Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Transition-metal coordinate bonds for bioinspired macromolecules with tunable mechanical properties

Abstract

Transition-metal coordination complexes are emerging as a broad class of supramolecular crosslinks that can be used to engineer the mechanical properties of advanced structural materials. Unlike conventional covalent bonds, metal-coordination bonds have the capacity to reform after rupture, thereby enabling dynamic, tunable and reversible (self-healing) mechanical properties. Several biological organisms, such as marine mussels, have been found to take advantage of these unique properties of metal-coordinate complexes in the assembly of load-bearing materials for complex extraorganismal functions. Accordingly, efforts to integrate metal-coordinate crosslinking in bioinspired synthetic protein and polymer hydrogels are an increasingly active area of research. However, a deeper understanding of how metal-coordination bonds affect bulk mechanical properties is still missing, rendering predicting the mechanical properties of metal-coordinated materials challenging. In this Review, we survey recent advances and open questions in our understanding of how chemical properties of metal-coordinate complexes influence multiscale mechanical behaviour, with the aim of presenting metal-coordination bonding as a rich, inorganic crosslinking chemistry tool. We also review applications of metal-coordinate crosslinking in the design of novel materials with tunable mechanical properties, ranging from tough gels to soft robots. These applications highlight the opportunities arising from the integration of this class of load-bearing crosslinks in structural materials design.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Properties enabled by metal-coordinated bonds.
Fig. 2: Hierarchical organization and resulting mechanical properties of mussels and Nereis virens.
Fig. 3: Mechanical signatures of metal-coordination bonds.
Fig. 4: Engineering metal-coordinated polymers.
Fig. 5: Chemical factors influencing the relaxation time of the network.
Fig. 6: Multiscale modelling of metal-coordinated materials.
Fig. 7: Examples of ligands used for metal coordination with different metal ions.
Fig. 8: Future directions in the study of metal-coordination bonds.

Similar content being viewed by others

References

  1. Williams, R. J. Metal ions in biological systems. Biol. Rev. 28, 381–412 (1953).

    Article  CAS  Google Scholar 

  2. Sundberg, R. J. & Martin, R. B. Interactions of histidine and other imidazole derivatives with transition metal ions in chemical and biological systems. Chem. Rev. 74, 471–517 (1974).

    Article  CAS  Google Scholar 

  3. Pyle, A. M. Metal ions in the structure and function of RNA. J. Biol. Inorg. Chem. 7, 679–690 (2002).

    Article  CAS  Google Scholar 

  4. Waite, J. H. Adhesion à la moule. Integr. Comp. Biol. 42, 1172–1180 (2002).

    Article  CAS  Google Scholar 

  5. Sun, C. J. & Waite, J. H. Mapping chemical gradients within and along a fibrous structural tissue, mussel byssal threads. J. Biol. Chem. 280, 39332–39336 (2005).

    Article  CAS  Google Scholar 

  6. Holten-Andersen, N. et al. pH-induced metal-ligand cross-links inspired by mussel yield self-healing polymer networks with near-covalent elastic moduli. Proc. Natl Acad. Sci. USA 108, 2651–2655 (2011).

    Article  CAS  Google Scholar 

  7. Fullenkamp, D. E., He, L., Barrett, D. G., Burghardt, W. R. & Messersmith, P. B. Mussel-inspired histidine-based transient network metal coordination hydrogels. Macromolecules 46, 1167–1174 (2013).

    Article  CAS  Google Scholar 

  8. Li, C. H. et al. A highly stretchable autonomous self-healing elastomer. Nat. Chem. 8, 618–624 (2016).

    Article  CAS  Google Scholar 

  9. Hartmann, M. A. & Fratzl, P. Sacrificial ionic bonds need to be randomly distributed to provide shear deformability. Nano Lett. 9, 3603–3607 (2009).

    Article  CAS  Google Scholar 

  10. Broomell, C. C., Chase, S. F., Laue, T. & Waite, J. H. Cutting edge structural protein from the jaws of Nereis virens. Biomacromolecules 9, 1669–1677 (2008).

    Article  CAS  Google Scholar 

  11. Broomell, C. C., Zok, F. W. & Waite, J. H. Role of transition metals in sclerotization of biological tissue. Acta Biomater. 4, 2045–2051 (2008).

    Article  CAS  Google Scholar 

  12. Broomell, C. C., Mattoni, M. A., Zok, F. W. & Waite, J. H. Critical role of zinc in hardening of Nereis jaws. J. Exp. Biol. 209, 3219–3225 (2006).

    Article  CAS  Google Scholar 

  13. Waite, J. H., Andersen, N. H., Jewhurst, S. & Sun, C. Mussel adhesion: finding the tricks worth mimicking. J. Adhes. 81, 297–317 (2005).

    Article  CAS  Google Scholar 

  14. Degtyar, E., Harrington, M. J., Politi, Y. & Fratzl, P. The mechanical role of metal ions in biogenic protein-based materials. Angew. Chem. Int. Ed. 53, 12026–12044 (2014).

    Article  CAS  Google Scholar 

  15. Wegst, U. G. K., Bai, H., Saiz, E., Tomsia, A. P. & Ritchie, R. O. Bioinspired structural materials. Nat. Mater. 14, 23–36 (2015).

    Article  CAS  Google Scholar 

  16. Launey, M. E. & Ritchie, R. O. On the fracture toughness of advanced materials. Adv. Mater. 21, 2103–2110 (2009).

    Article  CAS  Google Scholar 

  17. Ritchie, R. O. The conflicts between strength and toughness. Nat. Mater. 10, 817–822 (2011).

    Article  CAS  Google Scholar 

  18. Creton, C. 50th anniversary perspective: Networks and gels: Soft but dynamic and tough. Macromolecules 50, 8297–8316 (2017).

    Article  CAS  Google Scholar 

  19. Fantner, G. E. et al. Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture. Nat. Mater. 4, 612–616 (2005).

    Article  CAS  Google Scholar 

  20. Barthelat, F., Yin, Z. & Buehler, M. J. Structure and mechanics of interfaces in biological materials. Nat. Rev. Mater. 1, 16007 (2016).

    Article  CAS  Google Scholar 

  21. Gu, G. X., Takaffoli, M. & Buehler, M. J. Hierarchically enhanced impact resistance of bioinspired composites. Adv. Mater. 29, 1700060 (2017).

    Article  CAS  Google Scholar 

  22. Holten-Andersen, N. et al. Metal-coordination: using one of nature’s tricks to control soft material mechanics. J. Mater. Chem. B 2, 2467–2472 (2014).

    Article  CAS  Google Scholar 

  23. Grindy, S. C. et al. Control of hierarchical polymer mechanics with bioinspired metal-coordination dynamics. Nat. Mater. 14, 1210–1216 (2015).

    Article  CAS  Google Scholar 

  24. Mozhdehi, D. et al. Tuning dynamic mechanical response in metallopolymer networks through simultaneous control of structural and temporal properties of the networks. Macromolecules 49, 6310–6321 (2016).

    Article  CAS  Google Scholar 

  25. Harrington, M. J., Masic, A., Holten-Andersen, N., Waite, J. H. & Fratzl, P. Iron-clad fibers: a metal-based biological strategy for hard flexible coatings. Science 328, 216–220 (2010).

    Article  CAS  Google Scholar 

  26. Grindy, S. C., Lenz, M. & Holten-Andersen, N. Engineering elasticity and relaxation time in metal-coordinate cross-linked hydrogels. Macromolecules 49, 8306–8312 (2016).

    Article  CAS  Google Scholar 

  27. Li, H., Yang, P., Pageni, P. & Tang, C. Recent advances in metal-containing polymer hydrogels. Macromol. Rapid Commun. 38, 1700109 (2017).

    Article  CAS  Google Scholar 

  28. Cazzell, S. A. & Holten-Andersen, N. Expanding the stoichiometric window for metal cross-linked gel assembly using competition. Proc. Natl Acad. Sci. USA 22, 201906349 (2019).

    Google Scholar 

  29. Buehler, M. J. Materials by design — A perspective from atoms to structures. MRS Bull. 38, 169–176 (2013).

    Article  CAS  Google Scholar 

  30. Giesa, T., Jagadeesan, R., Spivak, D. I. & Buehler, M. J. Matriarch: a Python library for materials architecture. ACS Biomater. Sci. Eng. 1, 1009–1015 (2015).

    Article  CAS  Google Scholar 

  31. Huang, W. et al. Synergistic integration of experimental and simulation approaches for the de novo design of silk-based materials. Acc. Chem. Res. 50, 866–876 (2017).

    Article  CAS  Google Scholar 

  32. Mozhdehi, D., Ayala, S., Cromwell, O. R. & Guan, Z. Self-healing multiphase polymers via dynamic metal–ligand interactions. J. Am. Chem. Soc. 136, 16128–16131 (2014).

    Article  CAS  Google Scholar 

  33. Zheng, S. Y. et al. Metal-coordination complexes mediated physical hydrogels with high toughness, stick-slip tearing behavior, and good processability. Macromolecules 49, 9637–9646 (2016).

    Article  CAS  Google Scholar 

  34. Tang, Q., Zhao, D., Yang, H., Wang, L. & Zhang, X. A pH-responsive self-healing hydrogel based on multivalent coordination of Ni2+ with polyhistidine-terminated PEG and IDA-modified oligochitosan. J. Mater. Chem. B 7, 30–42 (2019).

    Article  CAS  Google Scholar 

  35. Yeo, J. et al. Multiscale modeling of keratin, collagen, elastin and related human diseases: Perspectives from atomistic to coarse-grained molecular dynamics simulations. Extrem. Mech. Lett. 20, 112–124 (2018).

    Article  Google Scholar 

  36. Bertoldi, K. & Boyce, M. C. Mechanics of the hysteretic large strain behavior of mussel byssus threads. J. Mater. Sci. 42, 8943–8956 (2007).

    Article  CAS  Google Scholar 

  37. Cohen, N., Waite, J. H., McMeeking, R. M. & Valentine, M. T. Force distribution and multiscale mechanics in the mussel byssus. Philos. Trans. R. Soc. B Biol. Sci. 374, 20190202 (2019).

    Article  CAS  Google Scholar 

  38. Priemel, T., Degtyar, E., Dean, M. N. & Harrington, M. J. Rapid self-assembly of complex biomolecular architectures during mussel byssus biofabrication. Nat. Commun. 8, 14539 (2017).

    Article  Google Scholar 

  39. Bell, E. C. & Gosline, J. M. Mechanical design of mussel byssus: material yield enhances attachment strength. J. Exp. Biol. 199, 1005–1017 (1996).

    Article  CAS  Google Scholar 

  40. Carrington, E. & Gosline, J. M. Mechanical design of mussel byssus: Load cycle and strain rate dependence. Am. Malacol. Bull. 18, 135–142 (2004).

    Google Scholar 

  41. Waite, J. H., Lichtenegger, H. C., Stucky, G. D. & Hansma, P. Exploring molecular and mechanical gradients in structural bioscaffolds. Biochemistry 43, 7653–7662 (2004).

    Article  CAS  Google Scholar 

  42. Qin, Z. & Buehler, M. J. Impact tolerance in mussel thread networks by heterogeneous material distribution. Nat. Commun. 4, 2187 (2013).

    Article  CAS  Google Scholar 

  43. Zhao, H. & Waite, J. H. Proteins in load-bearing junctions: the histidine-rich metal-binding protein of mussel byssus. Biochemistry 45, 14223–14231 (2006).

    Article  CAS  Google Scholar 

  44. Harrington, M. J. & Waite, J. H. Holdfast heroics: comparing the molecular and mechanical properties of Mytilus californianus byssal threads. J. Exp. Biol. 210, 4307–4318 (2007).

    Article  CAS  Google Scholar 

  45. Vaccaro, E. & Waite, J. H. Yield and post-yield behavior of mussel byssal thread: A self-healing biomolecular material. Biomacromolecules 2, 906–911 (2001).

    Article  CAS  Google Scholar 

  46. Zechel, S., Hager, M., Priemel, T. & Harrington, M. Healing through histidine: Bioinspired pathways to self-healing polymers via imidazole–metal coordination. Biomimetics 4, 20 (2019).

    Article  CAS  Google Scholar 

  47. Schmitt, C. N. Z., Politi, Y., Reinecke, A. & Harrington, M. J. Role of sacrificial protein–metal bond exchange in mussel byssal thread self-healing. Biomacromolecules 16, 2852–2861 (2015).

    Article  CAS  Google Scholar 

  48. Schmidt, S. et al. Metal-mediated molecular self-healing in histidine-rich mussel peptides. Biomacromolecules 15, 1644–1652 (2014).

    Article  CAS  Google Scholar 

  49. Krauss, S., Metzger, T. H., Fratzl, P. & Harrington, M. J. Self-repair of a biological fiber guided by an ordered elastic framework. Biomacromolecules 14, 1520–1528 (2013).

    Article  CAS  Google Scholar 

  50. Reinecke, A., Bertinetti, L., Fratzl, P. & Harrington, M. J. Cooperative behavior of a sacrificial bond network and elastic framework in providing self-healing capacity in mussel byssal threads. J. Struct. Biol. 196, 329–339 (2016).

    Article  CAS  Google Scholar 

  51. Claussen, K. U., Giesa, R., Scheibel, T. & Schmidt, H. W. Learning from nature: Synthesis and characterization of longitudinal polymer gradient materials inspired by mussel byssus threads. Macromol. Rapid Commun. 33, 206–211 (2011).

    Article  CAS  Google Scholar 

  52. Holten-Andersen, N. et al. Metals and the integrity of a biological coating: the cuticle of mussel byssus. Langmuir 25, 3323–3326 (2009).

    Article  CAS  Google Scholar 

  53. Saiz-Poseu, J., Mancebo-Aracil, J., Nador, F., Busqué, F. & Ruiz-Molina, D. The chemistry behind catechol-based adhesion. Angew. Chem. Int. Ed. Engl. 58, 696–714 (2019).

    Article  CAS  Google Scholar 

  54. Hofman, A. H., van Hees, I. A., Yang, J. & Kamperman, M. Bioinspired underwater adhesives by using the supramolecular toolbox. Adv. Mater. 30, 1704640 (2018).

    Article  CAS  Google Scholar 

  55. Kord Forooshani, P. & Lee, B. P. Recent approaches in designing bioadhesive materials inspired by mussel adhesive protein. J. Polym. Sci. A Polym. Chem. 55, 9–33 (2017).

    Article  CAS  Google Scholar 

  56. Lichtenegger, H. C. et al. Zinc and mechanical prowess in the jaws of Nereis, a marine worm. Proc. Natl Acad. Sci. USA 100, 9144–9149 (2003).

    Article  CAS  Google Scholar 

  57. Lichtenegger, H. C., Schoberl, T., Bartl, M. H., Waite, H. & Stucky, G. D. High abrasion resistance with sparse mineralization: copper biomineral in worm jaws. Science 298, 389–392 (2002).

    Article  CAS  Google Scholar 

  58. Khan, R. K., Stoimenov, P. K., Mates, T. E., Waite, J. H. & Stucky, G. D. Exploring gradients of halogens and zinc in the surface and subsurface of Nereis jaws. Langmuir 22, 8465–8471 (2006).

    Article  CAS  Google Scholar 

  59. Chou, C. C. et al. Ion effect and metal-coordinated cross-linking for multiscale design of Nereis jaw inspired mechanomutable materials. ACS Nano 11, 1858–1868 (2017).

    Article  CAS  Google Scholar 

  60. Politi, Y. et al. A spider’s fang: How to design an injection needle using chitin-based composite material. Adv. Funct. Mater. 22, 2519–2528 (2012).

    Article  CAS  Google Scholar 

  61. Schofield, R. M. S., Nesson, M. H., Richardson, K. A. & Wyeth, P. Zinc is incorporated into cuticular “tools” after ecdysis: The time course of the zinc distribution in “tools” and whole bodies of an ant and a scorpion. J. Insect Physiol. 49, 31–44 (2003).

    Article  CAS  Google Scholar 

  62. Horbelt, N., Eder, M., Bertinetti, L., Fratzl, P. & Harrington, M. J. Unraveling the rapid assembly process of stiff cellulosic fibers from mistletoe berries. Biomacromolecules 20, 3094–3103 (2019).

    Article  CAS  Google Scholar 

  63. Pasche, D. et al. A new twist on sea silk: the peculiar protein ultrastructure of fan shell and pearl oyster byssus. Soft Matter 14, 5654–5664 (2018).

    Article  CAS  Google Scholar 

  64. Fung, T.-M., Gallego Lazo, C. & Smith, A. M. Elasticity and energy dissipation in the double network hydrogel adhesive of the slug Arion subfuscus. Philos. Trans. R. Soc. B Biol. Sci. 374, 20190201 (2019).

    Article  CAS  Google Scholar 

  65. Lipscomb, W. N. & Sträter, N. Recent advances in zinc enzymology. Chem. Rev. 96, 2375–2433 (1996).

    Article  CAS  Google Scholar 

  66. Hromada, S. E. et al. Protein oxidation involved in Cys-Tyr post-translational modification. J. Inorg. Biochem. 176, 168–174 (2017).

    Article  CAS  Google Scholar 

  67. Birkedal, H. et al. Halogenated veneers: Protein cross-linking and halogenation in the jaws of Nereis, a marine polychaete worm. ChemBioChem 7, 1392–1399 (2006).

    Article  CAS  Google Scholar 

  68. Yu, M., Hwang, J. & Deming, T. J. Role of 1-3,4-dihydroxyphenylalanine in mussel adhesive proteins. J. Am. Chem. Soc. 121, 5825–5826 (1999).

    Article  CAS  Google Scholar 

  69. Yamamoto, H. Synthesis and adhesive studies of marine polypeptides. J. Chem. Soc. Perkin Trans. 1 1987, 613–618 (1987).

    Article  Google Scholar 

  70. Parada, G. A. & Zhao, X. Ideal reversible polymer networks. Soft Matter 14, 5186–5196 (2018).

    Article  CAS  Google Scholar 

  71. Tang, Q. et al. Polyhistidine-based metal coordination hydrogels with physiologically relevant pH responsiveness and enhanced stability through a novel synthesis. Macromol. Rapid Commun. 39, e1800109 (2018).

    Article  CAS  Google Scholar 

  72. Yu, M. & Deming, T. J. Synthetic polypeptide mimics of marine adhesives. Macromolecules 31, 4739–4745 (1998).

    Article  CAS  Google Scholar 

  73. Sanoja, G. E. et al. Ion transport in dynamic polymer networks based on metal–ligand coordination: effect of cross-linker concentration. Macromolecules 51, 2017–2026 (2018).

    Article  CAS  Google Scholar 

  74. Guo, W. et al. Plant oil and amino acid-derived elastomers with rapid room temperature self-healing ability. J. Mater. Chem. A 7, 21927–21933 (2019).

    Article  CAS  Google Scholar 

  75. Srivastava, A., Holten-Andersen, N., Stucky, G. D. & Waite, J. H. Ragworm jaw-inspired metal ion cross-linking for improved mechanical properties of polymer blends. Biomacromolecules 9, 2873–2880 (2008).

    Article  CAS  Google Scholar 

  76. Enke, M. et al. Self-healing response in supramolecular polymers based on reversible zinc–histidine interactions. Polymer 69, 274–282 (2015).

    Article  CAS  Google Scholar 

  77. Enke, M. et al. A translation of the structure of mussel byssal threads into synthetic materials by the utilization of histidine-rich block copolymers. Polym. Chem. 9, 3543–3551 (2018).

    Article  CAS  Google Scholar 

  78. Wang, R. et al. Classical challenges in the physical chemistry of polymer networks and the design of new materials. Acc. Chem. Res. 49, 2786–2795 (2016).

    Article  CAS  Google Scholar 

  79. Rossow, T. & Seiffert, S. Supramolecular polymer gels with potential model-network structure. Polym. Chem. 5, 3018–3029 (2014).

    Article  CAS  Google Scholar 

  80. Tang, S. & Olsen, B. D. Relaxation processes in supramolecular metallogels based on histidine–nickel coordination bonds. Macromolecules 49, 9163–9175 (2016).

    Article  CAS  Google Scholar 

  81. Yu, W. et al. Tuning of the dynamics of metal ion crosslinked hydrogels by network structures. Soft Matter 15, 4423–4427 (2019).

    Article  CAS  Google Scholar 

  82. Ahmadi, M., Jangizehi, A., van Ruymbeke, E. & Seiffert, S. Deconvolution of the effects of binary associations and collective assemblies on the rheological properties of entangled side-chain supramolecular polymer networks. Macromolecules 52, 5255–5267 (2019).

    Article  CAS  Google Scholar 

  83. Hwang, D. S., Yoo, H. J., Jun, J. H., Moon, W. K. & Cha, H. J. Expression of functional recombinant mussel adhesive protein Mgfp-5 in Escherichia coli. Appl. Environ. Microbiol. 70, 3352–3359 (2004).

    Article  CAS  Google Scholar 

  84. Hwang, D. S., Sim, S. B. & Cha, H. J. Cell adhesion biomaterial based on mussel adhesive protein fused with RGD peptide. Biomaterials 28, 4039–4046 (2007).

    Article  CAS  Google Scholar 

  85. Kim, B. J., Choi, Y. S. & Cha, H. J. Reinforced multifunctionalized nanofibrous scaffolds using mussel adhesive proteins. Angew. Chem. Int. Ed. Engl. 51, 675–678 (2012).

    Article  CAS  Google Scholar 

  86. Kim, B. J. et al. Mussel-inspired adhesive protein-based electrospun nanofibers reinforced by Fe(III)–DOPA complexation. J. Mater. Chem. B 3, 112–118 (2013).

    Article  CAS  Google Scholar 

  87. Kim, B. J. et al. Mussel-mimetic protein-based adhesive hydrogel. Biomacromolecules 15, 1579–1585 (2014).

    Article  CAS  Google Scholar 

  88. Gupta, M. K. et al. Programmable mechanical properties from a worm jaw-derived biopolymer through hierarchical ion exposure. ACS Appl. Mater. Interfaces 10, 31928–31937 (2018).

    Article  CAS  Google Scholar 

  89. Statz, A. R., Meagher, R. J., Barron, A. E. & Messersmith, P. B. New peptidomimetic polymers for antifouling surfaces. J. Am. Chem. Soc. 127, 7972–7973 (2005).

    Article  CAS  Google Scholar 

  90. Yang, W., Gao, X., Springsteen, G. & Wang, B. Catechol pendant polystyrene for solid-phase synthesis. Tetrahedron Lett. 43, 6339–6342 (2002).

    Article  CAS  Google Scholar 

  91. Trapaidze, A., D’Antuono, M., Fratzl, P. & Harrington, M. J. Exploring mussel byssus fabrication with peptide-polymer hybrids: Role of pH and metal coordination in self-assembly and mechanics of histidine-rich domains. Eur. Polym. J. 109, 229–236 (2018).

    Article  CAS  Google Scholar 

  92. Jehle, F., Fratzl, P. & Harrington, M. J. Metal-tunable self-assembly of hierarchical structure in mussel-inspired peptide films. ACS Nano 12, 2160–2168 (2018).

    Article  CAS  Google Scholar 

  93. Wang, X.-W., Liu, D., Yin, G.-Z. & Zhang, W.-B. in Bioinspired Materials Science and Engineering Ch. 15 (eds Yang, G., Xiao, L. & Lamboni, L.) 295–309 (Wiley, 2018).

  94. Reinecke, A., Brezesinski, G. & Harrington, M. J. pH-responsive self-organization of metal-binding protein motifs from biomolecular junctions in mussel byssus. Adv. Mater. Interfaces 4, 1600416 (2017).

    Article  CAS  Google Scholar 

  95. Przybyla, D. E. & Chmielewski, J. Metal-triggered collagen peptide disk formation. J. Am. Chem. Soc. 132, 7866–7867 (2010).

    Article  CAS  Google Scholar 

  96. Salgado, E. N. et al. Metal templated design of protein interfaces. Proc. Natl Acad. Sci. USA 107, 1827–1832 (2010).

    Article  CAS  Google Scholar 

  97. Salgado, E. N., Radford, R. J. & Tezcan, F. A. Metal-directed protein self-assembly. Acc. Chem. Res. 43, 661–672 (2010).

    Article  CAS  Google Scholar 

  98. Brodin, J. D. et al. Metal-directed, chemically tunable assembly of one-, two- and three-dimensional crystalline protein arrays. Nat. Chem. 4, 375–382 (2012).

    Article  CAS  Google Scholar 

  99. Tunn, I., Harrington, M. J. & Blank, K. G. Bioinspired histidine–Zn2+ coordination for tuning the mechanical properties of self-healing coiled coil cross-linked hydrogels. Biomimetics 4, 25 (2019).

    Article  CAS  Google Scholar 

  100. Sun, W. et al. Molecular engineering of metal coordination interactions for strong, tough, and fast-recovery hydrogels. Sci. Adv. 6, eaaz9531 (2020).

    Article  CAS  Google Scholar 

  101. Tunn, I., de Léon, A. S., Blank, K. G. & Harrington, M. J. Tuning coiled coil stability with histidine-metal coordination. Nanoscale 10, 22725–22729 (2018).

    Article  CAS  Google Scholar 

  102. Cao, Y., Wei, X., Lin, Y. & Sun, F. Synthesis of bio-inspired viscoelastic molecular networks by metal-induced protein assembly. Mol. Syst. Des. Eng. 5, 117–124 (2020).

    Article  CAS  Google Scholar 

  103. Mirabello, C. & Wallner, B. rawMSA: proper Deep Learning makes protein sequence profiles and feature extraction obsolete. Preprint at https://www.biorxiv.org/content/10.1101/394437v1 (2018).

  104. Yu, C. H., Qin, Z., Martin-Martinez, F. J. & Buehler, M. J. A self-consistent sonification method to translate amino acid sequences into musical compositions and application in protein design using artificial intelligence. ACS Nano 13, 7471–7482 (2019).

    Article  CAS  Google Scholar 

  105. Sjöberg, S. Critical evaluation of stability constants of metal-imidazole and metal-histamine systems (Technical Report). Pure Appl. Chem. 69, 1549–1570 (1997).

    Article  Google Scholar 

  106. Irving, H. & Williams, R. J. P. 637. The stability of transition-metal complexes. J. Chem. Soc. https://doi.org/10.1039/JR9530003192 (1953).

  107. Remko, M., Fitz, D. & Rode, B. M. Effect of metal ions (Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+ and Zn2+) and water coordination on the structure and properties of l-histidine and zwitterionic l-histidine. Amino Acids 39, 1309–1319 (2010).

    Article  CAS  Google Scholar 

  108. Smith, R. M. & Martell, A. E. Critical Stability Constants Vol. 6 (Springer, 1976).

  109. Gensler, M. et al. Mechanical rupture of mono- and bivalent transition metal complexes in experiment and theory. J. Phys. Chem. C 119, 4333–4343 (2015).

    Article  CAS  Google Scholar 

  110. Li, P. & Merz, K. M. Metal ion modeling using classical mechanics. Chem. Rev. 117, 1564–1686 (2017).

    Article  CAS  Google Scholar 

  111. Duboué-Dijon, E., Mason, P. E., Fischer, H. E. & Jungwirth, P. Hydration and ion pairing in aqueous Mg2+ and Zn2+ solutions: force-field description aided by neutron scattering experiments and ab initio molecular dynamics simulations. J. Phys. Chem. B 122, 3296–3306 (2018).

    Article  CAS  Google Scholar 

  112. Rodríguez-Santiago, L., Alí-Torres, J., Vidossich, P. & Sodupe, M. Coordination properties of a metal chelator clioquinol to Zn2+ studied by static DFT and ab initio molecular dynamics. Phys. Chem. Chem. Phys. 17, 13582–13589 (2015).

    Article  CAS  Google Scholar 

  113. Assifaoui, A. et al. Structural behaviour differences in low methoxy pectin solutions in the presence of divalent cations (Ca2+ and Zn2+): A process driven by the binding mechanism of the cation with the galacturonate unit. Soft Matter 11, 551–560 (2015).

    Article  CAS  Google Scholar 

  114. Tetteh, S. Coordination behavior of Ni2+, Cu2+, and Zn2+ in tetrahedral 1-methylimidazole complexes: A DFT/CSD study. Bioinorg. Chem. Appl. https://doi.org/10.1155/2018/3157969 (2018).

  115. Senftle, T. P. et al. The ReaxFF reactive force-field: development, applications and future directions. npj Comput. Mater. 2, 15011 (2016).

    Article  CAS  Google Scholar 

  116. Raymand, D., van Duin, A. C. T., Baudin, M. & Hermansson, K. A reactive force field (ReaxFF) for zinc oxide. Surf. Sci. 602, 1020–1031 (2008).

    Article  CAS  Google Scholar 

  117. Van Duin, A. C. T. et al. Development and validation of a ReaxFF reactive force field for Cu cation/water interactions and copper metal/metal oxide/metal hydroxide condensed phases. J. Phys. Chem. A 114, 9507–9514 (2010).

    Article  CAS  Google Scholar 

  118. Huang, L., Joshi, K. L., van Duin, A. C. T., Bandosz, T. J. & Gubbins, K. E. ReaxFF molecular dynamics simulation of thermal stability of a Cu3(BTC)2 metal–organic framework. Phys. Chem. Chem. Phys. 14, 11327–11332 (2012).

    Article  CAS  Google Scholar 

  119. Zeng, L. et al. A highly stretchable, tough, fast self-healing hydrogel based on peptide–metal ion coordination. Biomimetics 4, 36 (2019).

    Article  CAS  Google Scholar 

  120. Shabbir, H. & Hartmann, M. A. Influence of reversible cross-link coordination on the mechanical behavior of a linear polymer chain. New J. Phys. 19, 093024 (2017).

    Article  CAS  Google Scholar 

  121. Shabbir, H., Dellago, C. & Hartmann, M. A high coordination of cross-links is beneficial for the strength of cross-linked fibers. Biomimetics 4, 12 (2019).

    Article  CAS  Google Scholar 

  122. Rulíšek, L. & Vondrášek, J. Coordination geometries of selected transition metal ions (Co2+, Ni2+, Cu2+, Zn2+, Cd2+, and Hg2+) in metalloproteins. J. Inorg. Biochem. 71, 115–127 (1998).

    Article  Google Scholar 

  123. Sever, M. J. & Wilker, J. J. Absorption spectroscopy and binding constants for first-row transition metal complexes of a DOPA-containing peptide. Dalton Trans. https://doi.org/10.1039/b509586g (2006).

    Article  Google Scholar 

  124. Li, Y. et al. Single-molecule mechanics of catechol-iron coordination bonds. ACS Biomater. Sci. Eng. 3, 979–989 (2017).

    Article  CAS  Google Scholar 

  125. Xu, Z. Mechanics of metal-catecholate complexes: The roles of coordination state and metal types. Sci. Rep. 3, 2914 (2013).

    Article  Google Scholar 

  126. Langford, C. H. & Gray, H. B. Ligand Substitution Processes (W. A. Benjamin, 1966).

  127. Li, C. P. & Du, M. Role of solvents in coordination supramolecular systems. Chem. Commun. 47, 5958–5972 (2011).

    Article  CAS  Google Scholar 

  128. Redfern, P. C., Zapol, P., Curtiss, L. A., Rajh, T. & Thurnauer, M. C. Computational studies of catechol and water interactions with titanium oxide nanoparticles. J. Phys. Chem. B 107, 11419–11427 (2003).

    Article  CAS  Google Scholar 

  129. Helm, L. & Merbach, A. E. Inorganic and bioinorganic solvent exchange mechanisms. Chem. Rev. 105, 1923–1959 (2005).

    Article  CAS  Google Scholar 

  130. Buck, C. C. et al. Anion-mediated effects on the size and mechanical properties of enzymatically crosslinked suckerin hydrogels. Macromol. Biosci. 19, e1800238 (2019).

    Article  CAS  Google Scholar 

  131. Maier, G. P., Rapp, M. V., Waite, J. H., Israelachvili, J. N. & Butler, A. Adaptive synergy between catechol and lysine promotes wet adhesion by surface salt displacement. Science 349, 628–632 (2015).

    Article  CAS  Google Scholar 

  132. Li, Y. et al. Single-molecule study of the synergistic effects of positive charges and Dopa for wet adhesion. J. Mater. Chem. B 5, 4416–4420 (2017).

    Article  CAS  Google Scholar 

  133. Li, Y. et al. Hidden complexity of synergistic roles of Dopa and lysine for strong wet adhesion. Mater. Chem. Front. 1, 2664–2668 (2017).

    Article  CAS  Google Scholar 

  134. Sever, M. J., Weisser, J. T., Monahan, J., Srinivasan, S. & Wilker, J. J. Metal-mediated cross-linking in the generation of a marine-mussel adhesive. Angew. Chem. Int. Ed. Engl. 43, 448–450 (2004).

    Article  CAS  Google Scholar 

  135. Barrett, D. G. et al. pH-based regulation of hydrogel mechanical properties through mussel-inspired chemistry and processing. Adv. Funct. Mater. 23, 1111–1119 (2013).

    Article  CAS  Google Scholar 

  136. Auletta, J. T. et al. Stimuli-responsive iron-cross-linked hydrogels that undergo redox-driven switching between hard and soft states. Macromolecules 48, 1736–1747 (2015).

    Article  CAS  Google Scholar 

  137. Mou, C., Ali, F., Malaviya, A. & Bettinger, C. J. Electrochemical-mediated gelation of catechol-bearing hydrogels based on multimodal crosslinking. J. Mater. Chem. B 7, 1690–1696 (2019).

    Article  CAS  Google Scholar 

  138. Wegner, S. V., Schenk, F. C., Witzel, S., Bialas, F. & Spatz, J. P. Cobalt cross-linked redox-responsive PEG hydrogels: from viscoelastic liquids to elastic solids. Macromolecules 49, 4229–4235 (2016).

    Article  CAS  Google Scholar 

  139. Okamoto, S. & Eltis, L. D. The biological occurrence and trafficking of cobalt. Metallomics 3, 963–970 (2011).

    Article  CAS  Google Scholar 

  140. Outten, F. W. & Theil, E. C. Iron-based redox switches in biology. Antioxid. Redox Signal. 11, 1029–1046 (2009).

    Article  CAS  Google Scholar 

  141. Campanella, A., Döhler, D. & Binder, W. H. Self-healing in supramolecular polymers. Macromol. Rapid Commun. 39, 1700739 (2018).

    Article  CAS  Google Scholar 

  142. Duboué-Dijon, E., Mason, P. E., Fischer, H. E. & Jungwirth, P. Changes in the hydration structure of imidazole upon protonation: Neutron scattering and molecular simulations. J. Chem. Phys. 146, 185102 (2017).

    Article  CAS  Google Scholar 

  143. Kim, S., Peterson, A. M. & Holten-Andersen, N. Enhanced water retention maintains energy dissipation in dehydrated metal-coordinate polymer networks: another role for Fe-catechol cross-links? Chem. Mater. 30, 3648–3655 (2018).

    Article  CAS  Google Scholar 

  144. Liu, Q. et al. Probing the reversible Fe3+–DOPA-mediated bridging interaction in mussel foot protein-1. J. Phys. Chem. C 120, 21670–21677 (2016).

    Article  CAS  Google Scholar 

  145. Castillo-Tejas, J. et al. Associative polymers. Part III: Shear rheology from molecular dynamics. Colloids Surf. A Physicochem. Eng. Asp. 491, 37–49 (2016).

    Article  CAS  Google Scholar 

  146. Castillo-Tejas, J., Carro, S. & Manero, O. Shear banding in telechelic associative polymers by molecular dynamics. ACS Macro Lett. 6, 190–193 (2017).

    Article  CAS  Google Scholar 

  147. Liu, D., Liu, F., Zhou, W., Chen, F. & Wei, J. Molecular dynamics simulation of self-assembly and viscosity behavior of PAM and CTAC in salt-added solutions. J. Mol. Liq. 268, 131–139 (2018).

    Article  CAS  Google Scholar 

  148. Zhang, Q. et al. Disassociation and reformation under strain in polymer with dynamic metal–ligand coordination cross-linking. Macromolecules 52, 660–668 (2019).

    Article  CAS  Google Scholar 

  149. Song, J. et al. Programmable anisotropy and percolation in supramolecular patchy particle gels. ACS Nano, 1–10 https://doi.org/10.1021/acsnano.0c06389 (2020).

  150. Sénéchal, K., Maury, O., Le Bozec, H., Ledoux, I. & Zyss, J. Zinc(II) as a versatile template for the design of dipolar and octupolar NLO-phores. J. Am. Chem. Soc. 124, 4560–4561 (2002).

    Article  CAS  Google Scholar 

  151. Qin, H. et al. Dynamic Au-thiolate interaction induced rapid self-healing nanocomposite hydrogels with remarkable mechanical behaviors. Chem 3, 691–705 (2017).

    Article  CAS  Google Scholar 

  152. Menyo, M. S., Hawker, C. J. & Waite, J. H. Versatile tuning of supramolecular hydrogels through metal complexation of oxidation-resistant catechol-inspired ligands. Soft Matter 9, 10314–10323 (2013).

    Article  CAS  Google Scholar 

  153. Hwang, D. S., Zeng, H., Lu, Q., Israelachvili, J. & Waite, J. H. Adhesion mechanism in a DOPA-deficient foot protein from green mussels. Soft Matter 8, 5640–5648 (2012).

    Article  CAS  Google Scholar 

  154. Budisa, N. & Schneider, T. Expanding the DOPA universe with genetically encoded, mussel-inspired bioadhesives for material sciences and medicine. ChemBioChem 20, 2163–2190 (2019).

    Article  CAS  Google Scholar 

  155. Zhan, K., Kim, C., Sung, K., Ejima, H. & Yoshie, N. Tunicate-inspired gallol polymers for underwater adhesive: a comparative study of catechol and gallol. Biomacromolecules 18, 2959–2966 (2017).

    Article  CAS  Google Scholar 

  156. Liu, F. et al. Gallol-containing homopolymers and block copolymers: ROMP synthesis and gelation properties by metal-coordination and oxidation. Polymer 143, 212–227 (2018).

    Article  CAS  Google Scholar 

  157. Wang, D. P. et al. Distinct mechanical and self-healing properties in two polydimethylsiloxane coordination polymers with fine-tuned bond strength. Inorg. Chem. 57, 3232–3242 (2018).

    Article  CAS  Google Scholar 

  158. Lai, J. C. et al. Thermodynamically stable whilst kinetically labile coordination bonds lead to strong and tough self-healing polymers. Nat. Commun. 10, 1164 (2019).

    Article  CAS  Google Scholar 

  159. Park, J. P. et al. Vanadyl-catecholamine hydrogels inspired by ascidians and mussels. Chem. Mater. 27, 105–111 (2015).

    Article  CAS  Google Scholar 

  160. Li, Q., Barrett, D. G., Messersmith, P. B. & Holten-Andersen, N. Controlling hydrogel mechanics via bio-inspired polymer–nanoparticle bond dynamics. ACS Nano 10, 1317–1324 (2016).

    Article  CAS  Google Scholar 

  161. Du, L. et al. A fascinating metallo-supramolecular polymer network with thermal/magnetic/light-responsive shape-memory effects anchored by Fe3O4 nanoparticles. Macromolecules 51, 705–715 (2018).

    Article  CAS  Google Scholar 

  162. Xu, J. H., Ye, S. & Fu, J. J. Novel sea cucumber-inspired material based on stiff, strong yet tough elastomer with unique self-healing and recyclable functionalities. J. Mater. Chem. A 6, 24291–24297 (2018).

    Article  CAS  Google Scholar 

  163. Xu, Z. et al. Tough and self-recoverable hydrogels crosslinked by triblock copolymer micelles and Fe3+ coordination. J. Polym. Sci. B Polym. Phys. 56, 865–876 (2018).

    Article  CAS  Google Scholar 

  164. Filippidi, E. et al. Toughening elastomers using mussel-inspired iron-catechol complexes. Science 358, 502–505 (2017).

    Article  CAS  Google Scholar 

  165. Zhang, Y. et al. Mussel-inspired approach to cross-linked functional 3D nanofibrous aerogels for energy-efficient filtration of ultrafine airborne particles. Appl. Surf. Sci. 479, 700–708 (2019).

    Article  CAS  Google Scholar 

  166. Bellinger, M. A., Sauer, J. A. & Hara, M. Tensile fracture properties of rigid-rigid blends made of sulfonated polystyrene ionomer and polystyrene. Macromolecules 27, 6147–6155 (1994).

    Article  CAS  Google Scholar 

  167. Shi, L. et al. Self-healing silk fibroin-based hydrogel for bone regeneration: dynamic metal-ligand self-assembly approach. Adv. Funct. Mater. 27, 1700591 (2017).

    Article  CAS  Google Scholar 

  168. Burnworth, M. et al. Optically healable supramolecular polymers. Nature 472, 334–337 (2011).

    Article  CAS  Google Scholar 

  169. Zhang, Z. et al. Eco-friendly, self-healing hydrogels for adhesive and elastic strain sensors, circuit repairing, and flexible electronic devices. Macromolecules 52, 2531–2541 (2019).

    Article  CAS  Google Scholar 

  170. Rao, Y. L. et al. Stretchable self-healing polymeric dielectrics cross-linked through metal–ligand coordination. J. Am. Chem. Soc. 138, 6020–6027 (2016).

    Article  CAS  Google Scholar 

  171. Zhu, Q., Zhang, L., Van Vliet, K., Miserez, A. & Holten-Andersen, N. White light-emitting multistimuli-responsive hydrogels with lanthanides and carbon dots. ACS Appl. Mater. Interfaces 10, 10409–10418 (2018).

    Article  CAS  Google Scholar 

  172. Lee, B. P. & Konst, S. Novel hydrogel actuator inspired by reversible mussel adhesive protein chemistry. Adv. Mater. 26, 3415–3419 (2014).

    Article  CAS  Google Scholar 

  173. Lee, B. P., Lin, M. H., Narkar, A., Konst, S. & Wilharm, R. Modulating the movement of hydrogel actuator based on catechol–iron ion coordination chemistry. Sens. Actuators B Chem. 206, 456–462 (2015).

    Article  CAS  Google Scholar 

  174. Yang, L., Zhang, G., Zheng, N., Zhao, Q. & Xie, T. A metallosupramolecular shape-memory polymer with gradient thermal plasticity. Angew. Chem. Int. Ed. Engl. 56, 12773–12776 (2017).

    Article  Google Scholar 

  175. Foster, J. A. et al. Differentially addressable cavities within metal–organic cage-cross-linked polymeric hydrogels. J. Am. Chem. Soc. 137, 9722–9729 (2015).

    Article  CAS  Google Scholar 

  176. Li, L., Smitthipong, W. & Zeng, H. Mussel-inspired hydrogels for biomedical and environmental applications. Polym. Chem. 6, 353–358 (2015).

    Article  CAS  Google Scholar 

  177. Sharma, N., Sharma, P. K., Singh, Y. & Nagaraja, C. M. A self-healing metal–organic gel (MOG) exhibiting pH-responsive release of a chemotherapeutic agent, doxorubicin: modulation of release kinetics by partial dehydration of matrix. ACS Omega 4, 1354–1363 (2019).

    Article  CAS  Google Scholar 

  178. Kim, B. J., Cheong, H., Hwang, B. H. & Cha, H. J. Mussel-inspired protein nanoparticles containing iron(III)–DOPA complexes for pH-responsive drug delivery. Angew. Chem. Int. Ed. Engl. 54, 7318–7322 (2015).

    Article  CAS  Google Scholar 

  179. Jeong, Y. et al. Sprayable adhesive nanotherapeutics: mussel-protein-based nanoparticles for highly efficient locoregional cancer therapy. ACS Nano 12, 8909–8919 (2018).

    Article  CAS  Google Scholar 

  180. Brisson, E. R. L., Griffith, J. C., Bhaskaran, A., Franks, G. V. & Connal, L. A. Temperature-induced self-assembly and metal-ion stabilization of histidine functional block copolymers. J. Polym. Sci. A Polym. Chem. 57, 1964–1973 (2019).

    Article  CAS  Google Scholar 

  181. Huang, W. C., Bettinger, C. J., Rhee, K. & Bettinger, C. J. Ultrasound-mediated self-healing hydrogels based on tunable metal–organic bonding. Biomacromolecules 18, 1162–1171 (2017).

    Article  CAS  Google Scholar 

  182. Yi, X. et al. Tunable mechanical, antibacterial, and cytocompatible hydrogels based on a functionalized dual network of metal coordination bonds and covalent crosslinking. ACS Appl. Mater. Interfaces 10, 6190–6198 (2018).

    Article  CAS  Google Scholar 

  183. Yang, J., Bai, R., Chen, B. & Suo, Z. Hydrogel adhesion: A supramolecular synergy of chemistry, topology, and mechanics. Adv. Funct. Mater. 30, 1901693 (2020).

    Article  CAS  Google Scholar 

  184. Li, Y. & Cao, Y. The molecular mechanisms underlying mussel adhesion. Nanoscale Adv. 1, 4246–4257 (2019).

    Article  CAS  Google Scholar 

  185. Oh, D. X., Kim, S., Lee, D. & Hwang, D. S. Tunicate-mimetic nanofibrous hydrogel adhesive with improved wet adhesion. Acta Biomater. 20, 104–112 (2015).

    Article  CAS  Google Scholar 

  186. Prajatelistia, E. et al. Tunicate-inspired gallic acid/metal ion complex for instant and efficient treatment of dentin hypersensitivity. Adv. Healthc. Mater. 5, 919–927 (2016).

    Article  CAS  Google Scholar 

  187. Ju, S. W. et al. Aesthetically improved and efficient tannin–metal chelates for the treatment of dentinal hypersensitivity. RSC Adv. 7, 87–94 (2017).

    Article  CAS  Google Scholar 

  188. Ahn, B. K. et al. High-performance mussel-inspired adhesives of reduced complexity. Nat. Commun. 6, 8663 (2015).

    Article  CAS  Google Scholar 

  189. Gebbie, M. A. et al. Tuning underwater adhesion with cation–π interactions. Nat. Chem. 9, 473–479 (2017).

    Article  CAS  Google Scholar 

  190. Dai, C. et al. A multifunctional metallohydrogel with injectability, self-healing, and multistimulus-responsiveness for bioadhesives. Macromol. Mater. Eng. 303, 1800305 (2018).

    Article  CAS  Google Scholar 

  191. Zeng, H., Hwang, D. S., Israelachvili, J. N. & Waite, J. H. Strong reversible Fe3+-mediated bridging between dopa-containing protein films in water. Proc. Natl Acad. Sci. USA 107, 12850–12853 (2010).

    Article  CAS  Google Scholar 

  192. Yang, B., Lim, C., Hwang, D. S. & Cha, H. J. Switch of surface adhesion to cohesion by Dopa-Fe3+ complexation, in response to microenvironment at the mussel plaque/substrate interface. Chem. Mater. 28, 7982–7989 (2016).

    Article  CAS  Google Scholar 

  193. Choi, Y. C., Choi, J. S., Jung, Y. J. & Cho, Y. W. Human gelatin tissue-adhesive hydrogels prepared by enzyme-mediated biosynthesis of DOPA and Fe3+ ion crosslinking. J. Mater. Chem. B 2, 201–209 (2014).

    Article  CAS  Google Scholar 

  194. Kang, H. et al. An in situ reversible heterodimeric nanoswitch controlled by metal-ion–ligand coordination regulates the mechanosensing and differentiation of stem cells. Adv. Mater. 30, 1803591 (2018).

    Article  CAS  Google Scholar 

  195. Lai, E., Keshavarz, B. & Holten-Andersen, N. Deciphering how the viscoelastic properties of mussel-inspired metal-coordinate transiently cross-linked gels dictate their tack behavior. Langmuir 35, 15979–15984 (2019).

    Article  CAS  Google Scholar 

  196. Schauser, N. S. et al. Decoupling bulk mechanics and mono- and multivalent ion transport in polymers based on metal–ligand coordination. Chem. Mater. 30, 5759–5769 (2018).

    Article  CAS  Google Scholar 

  197. Shi, Y. et al. A conductive self-healing hybrid gel enabled by metal–ligand supramolecule and nanostructured conductive polymer. Nano Lett. 15, 6276–6281 (2015).

    Article  CAS  Google Scholar 

  198. Gao, H., Sun, Y., Zhou, J., Xu, R. & Duan, H. Mussel-inspired synthesis of polydopamine-functionalized graphene hydrogel as reusable adsorbents for water purification. ACS Appl. Mater. Interfaces 5, 425–432 (2013).

    Article  CAS  Google Scholar 

  199. Yan, L. et al. An efficient supramolecular adsorbent for co-adsorption of dyes and metal ions from wastewater and its application in self-healing materials. Soft Matter 13, 8772–8780 (2017).

    Article  CAS  Google Scholar 

  200. Lin, Q. et al. Rewritable security display material and Cl sensor: based on a bimetal competitive coordination controlled supramolecular gel. Mater. Lett. 137, 444–446 (2014).

    Article  CAS  Google Scholar 

  201. Lin, Q. et al. A novel strategy for the design of smart supramolecular gels: Controlling stimuli-response properties through competitive coordination of two different metal ions. Chem. Commun. 50, 10669–10671 (2014).

    Article  CAS  Google Scholar 

  202. Zhu, Q., Van Vliet, K., Holten-Andersen, N. & Miserez, A. A double-layer mechanochromic hydrogel with multidirectional force sensing and encryption capability. Adv. Funct. Mater. 29, 1808191 (2019).

    Article  CAS  Google Scholar 

  203. Ma, Y. et al. Dynamic metal-ligand coordination for multicolour and water-jet rewritable paper. Nat. Commun. 9, 3 (2018).

    Article  CAS  Google Scholar 

  204. Bhowmik, S., Ghosh, B. N., Marjomäki, V. & Rissanen, K. Nanomolar pyrophosphate detection in water and in a self-assembled hydrogel of a simple terpyridine-Zn2+ complex. J. Am. Chem. Soc. 136, 5543–5546 (2014).

    Article  CAS  Google Scholar 

  205. Ejima, H. et al. One-step assembly of coordination complexes for versatile film and particle engineering. Science 341, 154–157 (2013).

    Article  CAS  Google Scholar 

  206. Yun, G., Richardson, J. J., Biviano, M. & Caruso, F. Tuning the mechanical behavior of metal–phenolic networks through building block composition. ACS Appl. Mater. Interfaces 11, 6404–6410 (2019).

    Article  CAS  Google Scholar 

  207. Björnmalm, M. et al. Nanoengineering particles through template assembly. Chem. Mater. 29, 289–306 (2017).

    Article  CAS  Google Scholar 

  208. Cranford, S. W., Tarakanova, A., Pugno, N. M. & Buehler, M. J. Nonlinear material behaviour of spider silk yields robust webs. Nature 482, 72–76 (2012).

    Article  CAS  Google Scholar 

  209. Keten, S., Xu, Z., Ihle, B. & Buehler, M. J. Nanoconfinement controls stiffness, strength and mechanical toughness of β-sheet crystals in silk. Nat. Mater. 9, 359–367 (2010).

    Article  CAS  Google Scholar 

  210. Su, I. et al. Imaging and analysis of a three-dimensional spider web architecture. J. R. Soc. Interface 15, 20180193 (2018).

    Article  Google Scholar 

  211. Vidavsky, Y. et al. Tuning the mechanical properties of metallopolymers via ligand interactions: a combined experimental and theoretical study. Macromolecules 53, 2021–2030 (2020).

    Article  CAS  Google Scholar 

  212. Marco-Dufort, B., Iten, R. & Tibbitt, M. W. Linking molecular behavior to macroscopic properties in ideal dynamic covalent networks. J. Am. Chem. Soc. 142, 15371–15385 (2020).

    Article  CAS  Google Scholar 

  213. Ryu, J., Ku, S. H., Lee, H. & Park, C. B. Mussel-inspired polydopamine coating as a universal route to hydroxyapatite crystallization. Adv. Funct. Mater. 20, 2132–2139 (2010).

    Article  CAS  Google Scholar 

  214. Zhou, Y. Z., Cao, Y., Liu, W., Chu, C. H. & Li, Q. L. Polydopamine-induced tooth remineralization. ACS Appl. Mater. Interfaces 4, 6901–6910 (2012).

    Article  CAS  Google Scholar 

  215. Regitsky, A. U., Keshavarz, B., McKinley, G. H. & Holten-Andersen, N. Rheology as a mechanoscopic method to monitor mineralization in hydrogels. Biomacromolecules 18, 4067–4074 (2017).

    Article  CAS  Google Scholar 

  216. Schmolke, W., Ahmadi, M. & Seiffert, S. Enhancement of metallo-supramolecular dissociation kinetics in telechelic terpyridine-capped poly(ethylene glycol) assemblies in the semi-dilute regime. Phys. Chem. Chem. Phys. 21, 19623–19638 (2019).

    Article  CAS  Google Scholar 

  217. Dawson, J. H. Probing structure-function relations in heme-containing oxygenases and peroxidases. Science 240, 433–439 (1988).

    Article  CAS  Google Scholar 

  218. Holm, R. H., Kennepohl, P. & Solomon, E. I. Structural and functional aspects of metal sites in biology. Chem. Rev. 96, 2239–2314 (1996).

    Article  CAS  Google Scholar 

  219. Lippard, S. J. & Berg, J. M. in Principles of Bioinorganic Chemistry Ch. 12 (eds Lippard, S. J. & Berg, J. M.) (University Science Books, 1994).

  220. Lippard, S. J. & Berg, J. M. in Principles of Bioinorganic Chemistry Ch. 4 (eds Lippard, S. J. & Berg, J. M.) (University Science Books, 1994).

  221. Meyer, T. J. Photochemistry of metal coordination complexes: metal to ligand charge transfer excited states. Pure Appl. Chem. 58, 1193–1206 (1986).

    Article  CAS  Google Scholar 

  222. Rosi, N. L. et al. Hydrogen storage in microporous metal-organic frameworks. Science 300, 1127–1129 (2003).

    Article  CAS  Google Scholar 

  223. Furukawa, H. et al. Ultrahigh porosity in metal-organic frameworks. Science 329, 424–428 (2010).

    Article  CAS  Google Scholar 

  224. Lee, J. et al. Metal–organic framework materials as catalysts. Chem. Soc. Rev. 38, 1450–1459 (2009).

    Article  CAS  Google Scholar 

  225. Furukawa, H., Cordova, K. E., O’Keefe, M. & Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 341, 1230444 (2013).

    Article  CAS  Google Scholar 

  226. Pedersen, C. J. Cyclic polyethers and their complexes with metal salts. J. Am. Chem. Soc. 89, 7017–7036 (1967).

    Article  CAS  Google Scholar 

  227. Cram, D. J. The design of molecular hosts, guests, and their complexes (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 27, 1009–1020 (1988).

    Article  Google Scholar 

  228. Lehn, J. & Supramolecular, M. Chemistry — scope and perspectives molecules, supermolecules, and molecular devices (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 27, 89–112 (1988).

    Article  Google Scholar 

  229. Wang, F. et al. Metal coordination mediated reversible conversion between linear and cross-linked supramolecular polymers. Angew. Chem. Int. Ed. Engl. 49, 1090–1094 (2010).

    Article  CAS  Google Scholar 

  230. Lehn, J. M. et al. Spontaneous assembly of double-stranded helicates from oligobipyridine ligands and copper(I) cations: structure of an inorganic double helix. Proc. Natl Acad. Sci. USA 84, 2565–2569 (1987).

    Article  CAS  Google Scholar 

  231. Saalfrank, R. W., Maid, H. & Scheurer, A. Supramolecular coordination chemistry: the synergistic effect of serendipity and rational design. Angew. Chem. Int. Ed. Engl. 47, 8794–8824 (2008).

    Article  CAS  Google Scholar 

  232. Bentz, K. C. & Cohen, S. M. Supramolecular metallopolymers: from linear materials to infinite networks. Angew. Chem. Int. Ed. Engl. 57, 14992–15001 (2018).

    Article  CAS  Google Scholar 

  233. Paquin, F., Rivnay, J., Salleo, A., Stingelin, N. & Silva, C. Multi-phase semicrystalline microstructures drive exciton dissociation in neat plastic semiconductors. J. Mater. Chem. C 3, 10715–10722 (2015).

    Article  CAS  Google Scholar 

  234. Wiester, M. J., Ulmann, P. A. & Mirkin, C. A. Enzyme mimics based upon supramolecular coordination chemistry. Angew. Chem. Int. Ed. Engl. 50, 114–137 (2011).

    Article  CAS  Google Scholar 

  235. Shimazaki, Y., Takani, M. & Yamauchi, O. Metal complexes of amino acids and amino acid side chain groups. Structures and properties. Dalton Trans. https://doi.org/10.1039/b905871k (2009).

    Article  Google Scholar 

  236. Yang, J., Cohen Stuart, M. A. & Kamperman, M. Jack of all trades: Versatile catechol crosslinking mechanisms. Chem. Soc. Rev. 43, 8271–8298 (2014).

    Article  CAS  Google Scholar 

  237. D’Ischia, M., Napolitano, A., Ball, V., Chen, C. T. & Buehler, M. J. Polydopamine and eumelanin: From structure–property relationships to a unified tailoring strategy. Acc. Chem. Res. 47, 3541–3550 (2014).

    Article  CAS  Google Scholar 

  238. Yount, W. C., Loveless, D. M. & Craig, S. L. Strong means slow: Dynamic contributions to the bulk mechanical properties of supramolecular networks. Angew. Chem. Int. Ed. Engl. 44, 2746–2748 (2005).

    Article  CAS  Google Scholar 

  239. Yount, W. C., Loveless, D. M. & Craig, S. L. Small-molecule dynamics and mechanisms underlying the macroscopic mechanical properties of coordinatively cross-linked polymer networks. J. Am. Chem. Soc. 127, 14488–14496 (2005).

    Article  CAS  Google Scholar 

  240. Bell, G. I. Models for the specific adhesion of cells to cells. Science 200, 618–627 (1978).

    Article  CAS  Google Scholar 

  241. Evans, E. A. & Ritchie, K. Strength of a weak bond connecting flexible polymer chains. Biophys. J. 76, 2439–2447 (1999).

    Article  CAS  Google Scholar 

  242. Bertaud, J., Hester, J., Jimenez, D. D. & Buehler, M. J. Energy landscape, structure and rate effects on strength properties of alpha-helical proteins. J. Phys. Condens. Matter 22, 035102 (2010).

    Article  CAS  Google Scholar 

  243. Ackbarow, T., Chen, X., Keten, S. & Buehler, M. J. Hierarchies, multiple energy barriers, and robustness govern the fracture mechanics of α-helical and β-sheet protein domains. Proc. Natl Acad. Sci. USA 104, 16410–16415 (2007).

    Article  CAS  Google Scholar 

  244. Keten, S. & Buehler, M. J. Strength limit of entropic elasticity in beta-sheet protein domains. Phys. Rev. E 78, 061913 (2008).

    Article  CAS  Google Scholar 

  245. Husson, J. & Pincet, F. Analyzing single-bond experiments: Influence of the shape of the energy landscape and universal law between the width, depth, and force spectrum of the bond. Phys. Rev. E 77, 026108 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by ONR (N00014-19-1-2375), U.S. Air Force Office of Scientific Research (FA9550-15-1-0514), NIH (U01 EB014976), ARO (W911NF1920098) and NSF Graduate Research Fellowship, as well as MIT CAST through a grant from the Mellon Foundation.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Niels Holten-Andersen or Markus J. Buehler.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khare, E., Holten-Andersen, N. & Buehler, M.J. Transition-metal coordinate bonds for bioinspired macromolecules with tunable mechanical properties. Nat Rev Mater 6, 421–436 (2021). https://doi.org/10.1038/s41578-020-00270-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-020-00270-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing