Crystal-phase and surface-structure engineering of ruthenium nanocrystals

Abstract

Metal nanocrystals with controlled shapes or surface structures have received increasing attention, owing to their desirable properties for applications ranging from catalysis to photonics, energy and biomedicine. Most studies, however, have been limited to nanocrystals with the same crystal phase as the bulk material. Engineering the phase of metal nanocrystals while simultaneously attaining shape-controlled synthesis has recently emerged as a new frontier of research. Here, we use Ru as an example to evaluate recent progress in the synthesis of metal nanocrystals featuring different crystal phases and well-controlled shapes. We first discuss synthetic strategies for controlling the crystal phase and shape of Ru nanocrystals, with a focus on new mechanistic insights. We then highlight the major factors that affect the packing of Ru atoms and, thus, the crystal phase, followed by an examination of the thermal stability of Ru nanocrystals in terms of both crystal phase and shape. Next, we showcase the successful implementation of these Ru nanocrystals in various catalytic applications. Finally, we end with a discussion of the challenges and opportunities in the field, including leveraging the lessons learned from Ru to engineer the crystal phase and surface structure of other metals.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Timeline showing key accomplishments in engineering the crystal and surface structures of Ru nanocrystals.
Fig. 2: Ru nanocrystals with hexagonal close-packed structure.
Fig. 3: Ru nanocrystals with different atomic packing and, thus, distinctive physicochemical properties.
Fig. 4: Ru-based core–shell nanocrystals.
Fig. 5: Ru nanocages and nanotubes.
Fig. 6: Pd–Ru core–frame nanocrystals and Ru nanoframes.
Fig. 7: Thermal stability of Ru nanocrystals.
Fig. 8: Ru catalysts for Fischer–Tropsch synthesis, hydrogenation and dehydrogenation.
Fig. 9: Ru catalysts for water splitting.
Fig. 10: Ru catalysts for hydrogen-oxidation reaction, N2 reduction and CO oxidation.

References

  1. 1.

    Xia, Y., Xiong, Y., Lim, B. & Skrabalak, S. E. Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew. Chem. Int. Ed. 48, 60–103 (2008).

    Google Scholar 

  2. 2.

    Li, J. & Sun, S. Intermetallic nanoparticles: synthetic control and their enhanced electrocatalysis. Acc. Chem. Res. 52, 2015–2025 (2019).

    CAS  Google Scholar 

  3. 3.

    Wu, J. & Yang, H. Platinum-based oxygen reduction electrocatalysts. Acc. Chem. Res. 46, 1848–1857 (2013).

    CAS  Google Scholar 

  4. 4.

    Wu, Y., Wang, D. & Li, Y. Nanocrystals from solutions: catalysts. Chem. Soc. Rev. 43, 2112–2124 (2014).

    CAS  Google Scholar 

  5. 5.

    Quan, Z., Wang, Y. & Fang, J. High-index faceted noble metal nanocrystals. Acc. Chem. Res. 46, 191–202 (2013).

    CAS  Google Scholar 

  6. 6.

    Choi, S. I. et al. A comprehensive study of formic acid oxidation on palladium nanocrystals with different types of facets and twin defects. ChemCatChem 7, 2077–2084 (2015).

    CAS  Google Scholar 

  7. 7.

    Cheng, H., Yang, N., Lu, Q., Zhang, Z. & Zhang, H. Syntheses and properties of metal nanomaterials with novel crystal phases. Adv. Mater. 30, 1707189 (2018).

    Google Scholar 

  8. 8.

    Fan, Z. & Zhang, H. Crystal phase-controlled synthesis, properties and applications of noble metal nanomaterials. Chem. Soc. Rev. 45, 63–82 (2016).

    CAS  Google Scholar 

  9. 9.

    Chen, Y. et al. Two-dimensional metal nanomaterials: synthesis, properties, and applications. Chem. Rev. 118, 6409–6455 (2018).

    CAS  Google Scholar 

  10. 10.

    Tan, C., Chen, J., Wu, X. & Zhang, H. Epitaxial growth of hybrid nanostructures. Nat. Rev. Mater. 3, 17089 (2018).

    CAS  Google Scholar 

  11. 11.

    Xu, L. & Yang, J. Size and shape-controlled synthesis of Ru nanocrystals. Phys. Sci. Rev. 3, 199–278 (2018).

    Google Scholar 

  12. 12.

    Kobayashi, M., Kai, T., Takano, N. & Shiiki, K. The possibility of ferromagnetic BCC ruthenium. J. Phys. Condens. Matter. 7, 1835–1842 (1995).

    CAS  Google Scholar 

  13. 13.

    Fan, Z. & Zhang, H. Template synthesis of noble metal nanocrystals with unusual crystal structures and their catalytic applications. Acc. Chem. Res. 49, 2841–2850 (2016).

    CAS  Google Scholar 

  14. 14.

    Guo, Q. et al. Cubic to tetragonal phase transformation in cold-compressed Pd nanocubes. Nano Lett. 8, 972–975 (2008).

    CAS  Google Scholar 

  15. 15.

    Wang, D. et al. Structurally ordered intermetallic platinum–cobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat. Mater. 12, 81–87 (2013).

    CAS  Google Scholar 

  16. 16.

    Huang, J. L. et al. Formation of hexagonal-close packed (HCP) rhodium as a size effect. J. Am. Chem. Soc. 139, 575–578 (2017).

    CAS  Google Scholar 

  17. 17.

    Kusada, K. et al. Discovery of face-centered-cubic ruthenium nanoparticles: facile size-controlled synthesis using the chemical reduction method. J. Am. Chem. Soc. 135, 5493–5496 (2013). First report on the synthesis of Ru nanocrystals with pure fcc or hcp structures and tuneable sizes, together with the investigation of size-dependent and crystal-structure-dependent performance towards CO oxidation.

    CAS  Google Scholar 

  18. 18.

    Xia, Y., Gilroy, K. D., Peng, H. C. & Xia, X. Seed-mediated growth of colloidal metal nanocrystals. Angew. Chem. Int. Ed. 56, 60–95 (2017).

    CAS  Google Scholar 

  19. 19.

    Gilroy, K. D. et al. Shape-controlled synthesis of colloidal metal nanocrystals by replicating the surface atomic structure on the seed. Adv. Mater. 30, 1706312 (2018).

    Google Scholar 

  20. 20.

    Fan, Z. et al. Epitaxial growth of unusual 4H hexagonal Ir, Rh, Os, Ru and Cu nanostructures on 4H Au nanoribbons. Chem. Sci. 8, 795–799 (2017).

    CAS  Google Scholar 

  21. 21.

    Zhao, M. et al. Synthesis and characterization of Ru cubic nanocages with a face-centered cubic structure by templating with Pd nanocubes. Nano Lett. 16, 5310–5317 (2016). Study reporting the fabrication of Ru nanocages with both well-defined {100} facets and an fcc structure, showing promising activity towards N 2 reduction for ammonia synthesis.

    CAS  Google Scholar 

  22. 22.

    Zhao, M. et al. Facile synthesis of Ru-based octahedral nanocages with ultrathin walls in a face-centered cubic structure. Chem. Mater. 29, 9227–9237 (2017).

    CAS  Google Scholar 

  23. 23.

    Zhao, M. et al. Synthesis of Ru icosahedral nanocages with a face-centered-cubic structure and evaluation of their catalytic properties. ACS Catal. 8, 6948–6960 (2018).

    CAS  Google Scholar 

  24. 24.

    Joo, S. H. et al. Size effect of ruthenium nanoparticles in catalytic carbon monoxide oxidation. Nano Lett. 10, 2709–2713 (2010). Study reporting the first discovery of the fcc structure in Ru nanocrystals.

    CAS  Google Scholar 

  25. 25.

    Ye, H. et al. Ru nanoframes with an fcc structure and enhanced catalytic properties. Nano Lett. 16, 2812–2817 (2016). Study reporting the synthesis of Ru nanocrystals with both a frame structure and an fcc phase.

    CAS  Google Scholar 

  26. 26.

    Anantharaj, S., Jayachandran, M. & Kundu, S. Unprotected and interconnected Ru0 nano-chain networks: advantages of unprotected surfaces in catalysis and electrocatalysis. Chem. Sci. 7, 3188–3205 (2016).

    CAS  Google Scholar 

  27. 27.

    Rodrigues, T. S. et al. Synthesis of colloidal metal nanocrystals: a comprehensive review on the reductants. Chem. Eur. J. 24, 16944–16963 (2018).

    CAS  Google Scholar 

  28. 28.

    Koenigsmann, C., Semple, D. B., Sutter, E., Tobierre, S. E. & Wong, S. S. Ambient synthesis of high-quality ruthenium nanowires and the morphology-dependent electrocatalytic performance of platinum-decorated ruthenium nanowires and nanoparticles in the methanol oxidation reaction. ACS Appl. Mater. Interfaces 5, 5518–5530 (2013).

    CAS  Google Scholar 

  29. 29.

    Yin, A. X. et al. Ru nanocrystals with shape-dependent surface-enhanced Raman spectra and catalytic properties: controlled synthesis and DFT calculations. J. Am. Chem. Soc. 134, 20479–20489 (2012).

    CAS  Google Scholar 

  30. 30.

    Watt, J., Yu, C., Chang, S. L. Y., Cheong, S. & Tilley, R. D. Shape control from thermodynamic growth conditions: the case of hcp ruthenium hourglass nanocrystals. J. Am. Chem. Soc. 135, 606–609 (2013).

    CAS  Google Scholar 

  31. 31.

    Zheng, Y. et al. High electrocatalytic hydrogen evolution activity of an anomalous ruthenium catalyst. J. Am. Chem. Soc. 138, 16174–16181 (2016).

    CAS  Google Scholar 

  32. 32.

    Poerwoprajitno, A. R. et al. Formation of branched ruthenium nanoparticles for improved electrocatalysis of oxygen evolution reaction. Small 15, 1804577 (2019).

    Google Scholar 

  33. 33.

    Xia, Y., Xia, X. & Peng, H. C. Shape-controlled synthesis of colloidal metal nanocrystals: thermodynamic versus kinetic products. J. Am. Chem. Soc. 137, 7947–7966 (2015).

    CAS  Google Scholar 

  34. 34.

    Vitos, L., Ruban, A. V., Skriver, H. L. & Kollár, J. The surface energy of metals. Surf. Sci. 411, 186–202 (1998).

    CAS  Google Scholar 

  35. 35.

    Kumara, L. S. R. et al. Origin of the catalytic activity of face-centered-cubic ruthenium nanoparticles determined from an atomic-scale structure. Phys. Chem. Chem. Phys. 18, 30622–30629 (2016).

    CAS  Google Scholar 

  36. 36.

    Song, C. et al. Size dependence of structural parameters in fcc and hcp Ru nanoparticles, revealed by Rietveld refinement analysis of high-energy X-ray diffraction data. Sci. Rep. 6, 31400 (2016).

    CAS  Google Scholar 

  37. 37.

    Luo, M. & Guo, S. Strain-controlled electrocatalysis on multimetallic nanomaterials. Nat. Rev. Mater. 2, 17059 (2017).

    CAS  Google Scholar 

  38. 38.

    Sneed, B. T., Young, A. P. & Tsung, C. K. Building up strain in colloidal metal nanoparticle catalysts. Nanoscale 7, 12248–45565 (2015).

    CAS  Google Scholar 

  39. 39.

    Zhao, M. et al. Ru octahedral nanocrystals with a face-centered cubic structure, {111} facets, thermal stability up to 400 °C, and enhanced catalytic activity. J. Am. Chem. Soc. 141, 7028–7036 (2019). Study reporting the synthesis of {111}-enclosed Ru octahedral nanocrystals with superior thermal stability and enhanced catalytic performance.

    CAS  Google Scholar 

  40. 40.

    Chen, M., Wu, B., Yang, J. & Zheng, N. Small adsorbate-assisted shape control of Pd and Pt nanocrystals. Adv. Mater. 24, 862–879 (2012).

    CAS  Google Scholar 

  41. 41.

    Zheng, Y., Zeng, J., Ruditskiy, A., Liu, M. & Xia, Y. Oxidative etching and its role in manipulating the nucleation and growth of noble-metal nanocrystals. Chem. Mater. 26, 22–33 (2014).

    CAS  Google Scholar 

  42. 42.

    Zhang, Z. et al. Submonolayered Ru deposited on ultrathin Pd nanosheets used for enhanced catalytic applications. Adv. Mater. 28, 10282–10286 (2016).

    CAS  Google Scholar 

  43. 43.

    Yan, Y. et al. Epitaxial growth of multimetallic Pd@PtM (M = Ni, Rh, Ru) core–shell nanoplates realized by in situ-produced CO from interfacial catalytic reactions. Nano Lett. 16, 7999–8004 (2016).

    CAS  Google Scholar 

  44. 44.

    Schlapka, A., Lischka, M., Groß, A., Käsberger, U. & Jakob, P. Surface strain versus substrate interaction in heteroepitaxial metal layers: Pt on Ru(0001). Phys. Rev. Lett. 91, 016101 (2003).

    CAS  Google Scholar 

  45. 45.

    Strasser, P. et al. Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nat. Chem. 2, 454–460 (2010).

    CAS  Google Scholar 

  46. 46.

    Lu, Q. et al. Crystal phase-based epitaxial growth of hybrid noble metal nanostructures on 4H/fcc Au nanowires. Nat. Chem. 10, 456–461 (2018). Study reporting the synthesis of Ru nanocrystals crystallized in a 4H/fcc structure and showing enhanced performance towards the hydrogen evolution reaction in alkaline media.

    CAS  Google Scholar 

  47. 47.

    Zhao, M. et al. Hollow metal nanocrystals with ultrathin, porous walls and well-controlled surface structures. Adv. Mater. 30, 1801956 (2018).

    Google Scholar 

  48. 48.

    Lu, Q. et al. Synthesis of hierarchical 4H/fcc Ru nanotubes for highly efficient hydrogen evolution in alkaline media. Small 14, 1801090 (2018).

    Google Scholar 

  49. 49.

    Wang, X., Ruditskiy, A. & Xia, Y. Rational design and synthesis of noble-metal nanoframes for catalytic and photonic applications. Natl. Sci. Rev. 3, 520–533 (2016).

    CAS  Google Scholar 

  50. 50.

    Zhao, M. et al. Ruthenium nanoframes in the face-centered cubic phase: facile synthesis and their enhanced catalytic performance. ACS Nano 13, 7241–7251 (2019).

    CAS  Google Scholar 

  51. 51.

    Araki, N. et al. Observation of the formation processes of hexagonal close-packed and face-centered cubic Ru nanoparticles. Chem. Lett. 48, 1062–1064 (2019).

    CAS  Google Scholar 

  52. 52.

    Yao, Y. et al. Modulating fcc and hcp ruthenium on the surface of palladium–copper alloy through tunable lattice mismatch. Angew. Chem. Int. Ed. 55, 5501–5505 (2016).

    CAS  Google Scholar 

  53. 53.

    Gloag, L. et al. Three-dimensional branched and faceted gold–ruthenium nanoparticles: using nanostructure to improve stability in oxygen evolution electrocatalysis. Angew. Chem. Int. Ed. 57, 10241–10245 (2018).

    CAS  Google Scholar 

  54. 54.

    Gloag, L. et al. Cubic-core hexagonal-branch mechanism to synthesize bimetallic branched and faceted Pd–Ru nanoparticles for oxygen evolution reaction electrocatalysis. J. Am. Chem. Soc. 140, 12760–12764 (2018).

    CAS  Google Scholar 

  55. 55.

    Chen, G., Zhang, J., Gupta, A., Rosei, F. & Ma, D. Shape-controlled synthesis of ruthenium nanocrystals and their catalytic applications. New J. Chem. 38, 1827–1833 (2014).

    CAS  Google Scholar 

  56. 56.

    Nanba, Y., Ishimoto, T. & Koyama, M. Structural stability of ruthenium nanoparticles: a density functional theory study. J. Phys. Chem. C 121, 27445–27452 (2017).

    CAS  Google Scholar 

  57. 57.

    Li, W. Z. et al. Chemical insights into the design and development of face-centered cubic ruthenium catalysts for Fischer–Tropsch synthesis. J. Am. Chem. Soc. 139, 2267–2276 (2017).

    CAS  Google Scholar 

  58. 58.

    Mao, J. et al. Rational control of the selectivity of a ruthenium catalyst for hydrogenation of 4-nitrostyrene by strain regulation. Angew. Chem. Int. Ed. 56, 11971–11975 (2017).

    CAS  Google Scholar 

  59. 59.

    Zhang, F. et al. Alkyne-functionalized ruthenium nanoparticles: impact of metal–ligand interfacial bonding interactions on the selective hydrogenation of styrene. ACS Catal. 9, 98–104 (2019).

    CAS  Google Scholar 

  60. 60.

    Creus, J. et al. Ruthenium nanoparticles for catalytic water splitting. ChemSusChem 12, 2493–2514 (2019).

    CAS  Google Scholar 

  61. 61.

    Tahir, M. et al. Electrocatalytic oxygen evolution reaction for energy conversion and storage: a comprehensive review. Nano Energy 37, 136–157 (2017).

    CAS  Google Scholar 

  62. 62.

    Paoli, E. A. et al. Oxygen evolution on well-characterized mass-selected Ru and RuO2 nanoparticles. Chem. Sci. 6, 190–196 (2015).

    CAS  Google Scholar 

  63. 63.

    Kong, X. et al. Free-standing two-dimensional Ru nanosheets with high activity toward water splitting. ACS Catal. 6, 1487–1492 (2016).

    CAS  Google Scholar 

  64. 64.

    Reier, T., Oezaslan, M. & Strasser, P. Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: a comparative study of nanoparticles and bulk materials. ACS Catal. 2, 1765–1772 (2012).

    CAS  Google Scholar 

  65. 65.

    Stoerzinger, K. A. et al. The role of Ru redox in pH-dependent oxygen evolution on rutile ruthenium dioxide surfaces. Chem 2, 668–675 (2017).

    CAS  Google Scholar 

  66. 66.

    Cherevko, S. et al. Oxygen and hydrogen evolution reactions on Ru, RuO2, Ir, and IrO2 thin film electrodes in acidic and alkaline electrolytes: a comparative study on activity and stability. Catal. Today 262, 170–180 (2016).

    CAS  Google Scholar 

  67. 67.

    Zhao, G., Rui, K., Dou, S. & Sun, W. Heterostructures for electrochemical hydrogen evolution reaction: a review. Adv. Funct. Mater. 28, 1803291 (2018).

    Google Scholar 

  68. 68.

    Vesborg, P. C. K., Seger, B. & Chorkendorff, I. B. Recent development in hydrogen evolution reaction catalysts and their practical implementation. J. Phys. Chem. Lett. 6, 951–957 (2015).

    CAS  Google Scholar 

  69. 69.

    Mahmood, J. et al. An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. Nat. Nanotechnol. 12, 441–446 (2017).

    CAS  Google Scholar 

  70. 70.

    Wang, J., Wei, Z., Mao, S., Li, H. & Wang, Y. Highly uniform Ru nanoparticles over N-doped carbon: pH and temperature-universal hydrogen release from water reduction. Energy Environ. Sci. 11, 800–806 (2018).

    CAS  Google Scholar 

  71. 71.

    Xia, Y., Zhao, M., Wang, X. & Huo, D. Toward affordable and sustainable use of precious metals in catalysis and nanomedicine. MRS Bull. 43, 860–869 (2018).

    Google Scholar 

  72. 72.

    Ohyama, J., Sato, T., Yamamoto, Y., Arai, S. & Satsuma, A. Size specifically high activity of Ru nanoparticles for hydrogen oxidation reaction in alkaline electrolyte. J. Am. Chem. Soc. 135, 8016–8021 (2013).

    CAS  Google Scholar 

  73. 73.

    Gu, J. et al. Robust phase control through hetero-seeded epitaxial growth for face-centered cubic Pt@Ru nanotetrahedrons with superior hydrogen electro-oxidation activity. J. Phys. Chem. C 119, 17697–17706 (2015).

    CAS  Google Scholar 

  74. 74.

    Chen, J. G. et al. Beyond fossil fuel-driven nitrogen transformations. Science 360, eaar6611 (2018).

    Google Scholar 

  75. 75.

    Strait, R. Grassroots success with KAAP. Nitrogen Methanol 238, 37 (1999).

    Google Scholar 

  76. 76.

    Jacobsen, C. J. H. et al. Structure sensitivity of supported ruthenium catalysts for ammonia synthesis. J. Mol. Catal. A Chem. 163, 19–26 (2000).

    CAS  Google Scholar 

  77. 77.

    Foster, S. L. et al. Catalysts for nitrogen reduction to ammonia. Nat. Catal. 1, 490–500 (2018).

    Google Scholar 

  78. 78.

    Andersen, S. Z. et al. A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements. Nature 570, 504–508 (2019).

    CAS  Google Scholar 

  79. 79.

    Cui, X., Tang, C. & Zhang, Q. A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions. Adv. Energy Mater. 8, 1800369 (2018).

    Google Scholar 

  80. 80.

    Zhao, P. et al. Morphology and reactivity evolution of hcp and fcc Ru nanoparticles under CO atmosphere. ACS Catal. 9, 2768–2776 (2019).

    CAS  Google Scholar 

  81. 81.

    Aßmann, J. et al. Understanding the structural deactivation of ruthenium catalysts on an atomic scale under both oxidizing and reducing conditions. Angew. Chem. Int. Ed. 44, 917–920 (2005).

    Google Scholar 

  82. 82.

    Qadir, K. et al. Intrinsic relation between catalytic activity of CO oxidation on Ru nanoparticles and Ru oxides uncovered with ambient pressure XPS. Nano Lett. 12, 5761–5768 (2012).

    CAS  Google Scholar 

  83. 83.

    Wang, X. et al. Palladium–platinum core–shell icosahedra with substantially enhanced activity and durability towards oxygen reduction. Nat. Commun. 6, 7594 (2015).

    Google Scholar 

  84. 84.

    Yang, T. H., Gilroy, K. D. & Xia, Y. Reduction rate as a quantitative knob for achieving deterministic synthesis of colloidal metal nanocrystals. Chem. Sci. 8, 6730–6749 (2017).

    CAS  Google Scholar 

  85. 85.

    Wang, Y., Peng, H. C., Liu, J., Huang, C. Z. & Xia, Y. Use of reduction rate as a quantitative knob for controlling the twin structure and shape of palladium nanocrystals. Nano Lett. 15, 1445–1450 (2015).

    Google Scholar 

  86. 86.

    Lyu, Z. et al. A rationally designed route to the one-pot synthesis of right bipyramidal nanocrystals of copper. Chem. Mater. 30, 6469–6477 (2018).

    CAS  Google Scholar 

  87. 87.

    Duan, H. et al. Ultrathin rhodium nanosheets. Nat. Commun. 5, 3093 (2014).

    Google Scholar 

  88. 88.

    Osorio-Cantillo, C., Santiago-Miranda, A. N., Perales-Perez, O. & Xin, Y. Size- and phase-controlled synthesis of cobalt nanoparticles for potential biomedical applications. J. Appl. Phys. 111, 07B324 (2012).

    Google Scholar 

  89. 89.

    Fan, Z. et al. Stabilization of 4H hexagonal phase in gold nanoribbons. Nat. Commun. 6, 7684 (2015).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported, in part, by research grants from the National Science Foundation, including DMR-1505400, CHE-1505441 and CHE-1804970. It was also supported by start-up funds from the Georgia Institute of Technology.

Author information

Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Younan Xia.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, M., Xia, Y. Crystal-phase and surface-structure engineering of ruthenium nanocrystals. Nat Rev Mater 5, 440–459 (2020). https://doi.org/10.1038/s41578-020-0183-3

Download citation

Further reading