem. Chem. Phys. 16, 18294–18300 (2014).

    Article  CAS  Google Scholar 

  105. Kumar, S. K., Ganesan, V. & Riggleman, R. A. Perspective: Outstanding theoretical questions in polymer-nanoparticle hybrids. J. Chem. Phys. 147, 020901 (2017).

    Article  CAS  Google Scholar 

  106. Nan, C. W. Physics of inhomogeneous inorganic materials. Prog. Mater. Sci. 37, 1–116 (1993).

    Article  CAS  Google Scholar 

  107. Wang, X. Z. et al. Lithium-salt-rich PEO/Li0.3La0.557TiO3 interpenetrating composite electrolyte with three-dimensional ceramic nano-backbone for all-solid-state lithium-ion batteries. ACS Appl. Mater. Interfaces 10, 24791–24798 (2018).

    Article  CAS  Google Scholar 

  108. Fu, K. K. et al. Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries. Proc. Natl Acad. Sci. USA 113, 7094–7099 (2016).

    Article  CAS  Google Scholar 

  109. Yang, H. et al. Chemical interaction and enhanced interfacial ion transport in a ceramic nanofiber–polymer composite electrolyte for all-solid-state lithium metal batteries. J. Mater. Chem. A 8, 7261–7272 (2020).

    Article  CAS  Google Scholar 

  110. Xie, H. et al. Flexible, scalable, and highly conductive garnet-polymer solid electrolyte templated by bacterial cellulose. Adv. Energy Mater. 8, 1703474 (2018).

    Article  CAS  Google Scholar 

  111. Gong, Y. H. et al. Lithium-ion conductive ceramic textile: a new architecture for flexible solid-state lithium metal batteries. Mater. Today 21, 594–601 (2018).

    Article  CAS  Google Scholar 

  112. Li, Z., Sha, W. X. & Guo, X. Three-dimensional garnet framework-reinforced solid composite electrolytes with high lithium-ion conductivity and excellent stability. ACS Appl. Mater. Interfaces 11, 26920–26927 (2019).

    Article  CAS  Google Scholar 

  113. Bae, J. et al. Designing 3D nanostructured garnet frameworks for enhancing ionic conductivity and flexibility in composite polymer electrolytes for lithium batteries. Energy Storage Mater. 15, 46–52 (2018).

    Article  Google Scholar 

  114. Wang, X. et al. Rechargeable solid-state lithium metal batteries with vertically aligned ceramic nanoparticle/polymer composite electrolyte. Nano Energy 60, 205–212 (2019).

    Article  Google Scholar 

  115. Zhai, H. W. et al. A flexible solid composite electrolyte with vertically aligned and connected ion-conducting nanoparticles for lithium batteries. Nano Lett. 17, 3182–3187 (2017).

    Article  CAS  Google Scholar 

  116. Zekoll, S. et al. Hybrid electrolytes with 3D bicontinuous ordered ceramic and polymer microchannels for all-solid-state batteries. Energy Environ. Sci. 11, 185–201 (2018).

    Article  CAS  Google Scholar 

  117. Wang, S. et al. High-conductivity free-standing Li6PS5Cl/poly(vinylidene difluoride) composite solid electrolyte membranes for lithium-ion batteries. J. Materiomics 6, 70–76 (2020).

    Article  Google Scholar 

  118. Lu, Y. et al. Stable cycling of lithium metal batteries using high transference number electrolytes. Adv. Energy Mater. 5, 1402073 (2015).

    Article  CAS  Google Scholar 

  119. Keller, M., Barzi, A. & Passerini, S. Hybrid electrolytes for lithium metal batteries. J. Power Sources 392, 206–225 (2018).

    Article  CAS  Google Scholar 

  120. Tominaga, Y. & Yamazaki, K. Fast Li-ion conduction in poly(ethylene carbonate)-based electrolytes and composites filled with TiO2 nanoparticles. Chem. Commun. 50, 4448–4450 (2014).

    Article  CAS  Google Scholar 

  121. Monroe, C. & Newman, J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J. Electrochem. Soc. 152, A396–A404 (2005).

    Article  CAS  Google Scholar 

  122. Ni, J. E., Case, E. D., Sakamoto, J. S., Rangasamy, E. & Wolfenstine, J. B. Room temperature elastic moduli and Vickers hardness of hot-pressed LLZO cubic garnet. J. Mater. Sci. 47, 7978–7985 (2012).

    Article  CAS  Google Scholar 

  123. Weston, J. E. & Steele, B. C. H. Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-poly(ethylene oxide) polymer electrolytes. Solid State Ion. 7, 75–79 (1982).

    Article  CAS  Google Scholar 

  124. Zhao, Y. et al. A promising PEO/LAGP hybrid electrolyte prepared by a simple method for all-solid-state lithium batteries. Solid State Ion. 295, 65–71 (2016).

    Article  CAS  Google Scholar 

  125. Li, D., Chen, L., Wang, T. S. & Fan, L. Z. 3D fiber-network-reinforced bicontinuous composite solid electrolyte for dendrite-free lithium metal batteries. ACS Appl. Mater. Interfaces 10, 7069–7078 (2018).

    Article  CAS  Google Scholar 

  126. Zhou, B. et al. A flexible, self-healing and highly stretchable polymer electrolyte via quadruple hydrogen bonding for lithium-ion batteries. J. Mater. Chem. A 6, 11725–11733 (2018).

    Article  CAS  Google Scholar 

  127. Munaoka, T. et al. Ionically conductive self-healing binder for low cost Si microparticles anodes in Li-ion batteries. Adv. Energy Mater. 8, 1703138 (2018).

    Article  CAS  Google Scholar 

  128. Guo, Y. et al. A self-healable and easily recyclable supramolecular hydrogel electrolyte for flexible supercapacitors. J. Mater. Chem. A 4, 8769–8776 (2016).

    Article  CAS  Google Scholar 

  129. Huo, H. Y. et al. Rational design of hierarchical “ceramic-in-polymer” and “polymer-in-ceramic” electrolytes for dendrite-free solid-state batteries. Adv. Energy Mater. 9, 1804004 (2019).

    Article  CAS  Google Scholar 

  130. Wang, C. H. et al. Suppression of lithium dendrite formation by using LAGP-PEO (LiTFSI) composite solid electrolyte and lithium metal anode modified by PEO (LiTFSI) in all-solid-state lithium batteries. ACS Appl. Mater. Interfaces 9, 13694–13702 (2017).

    Article  CAS  Google Scholar 

  131. Ren, Y., Shen, Y., Lin, Y. & Nan, C. W. Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte. Electrochem. Commun. 57, 27–30 (2015).

    Article  CAS  Google Scholar 

  132. Cheng, E. J., Sharafi, A. & Sakamoto, J. Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte. Electrochim. Acta 223, 85–91 (2017).

    Article  CAS  Google Scholar 

  133. Fu, C. et al. Universal chemomechanical design rules for solid-ion conductors to prevent dendrite formation in lithium metal batteries. Nat. Mater. 19, 758–766 (2020).

    Article  CAS  Google Scholar 

  134. Perea, A., Dontigny, M. & Zaghib, K. Safety of solid-state Li metal battery: solid polymer versus liquid electrolyte. J. Power Sources 359, 182–185 (2017).

    Article  CAS  Google Scholar 

  135. Keller, M. et al. Electrochemical performance of a solvent-free hybrid ceramic polymer electrolyte based on Li7La3Zr2O12 in P(EO)15LiTFSI. J. Power Sources 353, 287–297 (2017).

    Article  CAS  Google Scholar 

  136. Xu, X. Y. et al. Li7P3S11/poly(ethylene oxide) hybrid solid electrolytes with excellent interfacial compatibility for all-solid-state batteries. J. Power Sources 400, 212–217 (2018).

    Article  CAS  Google Scholar 

  137. Chen, B. et al. A new composite solid electrolyte PEO/Li10GeP2S12/SN for all-solid-state lithium battery. Electrochim. Acta 210, 905–914 (2016).

    Article  CAS  Google Scholar 

  138. Liang, J. Y. et al. Engineering Janus interfaces of ceramic electrolyte via distinct functional polymers for stable high-voltage Li-metal batteries. J. Am. Chem. Soc. 141, 9165–9169 (2019).

    Article  CAS  Google Scholar 

  139. Liu, K., Zhang, R. H., Sun, J., Wu, M. & Zhao, T. S. Polyoxyethylene (PEO)|PEO-perovskite|PEO composite electrolyte for all-solid-state lithium metal batteries. ACS Appl. Mater. Interfaces 11, 46930–46937 (2019).

    Article  CAS  Google Scholar 

  140. Goodenough, J. B. & Kim, Y. Challenages for rechargable Li batteries. Chem. Mater. 22, 587–603 (2010).

    Article  CAS  Google Scholar 

  141. Zhu, Y. Z., He, X. F. & Mo, Y. F. First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries. J. Mater. Chem. A 4, 3253–3266 (2016).

    Article  CAS  Google Scholar 

  142. Xu, C. et al. Interface layer formation in solid polymer electrolyte lithium batteries: an XPS study. J. Mater. Chem. A 2, 7256–7264 (2014).

    Article  CAS  Google Scholar 

  143. Jung, Y.-C., Lee, S.-M., Choi, J.-H., Jang, S. S. & Kim, D.-W. All solid-state lithium batteries assembled with hybrid solid electrolytes. J. Electrochem. Soc. 162, A704–A710 (2015).

    Article  CAS  Google Scholar 

  144. Choi, J.-H., Lee, C.-H., Yu, J.-H., Doh, C.-H. & Lee, S.-M. Enhancement of ionic conductivity of composite membranes for all-solid-state lithium rechargeable batteries incorporating tetragonal Li7La3Zr2O12 into a polyethylene oxide matrix. J. Power Sources 274, 458–463 (2015).

    Article  CAS  Google Scholar 

  145. Chen, S. J., Zhao, Y. R., Yang, J., Yao, L. L. & Xu, X. X. Hybrid solid electrolytes with excellent electrochemical properties and their applications in all-solid-state cells. Ionics 23, 2603–2611 (2017).

    Article  CAS  Google Scholar 

  146. Zhao, Y. R. et al. A new solid polymer electrolyte incorporating Li10GeP2S12 into a polyethylene oxide matrix for all-solid-state lithium batteries. J. Power Sources 301, 47–53 (2016).

    Article  CAS  Google Scholar 

  147. Yue, L. P. et al. All solid-state polymer electrolytes for high-performance lithium ion batteries. Energy Storage Mater. 5, 139–164 (2016).

    Article  Google Scholar 

  148. Hu, P. et al. Progress in nitrile-based polymer electrolytes for high performance lithium batteries. J. Mater. Chem. A 4, 10070–10083 (2016).

    Article  CAS  Google Scholar 

  149. Li, W., Song, B. & Manthiram, A. High-voltage positive electrode materials for lithium-ion batteries. Chem. Soc. Rev. 46, 3006–3059 (2017).

    Article  CAS  Google Scholar 

  150. Gauthier, M. et al. Electrode–electrolyte interface in Li-ion batteries: current understanding and new insights. J. Phys. Chem. Lett. 6, 4653–4672 (2015).

    Article  CAS  Google Scholar 

  151. Seki, S. et al. Degradation mechanism analysis of all-solid-state lithium polymer secondary batteries by using the impedance measurement. J. Power Sources 146, 741–744 (2005).

    Article  CAS  Google Scholar 

  152. Wetjen, M. et al. Thermal and electrochemical properties of PEO-LiTFSI-Pyr14TFSI-based composite cathodes, incorporating 4 V-class cathode active materials. J. Power Sources 246, 846–857 (2014).

    Article  CAS  Google Scholar 

  153. Zhang, Q. et al. Sulfide-based solid-state electrolytes: synthesis, stability, and potential for all-solid-state batteries. Adv. Mater. 31, 1901131 (2019).

    Article  CAS  Google Scholar 

  154. Oh, D. Y. et al. Slurry-fabricable Li+-conductive polymeric binders for practical all-solid-state lithium-ion batteries enabled by solvate ionic liquids. Adv. Energy Mater. 9, 1802927 (2019).

    Article  CAS  Google Scholar 

  155. Cao, D. et al. Stable thiophosphate-based all-solid-state lithium batteries through conformally interfacial nanocoating. Nano Lett. 20, 1483–1490 (2020).

    Article  CAS  Google Scholar 

  156. Wang, L.-P. et al. Ameliorating the interfacial problems of cathode and solid-state electrolytes by interface modification of functional polymers. Adv. Energy Mater. 8, 1801528 (2018).

    Article  CAS  Google Scholar 

  157. Xiao, Y. H. et al. Understanding interface stability in solid-state batteries. Nat. Rev. Mater. 5, 105–126 (2020).

    Article  CAS  Google Scholar 

  158. Culver, S. P., Koerver, R., Zeier, W. G. & Janek, J. On the functionality of coatings for cathode active materials in thiophosphate-based all-solid-state batteries. Adv. Energy Mater. 9, 1900626 (2019).

    Article  CAS  Google Scholar 

  159. Wu, M. Y. et al. Toward an ideal polymer binder design for high-capacity battery anodes. J. Am. Chem. Soc. 135, 12048–12056 (2013).

    Article  CAS  Google Scholar 

  160. Lin, D. et al. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat. Nanotechnol. 11, 626–632 (2016).

    Article  CAS  Google Scholar 

  161. Yang, C. P., Yin, Y. X., Zhang, S. F., Li, N. W. & Guo, Y. G. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat. Commun. 6, 8058 (2015).

    Article  CAS  Google Scholar 

  162. Zhang, C. et al. Vertically aligned lithiophilic CuO nanosheets on a Cu collector to stabilize lithium deposition for lithium metal batteries. Adv. Energy Mater. 8, 1703404 (2018).

    Article  CAS  Google Scholar 

  163. Ye, H. et al. Stable Li plating/stripping electrochemistry realized by a hybrid Li reservoir in spherical carbon granules with 3D conducting skeletons. J. Am. Chem. Soc. 139, 5916–5922 (2017).

    Article  CAS  Google Scholar 

  164. Chi, S. S., Liu, Y. C., Song, W. L., Fan, L. Z. & Zhang, Q. Prestoring lithium into stable 3D nickel foam host as dendrite-free lithium metal anode. Adv. Funct. Mater. 27, 1700348 (2017).

    Article  CAS  Google Scholar 

  165. Huang, S. B. et al. Chemical energy release driven lithiophilic layer on 1 m2 commercial brass mesh toward highly stable lithium metal batteries. Nano Lett. 19, 1832–1837 (2019).

    Article  CAS  Google Scholar 

  166. Huang, S. B. et al. Early lithium plating behavior in confined nanospace of 3D lithiophilic carbon matrix for stable solid-state lithium metal batteries. Small 15, e1904216 (2019).

    Article  CAS  Google Scholar 

  167. Liang, Z. et al. Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating. Proc. Natl Acad. Sci. USA 113, 2862–2867 (2016).

    Article  CAS  Google Scholar 

  168. Niu, C. et al. Self-smoothing anode for achieving high-energy lithium metal batteries under realistic conditions. Nat. Nanotechnol. 14, 594–601 (2019).

    Article  CAS  Google Scholar 

  169. Zhang, R. et al. Coralloid carbon fiber-based composite lithium anode for robust lithium metal batteries. Joule 2, 764–777 (2018).

    Article  CAS  Google Scholar 

  170. Liu, Y. et al. Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode. Nat. Commun. 7, 10992 (2016).

    Article  CAS  Google Scholar 

  171. Fan, L. et al. Stable lithium electrodeposition at ultra-high current densities enabled by 3D PMF/Li composite anode. Adv. Energy Mater. 8, 1703360 (2018).

    Article  CAS  Google Scholar 

  172. Shi, X. et al. In situ forming LiF nano-decorated electrolyte/electrode interfaces for stable all-solid-state batteries. Mater. Today Nano 10, 100079 (2020).

    Article  Google Scholar 

  173. Jiang, T. et al. Solvent-free synthesis of thin, flexible, nonflammable garnet-based composite solid electrolyte for all-solid-state lithium batteries. Adv. Energy Mater. 10, 1903376 (2020).

    Article  CAS  Google Scholar 

  174. Yan, C. et al. Dual-layered film protected lithium metal anode to enable dendrite-free lithium deposition. Adv. Mater. 30, 1707629 (2018).

    Article  CAS  Google Scholar 

  175. Yan, C. et al. An armored mixed conductor interphase on a dendrite-free lithium-metal anode. Adv. Mater. 30, 1804461 (2018).

    Article  CAS  Google Scholar 

  176. Zhang, X. et al. Self-suppression of lithium dendrite in all-solid-state lithium metal batteries with poly(vinylidene difluoride)-based solid electrolytes. Adv. Mater. 31, 1806082 (2019).

    Article  CAS  Google Scholar 

  177. Zhao, C. Z. et al. An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes. Proc. Natl Acad. Sci. USA 114, 11069–11074 (2017).

    Article  CAS  Google Scholar 

  178. Chi, S. S. et al. Solid polymer electrolyte soft interface layer with 3D lithium anode for all-solid-state lithium batteries. Energy Storage Mater. 17, 309–316 (2019).

    Article  Google Scholar 

  179. Li, Y. T. et al. Hybrid polymer/garnet electrolyte with a small interfacial resistance for lithium-ion batteries. Angew. Chem. Int. Ed. 56, 753–756 (2017).

    Article  CAS  Google Scholar 

  180. Zhou, W. D. et al. Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte. J. Am. Chem. Soc. 138, 9385–9388 (2016).

    Article  CAS  Google Scholar 

  181. Zhou, W. D. et al. Double-layer polymer electrolyte for high-voltage all-solid-state rechargeable batteries. Adv. Mater. 31, 1805574 (2018).

    Article  CAS  Google Scholar 

  182. Ju, J. W. et al. Integrated interface strategy toward room temperature solid-state lithium batteries. ACS Appl. Mater. Interfaces 10, 13588–13597 (2018).

    Article  CAS  Google Scholar 

  183. Chai, J. C. et al. In situ generation of poly(vinylene carbonate) based solid electrolyte with interfacial stability for LiCoO2 lithium batteries. Adv. Sci. 4, 1600377 (2017).

    Article  CAS  Google Scholar 

  184. Chai, J. C. et al. Dendrite-free lithium deposition via flexible-rigid coupling composite network for LiNi0.5Mn1.5O2/Li metal batteries. Small 14, 1802244 (2018).

    Article  CAS  Google Scholar 

  185. Duan, H. et al. Extended electrochemical window of solid electrolytes via heterogeneous multilayered structure for high-voltage lithium metal batteries. Adv. Mater. 31, 1807789 (2019).

    Article  CAS  Google Scholar 

  186. Duan, H. et al. Dendrite-free Li-metal battery enabled by a thin asymmetric solid electrolyte with engineered layers. J. Am. Chem. Soc. 140, 82–85 (2017).

    Article  CAS  Google Scholar 

  187. Gai, J. L. et al. Flexible organic–inorganic composite solid electrolyte with asymmetric structure for room temperature solid-state Li-ion batteries. ACS Sustain. Chem. Eng. 7, 15896–15903 (2019).

    Article  CAS  Google Scholar 

  188. Chen, X. Z., He, W. J., Ding, L. X., Wang, S. Q. & Wang, H. H. Enhancing interfacial contact in all solid state batteries with a cathode-supported solid electrolyte membrane framework. Energy Environ. Sci. 12, 938–944 (2019).

    Article  CAS  Google Scholar 

  189. Whiteley, J. M., Taynton, P., Zhang, W. & Lee, S.-H. Ultra-thin solid-state Li-ion electrolyte membrane facilitated by a self-healing polymer matrix. Adv. Mater. 27, 6922–6927 (2015).

    Article  CAS  Google Scholar 

  190. Villaluenga, I. et al. Compliant glass–polymer hybrid single ion-conducting electrolytes for lithium batteries. Proc. Natl Acad. Sci. USA 113, 52–57 (2016).

    Article  CAS  Google Scholar 

  191. Fan, L., Wei, S. Y., Li, S. Y. & Lu, Y. Y. Recent progress of the solid-state electrolytes for high-energy metal-based batteries. Adv. Energy Mater. 8, 1702657 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

C.-W.N. and L.-Z.F. acknowledge support from the Basic Science Center Program of the National Natural Science Foundation of China (NSFC) under grant nos. 51788104 and 51532002. The authors are grateful to L. Chen, Y. Liang, X. Liu, G. Wang, F. Liu and J. Yi for help with the drawing of graphics.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the discussion of content, and writing and editing of the article prior to submission. C.-W.N. conceived the outline and L.-Z.F. researched the data.

Corresponding author

Correspondence to Ce-Wen Nan.

Ethics declarations

Competing interests

H.H. is employed at Qingtao Energy Development Inc., which develops and commercializes solid-state batteries. C.-W.N. is one of the co-founders of Qingtao. L.-Z.F. declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, LZ., He, H. & Nan, CW. Tailoring inorganic–polymer composites for the mass production of solid-state batteries. Nat Rev Mater 6, 1003–1019 (2021). https://doi.org/10.1038/s41578-021-00320-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-021-00320-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing