Production routes to tailor the performance of cellulose nanocrystals

Abstract

Cellulose nanocrystals (CNCs) are bio-based, high aspect ratio nanoparticles that are industrially produced in tonne-per-day quantities across the globe. CNCs can be used to improve the performance of a large range of materials such as emulsions and foams, biomedical devices, electronics and sensors, high-viscosity fluids and polymer composites. Their ability to do so, however, is highly dependent on the way they are produced. In this Review, we assess the properties of CNCs from more than 30 production routes and 40 biomass sources to help CNC users select the right material for their desired application. CNCs produced by various methods are evaluated against three target properties: colloidal stability, size and crystallinity index. Alternative production routes and/or starting materials are suggested to overcome challenges associated with CNC use, including increasing compatibility with hydrophobic materials, resistance to thermal degradation and colloidal stability in high ionic strength environments. Additionally, we discuss industrial production of CNCs, as well as considerations for increasing the yield and reducing the environmental impact of these processes. Overall, this Review guides researchers and CNC users towards a deeper understanding of how production processes can be modified to control CNC properties and subsequently tailor their performance.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Research milestones and terminology progression of CNCs.
Fig. 2: CNC target properties.
Fig. 3: Physical and chemical mechanisms of cellulose hydrolysis to produce CNCs.
Fig. 4: Morphology of CNCs from various cellulose sources.

References

  1. 1.

    Nickerson, R. F. & Habrle, J. A. Cellulose intercrystalline structure. Ind. Eng. Chem. 39, 1507–1512 (1947).

    CAS  Article  Google Scholar 

  2. 2.

    Rånby, B. G., Banderet, A. & Sillén, L. G. Aqueous colloidal solutions of cellulose micelles. Acta Chem. Scand. 3, 649–650 (1949).

    Article  Google Scholar 

  3. 3.

    Rånby, B. G. The colloidal properties of cellulose micelles. Discuss. Faraday Soc. 11, 158–164 (1951).

    Article  Google Scholar 

  4. 4.

    Mukherjee, S. M. & Woods, H. J. X-ray and electron microscope studies of the degradation of cellulose by sulphuric acid. Biochim. Biophys. Acta 10, 499–511 (1953).

    CAS  Article  Google Scholar 

  5. 5.

    International Organization for Standardization. Nanotechnologies — standard terms and their definition for cellulose nanomaterial ISO/TS 20477 (IOS, 2017).

  6. 6.

    Tashiro, K. & Kobayashi, M. Theoretical evaluation of three-dimensional elastic constants of native and regenerated celluloses: role of hydrogen bonds. Polymer 32, 1516–1526 (1991).

    CAS  Article  Google Scholar 

  7. 7.

    Viet, D., Beck-Candanedo, S. & Gray, D. G. Dispersion of cellulose nanocrystals in polar organic solvents. Cellulose 14, 109–113 (2007).

    CAS  Article  Google Scholar 

  8. 8.

    Revol, J.-F., Bradford, H., Giasson, J., Marchessault, R. H. & Gray, D. G. Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int. J. Biol. Macromol. 14, 170–172 (1992).

    CAS  Article  Google Scholar 

  9. 9.

    Roman, M. Toxicity of cellulose nanocrystals: a review. Ind. Biotechnol. 11, 25–33 (2015).

    CAS  Article  Google Scholar 

  10. 10.

    Reid, M. S., Villalobos, M. & Cranston, E. D. Benchmarking cellulose nanocrystals: from the laboratory to industrial production. Langmuir 33, 1583–1598 (2017).

    CAS  Article  Google Scholar 

  11. 11.

    Miller, J. Nanocellulose: Producers, Products, and Applications (TAPPI, 2017).

  12. 12.

    Research and Markets. The global market for nanocellulose. Research and Markets https://www.researchandmarkets.com/reports/4827614/the-global-market-for-nanocellulose?utm_code=bcb85m&utm_medium=BW (2019).

  13. 13.

    Lu, P. & Hsieh, Y. L. O. Preparation and properties of cellulose nanocrystals: Rods, spheres, and network. Carbohydr. Polym. 82, 329–336 (2010).

    Article  CAS  Google Scholar 

  14. 14.

    Kedzior, S. A., Zoppe, J. O., Berry, R. M. & Cranston, E. D. Recent advances and an industrial perspective of cellulose nanocrystal functionalization through polymer grafting. Curr. Opin. Solid State Mater. Sci. 23, 74–91 (2019).

    CAS  Article  Google Scholar 

  15. 15.

    Cherhal, F., Cousin, F. & Capron, I. Influence of charge density and ionic strength on the aggregation process of cellulose nanocrystals in aqueous suspension, as revealed by small-angle neutron scattering. Langmuir 31, 5596–5602 (2015).

    CAS  Article  Google Scholar 

  16. 16.

    Vanderfleet, O. M. et al. Insight into thermal stability of cellulose nanocrystals from new hydrolysis methods with acid blends. Cellulose 26, 507–528 (2019).

    CAS  Article  Google Scholar 

  17. 17.

    Teixeira, E. et al. Sugarcane bagasse whiskers: extraction and characterizations. Ind. Crop. Prod. 33, 63–66 (2011).

    Article  CAS  Google Scholar 

  18. 18.

    Bano, S. & Negi, Y. S. Studies on cellulose nanocrystals isolated from groundnut shells. Carbohydr. Polym. 157, 1041–1049 (2017).

    CAS  Article  Google Scholar 

  19. 19.

    Melikog˘lu, A. Y., Bilek, S. E. & Cesur, S. Optimum alkaline treatment parameters for the extraction of cellulose and production of cellulose nanocrystals from apple pomace. Carbohydr. Polym. 215, 330–337 (2019).

    Article  CAS  Google Scholar 

  20. 20.

    Kontturi, E. et al. Degradation and crystallization of cellulose in hydrogen chloride vapor for high-yield isolation of cellulose nanocrystals. Angew. Chem. Int. Ed. 55, 14455–14458 (2016).

    CAS  Article  Google Scholar 

  21. 21.

    Lu, Q. et al. Extraction of cellulose nanocrystals with a high yield of 88% by simultaneous mechanochemical activation and phosphotungstic acid hydrolysis. ACS Sustain. Chem. Eng. 4, 2165–2172 (2016).

    CAS  Article  Google Scholar 

  22. 22.

    Yu, H. et al. Facile extraction of thermally stable cellulose nanocrystals with a high yield of 93% through hydrochloric acid hydrolysis under hydrothermal conditions. J. Mater. Chem. A 1, 3938–3944 (2013).

    CAS  Article  Google Scholar 

  23. 23.

    Novo, L. P., Bras, J., García, A., Belgacem, N. & Curvelo, A. A. S. Subcritical water: a method for green production of cellulose nanocrystals. ACS Sustain. Chem. Eng. 3, 2839–2846 (2015).

    CAS  Article  Google Scholar 

  24. 24.

    Chen, L. et al. Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids. Green. Chem. 18, 3835–3843 (2016).

    CAS  Article  Google Scholar 

  25. 25.

    Camarero Espinosa, S. et al. Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis. Biomacromolecules 14, 1223–1230 (2013).

    CAS  Article  Google Scholar 

  26. 26.

    Sadeghifar, H., Filpponen, I., Clarke, S. P., Brougham, D. F. & Argyropoulos, D. S. Production of cellulose nanocrystals using hydrobromic acid and click reactions on their surface. J. Mater. Sci. 46, 7344–7355 (2011).

    CAS  Article  Google Scholar 

  27. 27.

    Li, D., Henschen, J. & Ek, M. Esterification and hydrolysis of cellulose using oxalic acid dihydrate in a solvent-free reaction suitable for preparation of surface-functionalised cellulose nanocrystals with high yield. Green Chem. 19, 5564–5567 (2017).

    CAS  Article  Google Scholar 

  28. 28.

    Boujemaoui, A., Mongkhontreerat, S., Malmström, E. & Carlmark, A. Preparation and characterization of functionalized cellulose nanocrystals. Carbohydr. Polym. 115, 457–464 (2015).

    CAS  Article  Google Scholar 

  29. 29.

    Yu, H.-Y., Zhang, D.-Z., Lu, F.-F. & Yao, J. New approach for single-step extraction of carboxylated cellulose nanocrystals for their use as adsorbents and flocculants. ACS Sustain. Chem. Eng. 4, 2632–2643 (2016).

    CAS  Article  Google Scholar 

  30. 30.

    Zhou, Y., Saito, T., Bergström, L. & Isogai, A. Acid-free preparation of cellulose nanocrystals by TEMPO oxidation and subsequent cavitation. Biomacromolecules 19, 633–639 (2018).

    CAS  Article  Google Scholar 

  31. 31.

    Leung, A. C. W. et al. Characteristics and properties of carboxylated cellulose nanocrystals prepared from a novel one-step procedure. Small 7, 302–305 (2011).

    CAS  Article  Google Scholar 

  32. 32.

    Filson, P. B., Dawson-Andoh, B. E. & Schwegler-Berry, D. Enzymatic-mediated production of cellulose nanocrystals from recycled pulp. Green Chem. 11, 1808–1814 (2009).

    CAS  Article  Google Scholar 

  33. 33.

    Siqueira, G., Tapin-Lingua, S., Bras, J., da Silva Perez, D. & Dufresne, A. Morphological investigation of nanoparticles obtained from combined mechanical shearing, and enzymatic and acid hydrolysis of sisal fibers. Cellulose 17, 1147–1158 (2010).

    CAS  Article  Google Scholar 

  34. 34.

    Sacui, I. A. et al. Comparison of the properties of cellulose nanocrystals and cellulose nanofibrils isolated from bacteria, tunicate, and wood processed using acid, enzymatic, mechanical, and oxidative methods. ACS Appl. Mater. Interfaces 6, 6127–6138 (2014).

    CAS  Article  Google Scholar 

  35. 35.

    Abushammala, H., Krossing, I. & Laborie, M. P. Ionic liquid-mediated technology to produce cellulose nanocrystals directly from wood. Carbohydr. Polym. 134, 609–616 (2015).

    CAS  Article  Google Scholar 

  36. 36.

    Man, Z. et al. Preparation of cellulose nanocrystals using an ionic liquid. J. Polym. Environ. 19, 726–731 (2011).

    CAS  Article  Google Scholar 

  37. 37.

    Miao, J., Yu, Y., Jiang, Z. & Zhang, L. One-pot preparation of hydrophobic cellulose nanocrystals in an ionic liquid. Cellulose 23, 1209–1219 (2016).

    CAS  Article  Google Scholar 

  38. 38.

    Sirviö, J. A., Visanko, M. & Liimatainen, H. Acidic deep eutectic solvents as hydrolytic media for cellulose nanocrystal production. Biomacromolecules 17, 3025–3032 (2016).

    Article  CAS  Google Scholar 

  39. 39.

    Jiang, J. et al. High production yield and more thermally stable lignin-containing cellulose nanocrystals isolated using a ternary acidic deep eutectic solvent. ACS Sustain. Chem. Eng. 8, 7182–7191 (2020).

    CAS  Article  Google Scholar 

  40. 40.

    Trache, D., Hussin, M. H., Haafiz, M. K. M. & Thakur, V. K. Recent progress in cellulose nanocrystals: sources and production. Nanoscale 9, 1763–1786 (2017).

    CAS  Article  Google Scholar 

  41. 41.

    Van De Ven, T. G. M. & Sheikhi, A. Hairy cellulose nanocrystalloids: a novel class of nanocellulose. Nanoscale 8, 15101–15114 (2016).

    Article  CAS  Google Scholar 

  42. 42.

    Lin, K.-H. et al. An analysis on the electrophoretic mobility of cellulose nanocrystals as thin cylinders: relaxation and end effect. RSC Adv. 9, 34032–34038 (2019).

    CAS  Article  Google Scholar 

  43. 43.

    Bhattacharjee, S. DLS and zeta potential - what they are and what they are not? J. Control. Rel. 235, 337–351 (2016).

    CAS  Article  Google Scholar 

  44. 44.

    Foster, E. J. et al. Current characterization methods for cellulose nanomaterials. Chem. Soc. Rev. 47, 2609–2679 (2018).

    CAS  Article  Google Scholar 

  45. 45.

    Eichhorn, S. J. et al. Review: current international research into cellulose nanofibres and nanocomposites. J. Mater. Sci. 45, 1–33 (2010).

    CAS  Article  Google Scholar 

  46. 46.

    Phan-Xuan, T. et al. Aggregation behavior of aqueous cellulose nanocrystals: the effect of inorganic salts. Cellulose 23, 3653–3663 (2016).

    Article  Google Scholar 

  47. 47.

    Fraschini, C. et al. Critical discussion of light scattering and microscopy techniques for CNC particle sizing. Nord. Pulp Pap. Res. J. 29, 31–40 (2014).

    CAS  Article  Google Scholar 

  48. 48.

    Boluk, Y. & Danumah, C. Analysis of cellulose nanocrystal rod lengths by dynamic light scattering and electron microscopy. J. Nanopart. Res. 16, 2174 (2014).

    Article  CAS  Google Scholar 

  49. 49.

    Ogawa, Y. & Putaux, J. L. Transmission electron microscopy of cellulose. Part 2: technical and practical aspects. Cellulose 26, 17–34 (2019).

    CAS  Article  Google Scholar 

  50. 50.

    Sèbe, G., Ham-Pichavant, F., Ibarboure, E., Koffi, A. L. C. & Tingaut, P. Supramolecular structure characterization of cellulose II nanowhiskers produced by acid hydrolysis of cellulose I substrates. Biomacromolecules 13, 570–578 (2012).

    Article  CAS  Google Scholar 

  51. 51.

    Yue, Y. et al. Comparative properties of cellulose nano-crystals from native and mercerized cotton fibers. Cellulose 19, 1173–1187 (2012).

    CAS  Article  Google Scholar 

  52. 52.

    Agarwal, U. P., Ralph, S. A., Reiner, R. S. & Baez, C. Probing crystallinity of never-dried wood cellulose with Raman spectroscopy. Cellulose 23, 125–144 (2016).

    CAS  Article  Google Scholar 

  53. 53.

    Park, S., Baker, J. O., Himmel, M. E., Parilla, P. A. & Johnson, D. K. Cellulose crystallinity index: Measurement techniques and their impact on interpreting cellulase performance. Biotechnol. Biofuels 3, 1–10 (2010).

    Article  CAS  Google Scholar 

  54. 54.

    Segal, L., Creely, J. J., Martin, A. E. & Conrad, C. M. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text. Res. J. 29, 786–794 (1959).

    CAS  Article  Google Scholar 

  55. 55.

    Xiang, Q., Lee, Y. Y., Pettersson, P. O. & Torget, R. W. in Applied Biochemistry and Biotechnology (eds Davison, B. H., Lee, J. W., Finkelstein, M. & McMillan, J. D.) 505–514 (Humana Press, 2003).

  56. 56.

    Battista, O. A., Coppick, S., Howsmon, J. A., Morehead, F. F. & Sisson, W. A. Level-off degree of polymerization. Ind. Eng. Chem. 48, 333–335 (1956).

    CAS  Article  Google Scholar 

  57. 57.

    Vanderfleet, O. M., Osorio, D. A. & Cranston, E. D. Optimization of cellulose nanocrystal length and surface charge density through phosphoric acid hydrolysis. Phil. Trans. R. Soc. A 376, 1–7 (2018).

    Article  CAS  Google Scholar 

  58. 58.

    Henschen, J., Li, D. & Ek, M. Preparation of cellulose nanomaterials via cellulose oxalates. Carbohydr. Polym. 213, 208–216 (2019).

    CAS  Article  Google Scholar 

  59. 59.

    Bian, H., Chen, L., Dai, H. & Zhu, J. Y. Effect of fiber drying on properties of lignin containing cellulose nanocrystals and nanofibrils produced through maleic acid hydrolysis. Cellulose 24, 4205–4216 (2017).

    CAS  Article  Google Scholar 

  60. 60.

    Du, H. et al. Preparation and characterization of thermally stable cellulose nanocrystals via a sustainable approach of FeCl3-catalyzed formic acid hydrolysis. Cellulose 23, 2389–2407 (2016).

    CAS  Article  Google Scholar 

  61. 61.

    Castro-Guerrero, C. F. & Gray, D. G. Chiral nematic phase formation by aqueous suspensions of cellulose nanocrystals prepared by oxidation with ammonium persulfate. Cellulose 21, 2567–2577 (2014).

    CAS  Article  Google Scholar 

  62. 62.

    Montanari, S., Roumani, M., Heux, L. & Vignon, M. R. Topochemistry of carboxylated cellulose nanocrystals resulting from TEMPO-mediated oxidation. Macromolecules 38, 1665–1671 (2005).

    CAS  Article  Google Scholar 

  63. 63.

    Habibi, Y., Chanzy, H. & Vignon, M. R. TEMPO-mediated surface oxidation of cellulose whiskers. Cellulose 13, 679–687 (2006).

    CAS  Article  Google Scholar 

  64. 64.

    Araki, J., Wada, M. & Kuga, S. Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting. Langmuir 17, 21–27 (2001).

    CAS  Article  Google Scholar 

  65. 65.

    Salajková, M., Berglund, L. A. & Zhou, Q. Hydrophobic cellulose nanocrystals modified with quaternary ammonium salts. J. Mater. Chem. 22, 19798–19805 (2012).

    Article  CAS  Google Scholar 

  66. 66.

    Leguy, J. et al. Periodate oxidation followed by NaBH4 reduction converts microfibrillated cellulose into sterically stabilized neutral cellulose nanocrystal suspensions. Langmuir 34, 11066–11075 (2018).

    CAS  Article  Google Scholar 

  67. 67.

    Nelson, K. & Retsina, T. Innovative nanocellulose process breaks the cost barrier. TAPPI J. 13, 19–23 (2014).

    CAS  Article  Google Scholar 

  68. 68.

    Wu, B., Wang, S., Tang, J. & Lin, N. in Advanced Functional Materials from Nanopolysaccharides (eds Lin, N., Tang, J., Dufresne, A. & Tam, M. K. C.) 389–409 (Springer, 2019).

  69. 69.

    Habibi, Y. Key advances in the chemical modification of nanocelluloses. Chem. Soc. Rev. 43, 1519–1542 (2014).

    CAS  Article  Google Scholar 

  70. 70.

    Tan, X. Y., Abd Hamid, S. B. & Lai, C. W. Preparation of high crystallinity cellulose nanocrystals (CNCs) by ionic liquid solvolysis. Biomass Bioenergy 81, 584–591 (2015).

    CAS  Article  Google Scholar 

  71. 71.

    Filson, P. B. & Dawson-Andoh, B. E. Sono-chemical preparation of cellulose nanocrystals from lignocellulose derived materials. Bioresour. Technol. 100, 2259–2264 (2009).

    CAS  Article  Google Scholar 

  72. 72.

    Dong, S., Bortner, M. J. & Roman, M. Analysis of the sulfuric acid hydrolysis of wood pulp for cellulose nanocrystal production: a central composite design study. Ind. Crop. Prod. 93, 1–12 (2016).

    Article  CAS  Google Scholar 

  73. 73.

    Bondeson, D., Mathew, A. & Oksman, K. Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13, 171–180 (2006).

    CAS  Article  Google Scholar 

  74. 74.

    Dong, X. M., Revol, J.-F. & Gray, D. G. Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5, 19–32 (1998).

    CAS  Article  Google Scholar 

  75. 75.

    Beck-Candanedo, S., Roman, M. & Gray, D. G. Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6, 1048–1054 (2005).

    CAS  Article  Google Scholar 

  76. 76.

    Hamad, W. Y. & Hu, T. Q. Structure-process-yield interrelations in nanocrystalline cellulose extraction. Can. J. Chem. Eng. 88, 392–402 (2010).

    CAS  Google Scholar 

  77. 77.

    Kargarzadeh, H. et al. Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellulose 19, 855–866 (2012).

    CAS  Article  Google Scholar 

  78. 78.

    Wang, Q., Zhao, X. & Zhu, J. Y. Kinetics of strong acid hydrolysis of a bleached kraft pulp for producing cellulose nanocrystals (CNCs). Ind. Eng. Chem. Res. 53, 11007–11014 (2014).

    CAS  Article  Google Scholar 

  79. 79.

    Bouchard, J., Méthot, M., Fraschini, C. & Beck, S. Effect of oligosaccharide deposition on the surface of cellulose nanocrystals as a function of acid hydrolysis temperature. Cellulose 23, 3555–3567 (2016).

    CAS  Article  Google Scholar 

  80. 80.

    Chen, L. et al. Tailoring the yield and characteristics of wood cellulose nanocrystals (CNC) using concentrated acid hydrolysis. Cellulose 22, 1753–1762 (2015).

    CAS  Article  Google Scholar 

  81. 81.

    Novo, L. P. et al. A study of the production of cellulose nanocrystals through subcritical water hydrolysis. Ind. Crop. Prod. 93, 88–95 (2016).

    CAS  Article  Google Scholar 

  82. 82.

    Hemmati, F., Jafari, S. M., Kashaninejad, M. & Barani Motlagh, M. Synthesis and characterization of cellulose nanocrystals derived from walnut shell agricultural residues. Int. J. Biol. Macromol. 120, 1216–1224 (2018).

    CAS  Article  Google Scholar 

  83. 83.

    Prasad Reddy, J. & Rhim, J. W. Isolation and characterization of cellulose nanocrystals from garlic skin. Mater. Lett. 129, 20–23 (2014).

    CAS  Article  Google Scholar 

  84. 84.

    Santos, R. M. dos et al. Cellulose nanocrystals from pineapple leaf, a new approach for the reuse of this agro-waste. Ind. Crop. Prod. 50, 707–714 (2013).

    Article  CAS  Google Scholar 

  85. 85.

    Jiang, F. & Hsieh, Y. L. O. Cellulose nanocrystal isolation from tomato peels and assembled nanofibers. Carbohydr. Polym. 122, 60–68 (2015).

    CAS  Article  Google Scholar 

  86. 86.

    Johar, N., Ahmad, I. & Dufresne, A. Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Ind. Crop. Prod. 37, 93–99 (2012).

    CAS  Article  Google Scholar 

  87. 87.

    Schütz, C. et al. Effect of source on the properties and behavior of cellulose nanocrystal suspensions. ACS Sustain. Chem. Eng. 6, 8317–8324 (2018).

    Article  CAS  Google Scholar 

  88. 88.

    Nishiyama, Y. et al. Periodic disorder along ramie cellulose microfibrils. Biomacromolecules 4, 1013–1017 (2003).

    CAS  Article  Google Scholar 

  89. 89.

    Cudjoe, E. et al. Miscanthus giganteus: a commercially viable sustainable source of cellulose nanocrystals. Carbohydr. Polym. 155, 230–241 (2017).

    CAS  Article  Google Scholar 

  90. 90.

    Cao, X., Ding, B., Yu, J. & Al-Deyab, S. S. Cellulose nanowhiskers extracted from TEMPO-oxidized jute fibers. Carbohydr. Polym. 90, 1075–1080 (2012).

    CAS  Article  Google Scholar 

  91. 91.

    Brito, B. S. L., Pereira, F. V., Putaux, J. L. & Jean, B. Preparation, morphology and structure of cellulose nanocrystals from bamboo fibers. Cellulose 19, 1527–1536 (2012).

    CAS  Article  Google Scholar 

  92. 92.

    Yoshiharu, N., Shigenori, K., Masahisa, W. & Takeshi, O. Cellulose microcrystal film of high uniaxial orientation. Macromolecules 30, 6395–6397 (1997).

    CAS  Article  Google Scholar 

  93. 93.

    El Achaby, M., Kassab, Z., Aboulkas, A., Gaillard, C. & Barakat, A. Reuse of red algae waste for the production of cellulose nanocrystals and its application in polymer nanocomposites. Int. J. Biol. Macromol. 106, 681–691 (2018).

    CAS  Article  Google Scholar 

  94. 94.

    Sugiyama, J., Vuong, R. & Chanzy, H. Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall. Macromolecules 24, 4168–4175 (1991).

    CAS  Article  Google Scholar 

  95. 95.

    Chanzy, H. & Henrissat, B. Electron microscopy study of the enzymic hydrolysis of Valonia cellulose. Carbohydr. Polym. 3, 161–173 (1983).

    CAS  Article  Google Scholar 

  96. 96.

    Hirai, A., Inui, O., Horii, F. & Tsuji, M. Phase separation behavior in aqueous suspensions of bacterial cellulose nanocrystals prepared by sulfuric acid treatment. Langmuir 25, 497–502 (2009).

    CAS  Article  Google Scholar 

  97. 97.

    Pääkkönen, T. et al. Sustainable high yield route to cellulose nanocrystals from bacterial cellulose. ACS Sustainable Chem. Eng. 7, 14384–14388 (2019).

    Article  CAS  Google Scholar 

  98. 98.

    Cranston, E. D. in TAPPI International Conference on Nanotechnology for Renewable Materials (2019).

  99. 99.

    Ngo, T., Danumah, C. & Ahvazi, B. in Nanocellulose and Sustainability (ed. Lee, K. Y.) 269–287 (CRC, 2018).

  100. 100.

    The University of Maine. The Process Development Center. UMaine https://umaine.edu/pdc/nanocellulose/ (2020).

  101. 101.

    Beck, S., Bouchard, J. & Berry, R. Dispersibility in water of dried nanocrystalline cellulose. Biomacromolecules 13, 1486–1494 (2012).

    CAS  Article  Google Scholar 

  102. 102.

    Lockhart, J. in TAPPI International Conference on Nanotechnology for Renewable Materials (2019).

  103. 103.

    Andrews, M. P. & Morse, T. Method for producing functionalized nanocrystalline cellulose and functionalized nanocrystalline cellulose thereby produced. US Patent 20170260298A1 (2017).

  104. 104.

    McAlpine, S. & Nakoneshny, J. Production of crystalline cellulose. US Patent 20190040158A1 (2019).

  105. 105.

    Standards Council of Canada. Cellulose nanomaterials — test methods for characterization CAN/CSA-Z5100-17 (CSA Group, 2017).

  106. 106.

    Standards Council of Canada. Cellulose nanomaterials — blank detail specification, CAN/CSA-Z5200-17 (CSA Group, 2017).

  107. 107.

    International Organization for Standardization. Nanotechnologies — characterization of cellulose nanocrystals ISO/TR 19716 (ISO, 2016).

  108. 108.

    International Organization for Standardization. Pulp — determination of cellulose nanocrystal sulfur and sulfate half-ester content ISO 21400 (ISO, 2018).

  109. 109.

    International Organization for Standardization. Crystallinity of cellulose nanomaterials by powder X-ray diffraction, ISO/TC 229 – PWI 23361 (in the press).

  110. 110.

    International Organization for Standardization. Nanotechnologies — health and safety practices in occupational settings relevant to nanotechnologies ISO/TR 12885 (ISO, 2018).

  111. 111.

    Standards Council of Canada. Nanotechnologies — exposure control program for engineered nanomaterials in occupational settings CAN/CSA Z12885-12 (CSA Group, 2017).

  112. 112.

    Lin, N. & Dufresne, A. Surface chemistry, morphological analysis and properties of cellulose nanocrystals with gradiented sulfation degrees. Nanoscale 6, 5384–5393 (2014).

    CAS  Article  Google Scholar 

  113. 113.

    Heggset, E. B., Chinga-Carrasco, G. & Syverud, K. Temperature stability of nanocellulose dispersions. Carbohydr. Polym. 157, 114–121 (2017).

    CAS  Article  Google Scholar 

  114. 114.

    Molnes, S. N., Paso, K. G., Strand, S. & Syverud, K. The effects of pH, time and temperature on the stability and viscosity of cellulose nanocrystal (CNC) dispersions: implications for use in enhanced oil recovery. Cellulose 24, 4479–4491 (2017).

    CAS  Article  Google Scholar 

  115. 115.

    Zhong, L., Fu, S., Peng, X., Zhan, H. & Sun, R. Colloidal stability of negatively charged cellulose nanocrystalline in aqueous systems. Carbohydr. Polym. 90, 644–649 (2012).

    CAS  Article  Google Scholar 

  116. 116.

    Shafiei-Sabet, S., Hamad, W. Y. & Hatzikiriakos, S. G. Ionic strength effects on the microstructure and shear rheology of cellulose nanocrystal suspensions. Cellulose 21, 3347–3359 (2014).

    CAS  Article  Google Scholar 

  117. 117.

    De Figueirêdo, M. C. B. et al. Life cycle assessment of cellulose nanowhiskers. J. Clean. Prod. 35, 130–139 (2012).

    Article  CAS  Google Scholar 

  118. 118.

    Leão, R. M., Miléo, P. C., Maia, J. M. L. L. & Luz, S. M. Environmental and technical feasibility of cellulose nanocrystal manufacturing from sugarcane bagasse. Carbohydr. Polym. 175, 518–529 (2017).

    Article  CAS  Google Scholar 

  119. 119.

    Bajpai, P. Green Chemistry and Sustainability in Pulp and Paper Industry (Springer, 2015).

  120. 120.

    Li, Q., McGinnis, S., Sydnor, C., Wong, A. & Renneckar, S. Nanocellulose life cycle assessment. ACS Sustain. Chem. Eng. 1, 919–928 (2013).

    CAS  Article  Google Scholar 

  121. 121.

    Wang, R., Chen, L., Zhu, J. Y. & Yang, R. Tailored and integrated production of carboxylated cellulose nanocrystals (CNC) with nanofibrils (CNF) through maleic acid hydrolysis. ChemNanoMat 3, 328–335 (2017).

    CAS  Article  Google Scholar 

  122. 122.

    Bian, H., Chen, L., Dai, H. & Zhu, J. Y. Integrated production of lignin containing cellulose nanocrystals (LCNC) and nanofibrils (LCNF) using an easily recyclable di-carboxylic acid. Carbohydr. Polym. 167, 167–176 (2017).

    CAS  Article  Google Scholar 

  123. 123.

    Park, N.-M., Choi, S., Oh, J. E. & Youn Hwang, D. Facile extraction of cellulose nanocrystals. Carbohydr. Polym. 223, 115114 (2019).

    Article  CAS  Google Scholar 

  124. 124.

    Pääkkönen, T. et al. From vapour to gas: optimising cellulose degradation with gaseous HCl. React. Chem. Eng. 3, 312–318 (2018).

    Article  Google Scholar 

  125. 125.

    Guo, J., Guo, X., Wang, S. & Yin, Y. Effects of ultrasonic treatment during acid hydrolysis on the yield, particle size and structure of cellulose nanocrystals. Carbohydr. Polym. 135, 248–255 (2016).

    CAS  Article  Google Scholar 

  126. 126.

    Jakubek, Z. J. et al. Characterization challenges for a cellulose nanocrystal reference material: dispersion and particle size distributions. J. Nanopart. Res. 20, 98 (2018).

    Article  CAS  Google Scholar 

  127. 127.

    Brinkmann, A. et al. Correlating cellulose nanocrystal particle size and surface area. Langmuir 32, 6105–6114 (2016).

    CAS  Article  Google Scholar 

  128. 128.

    Elazzouzi-Hafraoui, S. et al. The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9, 57–65 (2008).

    CAS  Article  Google Scholar 

  129. 129.

    Garcia de Rodriguez, N. L., Thielemans, W. & Dufresne, A. Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites. Cellulose 13, 261–270 (2006).

    CAS  Article  Google Scholar 

  130. 130.

    Beck-Candanedo, S., Roman, M. & Gray, D. Effect of conditions on the properties behavior of wood cellulose nanocrystals suspensions. Biomacromolecules 6, 1048–1054 (2005).

    CAS  Article  Google Scholar 

  131. 131.

    Wu, Q. et al. Rheological behavior of cellulose nanocrystal suspension: Influence of concentration and aspect ratio. J. Appl. Polym. Sci. 131, 40525 (2014).

    Google Scholar 

  132. 132.

    Frka-Petesic, B., Jean, B. & Heux, L. First experimental evidence of a giant permanent electric-dipole moment in cellulose nanocrystals. EPL 107, 28006 (2014).

    Article  CAS  Google Scholar 

  133. 133.

    Sugiyama, J., Chanzy, H. & Maret, G. Orientation of cellulose microcrystals by strong magnetic fields. Macromolecules 25, 4232–4234 (1992).

    CAS  Article  Google Scholar 

  134. 134.

    Revol, J.-F. et al. Chiral nematic suspensions of cellulose crystallites; phase separation and magnetic field orientation. Liq. Cryst. 16, 127–134 (1994).

    CAS  Article  Google Scholar 

  135. 135.

    Frka-Petesic, B., Sugiyama, J., Kimura, S., Chanzy, H. & Maret, G. Negative diamagnetic anisotropy and birefringence of cellulose nanocrystals. Macromolecules 48, 8844–8857 (2015).

    CAS  Article  Google Scholar 

  136. 136.

    De France, K. J., Yager, K. G., Hoare, T. & Cranston, E. D. Cooperative ordering and kinetics of cellulose nanocrystal alignment in a magnetic field. Langmuir 32, 7564–7571 (2016).

    Article  CAS  Google Scholar 

  137. 137.

    Frka-Petesic, B., Guidetti, G., Kamita, G. & Vignolini, S. Controlling the photonic properties of cholesteric cellulose nanocrystal films with magnets. Adv. Mater. 29, 1701469 (2017).

    Article  CAS  Google Scholar 

  138. 138.

    Flauzino Neto, W. P. et al. Mechanical properties of natural rubber nanocomposites reinforced with high aspect ratio cellulose nanocrystals isolated from soy hulls. Carbohydr. Polym. 153, 143–152 (2016).

    CAS  Article  Google Scholar 

  139. 139.

    Mariano, M., Chirat, C., El Kissi, N. & Dufresne, A. Impact of cellulose nanocrystal aspect ratio on crystallization and reinforcement of poly(butylene adipate-co-terephthalate). J. Polym. Sci. Part B Polym. Phys. 54, 2284–2297 (2016).

    CAS  Article  Google Scholar 

  140. 140.

    Rusli, R., Shanmuganathan, K., Rowan, S. J., Weder, C. & Eichhorn, S. J. Stress transfer in cellulose nanowhisker composites - Influence of whisker aspect ratio and surface charge. Biomacromolecules 12, 1363–1369 (2011).

    CAS  Article  Google Scholar 

  141. 141.

    Kalashnikova, I., Bizot, H., Bertoncini, P., Cathala, B. & Capron, I. Cellulosic nanorods of various aspect ratios for oil in water Pickering emulsions. Soft Matter 9, 952–959 (2013).

    CAS  Article  Google Scholar 

  142. 142.

    Kalashnikova, I., Bizot, H., Cathala, B. & Capron, I. Modulation of cellulose nanocrystals amphiphilic properties to stabilize oil/water interface. Biomacromolecules 13, 267–275 (2012).

    CAS  Article  Google Scholar 

  143. 143.

    Grønli, M., Antal, M. J. & Várhegyi, G. A round-robin study of cellulose pyrolysis kinetics by thermogravimetry. Ind. Eng. Chem. Res. 38, 2238–2244 (1999).

    Article  Google Scholar 

  144. 144.

    Roman, M. & Winter, W. T. Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5, 1671–1677 (2004).

    CAS  Article  Google Scholar 

  145. 145.

    Scheirs, J., Camino, G. & Tumiatti, W. Overview of water evolution during the thermal degradation of cellulose. Eur. Polym. J. 37, 933–942 (2001).

    CAS  Article  Google Scholar 

  146. 146.

    Beck, S. & Bouchard, J. Auto-catalyzed acidic desulfation of cellulose nanocrystals. Nord. Pulp Pap. Res. J. 29, 6–14 (2014).

    CAS  Article  Google Scholar 

  147. 147.

    Kaur, B., Gur, I. S. & Bhatnagar, H. L. Thermal degradation studies of cellulose phosphates and cellulose thiophosphates. Angew. Makromol. Chem. 147, 157–183 (1987).

    CAS  Article  Google Scholar 

  148. 148.

    Fiss, B. G., Hatherly, L., Stein, R. S., Frišcˇìc´, T. & Moores, A. Mechanochemical phosphorylation of polymers and synthesis of flame-retardant cellulose nanocrystals. ACS Sustain. Chem. Eng. 7, 7951–7959 (2019).

    CAS  Article  Google Scholar 

  149. 149.

    Matsuoka, S., Kawamoto, H. & Saka, S. What is active cellulose in pyrolysis? An approach based on reactivity of cellulose reducing end. J. Anal. Appl. Pyrolysis 106, 138–146 (2014).

    CAS  Article  Google Scholar 

  150. 150.

    Heise, K. et al. Chemical modification of cellulose nanocrystal reducing end-groups. Angew. Chem. Int. Ed. https://doi.org/10.1002/ange.202002433 (2020).

    Article  Google Scholar 

  151. 151.

    Spinella, S. et al. Concurrent cellulose hydrolysis and esterification to prepare a surface-modified cellulose nanocrystal decorated with carboxylic acid moieties. ACS Sustain. Chem. Eng. 4, 1538–1550 (2016).

    CAS  Article  Google Scholar 

  152. 152.

    Niinivaara, E., Faustini, M., Tammelin, T. & Kontturi, E. Water vapor uptake of ultrathin films of biologically derived nanocrystals: quantitative assessment with quartz crystal microbalance and spectroscopic ellipsometry. Langmuir 31, 12170–12176 (2015).

    CAS  Article  Google Scholar 

  153. 153.

    Lindman, B., Karlström, G. & Stigsson, L. On the mechanism of dissolution of cellulose. J. Mol. Liq. 156, 76–81 (2010).

    CAS  Article  Google Scholar 

  154. 154.

    Medronho, B., Romano, A., Miguel, M. G., Stigsson, L. & Lindman, B. Rationalizing cellulose (in)solubility: reviewing basic physicochemical aspects and role of hydrophobic interactions. Cellulose 19, 581–587 (2012).

    CAS  Article  Google Scholar 

  155. 155.

    Lindh, E. L., Terenzi, C., Salmén, L. & Furó, I. Water in cellulose: evidence and identification of immobile and mobile adsorbed phases by 2H MAS NMR. Phys. Chem. Chem. Phys. 19, 4360–4369 (2017).

    CAS  Article  Google Scholar 

  156. 156.

    Lemke, C. H., Dong, R. Y., Michal, C. A. & Hamad, W. Y. New insights into nano-crystalline cellulose structure and morphology based on solid-state NMR. Cellulose 19, 1619–1629 (2012).

    CAS  Article  Google Scholar 

  157. 157.

    Dong, X. M. & Gray, D. G. Effect of counterions on ordered phase formation in suspensions of charged rodlike cellulose crystallites. Langmuir 13, 2404–2409 (1997).

    CAS  Article  Google Scholar 

  158. 158.

    Chen, Y. et al. Solution-phase EPR studies of single-walled carbon nanotubes. Chem. Phys. Lett. 299, 532–535 (1999).

    CAS  Article  Google Scholar 

  159. 159.

    Reid, M. S., Villalobos, M. & Cranston, E. D. Cellulose nanocrystal interactions probed by thin film swelling to predict dispersibility. Nanoscale 8, 12247–12257 (2016).

    CAS  Article  Google Scholar 

  160. 160.

    van der Berg, O., Capadona, J. R. & Weder, C. Preparation of homogeneous dispersions of tunicate cellulose whiskers in organic solvents. Biomacromolecules 8, 1353–1357 (2007).

    Article  CAS  Google Scholar 

  161. 161.

    Mazeau, K. On the external morphology of native cellulose microfibrils. Carbohydr. Polym. 84, 524–532 (2011).

    CAS  Article  Google Scholar 

  162. 162.

    Kedzior, S. A. et al. Incorporating cellulose nanocrystals into the core of polymer latex particles via polymer grafting. ACS Macro Lett. 7, 990–996 (2018).

    CAS  Article  Google Scholar 

  163. 163.

    Hatton, F. L., Kedzior, S. A., Cranston, E. D. & Carlmark, A. Grafting-from cellulose nanocrystals via photoinduced Cu-mediated reversible-deactivation radical polymerization. Carbohydr. Polym. 157, 1033–1040 (2017).

    CAS  Article  Google Scholar 

  164. 164.

    Braun, B. & Dorgan, J. R. Single-step method for the isolation and surface functionalization of cellulosic nanowhiskers. Biomacromolecules 10, 334–341 (2009).

    CAS  Article  Google Scholar 

  165. 165.

    Ojala, J., Sirviö, J. A. & Liimatainen, H. Preparation of cellulose nanocrystals from lignin-rich reject material for oil emulsification in an aqueous environment. Cellulose 25, 293–304 (2018).

    CAS  Article  Google Scholar 

  166. 166.

    Wei, L., Agarwal, U. P., Matuana, L., Sabo, R. C. & Stark, N. M. Performance of high lignin content cellulose nanocrystals in poly(lactic acid). Polymer 135, 305–313 (2018).

    CAS  Article  Google Scholar 

  167. 167.

    Yang, X. & Cranston, E. D. Chemically cross-linked cellulose nanocrystal aerogels with shape recovery and superabsorbent properties. Chem. Mater. 26, 6016–6025 (2014).

    CAS  Article  Google Scholar 

  168. 168.

    Osorio, D. A., Seifried, B., Moquin, P., Grandfield, K. & Cranston, E. D. Morphology of cross-linked cellulose nanocrystal aerogels: cryo-templating versus pressurized gas expansion processing. J. Mater. Sci. 53, 9842–9860 (2018).

    CAS  Article  Google Scholar 

  169. 169.

    Sun, B., Hou, Q., Liu, Z. & Ni, Y. Sodium periodate oxidation of cellulose nanocrystal and its application as a paper wet strength additive. Cellulose 22, 1135–1146 (2015).

    CAS  Article  Google Scholar 

  170. 170.

    Eyley, S. S. & Thielemans, W. Surface modification of cellulose nanocrystals. Nanoscale 6, 7764–7779 (2014).

    CAS  Article  Google Scholar 

  171. 171.

    Zoppe, J. O. et al. Effect of surface charge on surface-initiated atom transfer radical polymerization from cellulose nanocrystals in aqueous media. Biomacromolecules 17, 1404–1413 (2016).

    CAS  Article  Google Scholar 

  172. 172.

    Drogat, N. et al. Antimicrobial silver nanoparticles generated on cellulose nanocrystals. J. Nanopart. Res. 13, 1557–1562 (2011).

    CAS  Article  Google Scholar 

  173. 173.

    Kaushik, M. & Moores, A. Review: nanocelluloses as versatile supports for metal nanoparticles and their applications in catalysis. Green Chem. 18, 622–637 (2016).

    CAS  Article  Google Scholar 

  174. 174.

    Tang, J., Sisler, J., Grishkewich, N. & Tam, K. C. Functionalization of cellulose nanocrystals for advanced applications. J. Colloid Interface Sci. 494, 397–409 (2017).

    CAS  Article  Google Scholar 

  175. 175.

    Richardson, J. J. et al. Continuous metal-organic framework biomineralization on cellulose nanocrystals: extrusion of functional composite filaments. ACS Sustain. Chem. Eng. 7, 6287–6294 (2019).

    CAS  Article  Google Scholar 

  176. 176.

    Azzam, F., Heux, L., Jean, B. & Putaux, J.-L. Preparation by grafting onto, characterization and properties of thermally responsive polymer-decorated cellulose nanocrystals. Biomacromolecules 11, 3652–3659 (2010).

    CAS  Article  Google Scholar 

  177. 177.

    Kloser, E. & Gray, D. G. Surface grafting of cellulose nanocrystals with poly(ethylene oxide) in aqueous media. Langmuir 26, 13450–13456 (2010).

    CAS  Article  Google Scholar 

  178. 178.

    Yang, H., Chen, D. & van de Ven, T. G. M. Preparation and characterization of sterically stabilized nanocrystalline cellulose obtained by periodate oxidation of cellulose fibers. Cellulose 22, 1743–1752 (2015).

    CAS  Article  Google Scholar 

  179. 179.

    Yang, H., Tejado, A., Alam, N., Antal, M. & Van De Ven, T. G. M. Films prepared from electrosterically stabilized nanocrystalline cellulose. Langmuir 28, 7834–7842 (2012).

    CAS  Article  Google Scholar 

  180. 180.

    Yang, H., Alam, M. N. & van de Ven, T. G. M. Highly charged nanocrystalline cellulose and dicarboxylated cellulose from periodate and chlorite oxidized cellulose fibers. Cellulose 20, 1865–1875 (2013).

    CAS  Article  Google Scholar 

  181. 181.

    Campano, C., Lopez-Exposito, P., Blanco, A., Negro, C. & van de Ven, T. G. M. Hairy cationic nanocrystalline cellulose as a novel flocculant of clay. J. Colloid Interface Sci. 545, 153–161 (2019).

    CAS  Article  Google Scholar 

  182. 182.

    Lopez-Exposito, P., Campano, C., van de Ven, T. G. M., Negro, C. & Blanco, A. Microalgae harvesting with the novel flocculant hairy cationic nanocrystalline cellulose. Colloids Surf. B 178, 329–336 (2019).

    CAS  Article  Google Scholar 

  183. 183.

    Jorfi, M. & Foster, E. J. Recent advances in nanocellulose for biomedical applications. J. Appl. Polym. Sci. 132, 41719 (2015).

    Article  CAS  Google Scholar 

  184. 184.

    Osorio, D. A. et al. Cross-linked cellulose nanocrystal aerogels as viable bone tissue scaffolds. Acta Biomater. 87, 152–165 (2019).

    CAS  Article  Google Scholar 

  185. 185.

    De France, K. J. et al. Tissue response and biodistribution of injectable cellulose nanocrystal composite hydrogels. ACS Biomater. Sci. Eng. 5, 2235–2246 (2019).

    Article  CAS  Google Scholar 

  186. 186.

    Yanamala, N. et al. In vivo evaluation of the pulmonary toxicity of cellulose nanocrystals: A renewable and sustainable nanomaterial of the future. ACS Sustain. Chem. Eng. 2, 1691–1698 (2014).

    CAS  Article  Google Scholar 

  187. 187.

    Pelegrini, B. L. et al. Cellulose nanocrystals as a sustainable raw material: Cytotoxicity and applications on healthcare technology. Macromol. Mater. Eng. 304, 1900092 (2019).

    Article  CAS  Google Scholar 

  188. 188.

    Kovacs, T. et al. An ecotoxicological characterization of nanocrystalline cellulose (NCC). Nanotoxicology 4, 255–270 (2010).

    CAS  Article  Google Scholar 

  189. 189.

    Hanif, Z., Ahmed, F. R., Shin, S. W., Kim, Y. K. & Um, S. H. Size- and dose-dependent toxicity of cellulose nanocrystals (CNC) on human fibroblasts and colon adenocarcinoma. Colloids Surf. B 119, 162–165 (2014).

    CAS  Article  Google Scholar 

  190. 190.

    Hosseinidoust, Z., Alam, M. N., Sim, G., Tufenkji, N. & Van De Ven, T. G. M. Cellulose nanocrystals with tunable surface charge for nanomedicine. Nanoscale 7, 16647–16657 (2015).

    CAS  Article  Google Scholar 

  191. 191.

    Habibi, Y., Lucia, L. A. & Rojas, O. J. Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem. Rev. 110, 3479–3500 (2010).

    CAS  Article  Google Scholar 

  192. 192.

    Lagerwall, J. P. F. et al. Cellulose nanocrystal-based materials: From liquid crystal self-assembly and glass formation to multifunctional thin films. NPG Asia Mater. 6, e80 (2014).

    CAS  Article  Google Scholar 

  193. 193.

    Revol, J.-F., Godbout, D. L. & Gray, D. G. Solidified liquid crystals of cellulose with optically variable properties. US Patent 5629055A (1994).

  194. 194.

    Beck, S., Bouchard, J. & Berry, R. Iridescent solid nanocrystalline cellulose films incorporating patterns and method for their production. US Patent 20100151159A1 (2009).

  195. 195.

    Araki, J., Wada, M., Kuga, S. & Okano, T. Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloids Surf. A 142, 75–82 (1998).

    CAS  Article  Google Scholar 

  196. 196.

    Liu, Y. et al. A novel approach for the preparation of nanocrystalline cellulose by using phosphotungstic acid. Carbohydr. Polym. 110, 415–422 (2014).

    CAS  Article  Google Scholar 

  197. 197.

    Vasconcelos, N. F. et al. Bacterial cellulose nanocrystals produced under different hydrolysis conditions: Properties and morphological features. Carbohydr. Polym. 155, 425–431 (2017).

    CAS  Article  Google Scholar 

  198. 198.

    Cheng, M., Qin, Z., Chen, Y., Liu, J. & Ren, Z. Facile one-step extraction and oxidative carboxylation of cellulose nanocrystals through hydrothermal reaction by using mixed inorganic acids. Cellulose 24, 3243–3254 (2017).

    CAS  Article  Google Scholar 

  199. 199.

    Lalia, B. S., Samad, Y. A. & Hashaikeh, R. Nanocrystalline-cellulose-reinforced poly(vinylidenefluoride-co-hexafluoropropylene) nanocomposite films as a separator for lithium ion batteries. J. Appl. Polym. Sci. 126, E442–E448 (2012).

    Article  CAS  Google Scholar 

  200. 200.

    Li, R. et al. Cellulose whiskers extracted from mulberry: a novel biomass production. Carbohydr. Polym. 76, 94–99 (2009).

    CAS  Article  Google Scholar 

  201. 201.

    Shaheen, T. I. & Emam, H. E. Sono-chemical synthesis of cellulose nanocrystals from wood sawdust using acid hydrolysis. Int. J. Biol. Macromol. 107, 1599–1606 (2018).

    CAS  Article  Google Scholar 

  202. 202.

    Le Normand, M., Moriana, R. & Ek, M. Isolation and characterization of cellulose nanocrystals from spruce bark in a biorefinery perspective. Carbohydr. Polym. 111, 979–987 (2014).

    Article  CAS  Google Scholar 

  203. 203.

    Morais, J. P. S. et al. Extraction and characterization of nanocellulose structures from raw cotton linter. Carbohydr. Polym. 91, 229–235 (2013).

    CAS  Article  Google Scholar 

  204. 204.

    Wang, Z., Yao, Z. J., Zhou, J. & Zhang, Y. Reuse of waste cotton cloth for the extraction of cellulose nanocrystals. Carbohydr. Polym. 157, 945–952 (2017).

    CAS  Article  Google Scholar 

  205. 205.

    Edgar, C. D. & Gray, D. G. Smooth model cellulose I surfaces from nanocrystal suspensions. Cellulose 10, 299–306 (2003).

    CAS  Article  Google Scholar 

  206. 206.

    Nascimento, S. A. & Rezende, C. A. Combined approaches to obtain cellulose nanocrystals, nanofibrils and fermentable sugars from elephant grass. Carbohydr. Polym. 180, 38–45 (2018).

    CAS  Article  Google Scholar 

  207. 207.

    Cao, X., Dong, H. & Li, C. M. New nanocomposite materials reinforced with flax cellulose nanocrystals in waterborne polyurethane. Biomacromolecules 8, 899–904 (2007).

    CAS  Article  Google Scholar 

  208. 208.

    Cao, X., Chen, Y., Chang, P. R., Stumborg, M. & Huneault, M. A. Green composites reinforced with hemp nanocrystals in plasticized starch. J. Appl. Polym. Sci. 109, 3804–3810 (2008).

    CAS  Article  Google Scholar 

  209. 209.

    Luzi, F. et al. Optimized extraction of cellulose nanocrystals from pristine and carded hemp fibres. Ind. Crop. Prod. 56, 175–186 (2014).

    CAS  Article  Google Scholar 

  210. 210.

    Sheltami, R. M., Abdullah, I., Ahmad, I., Dufresne, A. & Kargarzadeh, H. Extraction of cellulose nanocrystals from mengkuang leaves (Pandanus tectorius). Carbohydr. Polym. 88, 772–779 (2012).

    CAS  Article  Google Scholar 

  211. 211.

    Habibi, Y. et al. Bionanocomposites based on poly(ε-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization. J. Mater. Chem. 18, 5002–5010 (2008).

    CAS  Article  Google Scholar 

  212. 212.

    César, N. R., Pereira-da-Silva, M. A., Botaro, V. R. & de Menezes, A. J. Cellulose nanocrystals from natural fiber of the macrophyte Typha domingensis: extraction and characterization. Cellulose 22, 449–460 (2015).

    Article  CAS  Google Scholar 

  213. 213.

    Fortunati, E. et al. Revalorization of sunflower stalks as novel sources of cellulose nanofibrils and nanocrystals and their effect on wheat gluten bionanocomposite properties. Carbohydr. Polym. 149, 357–368 (2016).

    CAS  Article  Google Scholar 

  214. 214.

    Mueller, S., Weder, C. & Foster, E. J. Isolation of cellulose nanocrystals from pseudostems of banana plants. RSC Adv. 4, 907–915 (2014).

    CAS  Article  Google Scholar 

  215. 215.

    Rosa, M. F. et al. Cellulose nanowhiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behavior. Carbohydr. Polym. 81, 83–92 (2010).

    CAS  Article  Google Scholar 

  216. 216.

    Collazo-Bigliardi, S., Ortega-Toro, R. & Chiralt Boix, A. Isolation and characterisation of microcrystalline cellulose and cellulose nanocrystals from coffee husk and comparative study with rice husk. Carbohydr. Polym. 191, 205–215 (2018).

    CAS  Article  Google Scholar 

  217. 217.

    Silvério, H. A., Flauzino Neto, W. P., Dantas, N. O. & Pasquini, D. Extraction and characterization of cellulose nanocrystals from corncob for application as reinforcing agent in nanocomposites. Ind. Crop. Prod. 44, 427–436 (2013).

    Article  CAS  Google Scholar 

  218. 218.

    Kallel, F. et al. Isolation and structural characterization of cellulose nanocrystals extracted from garlic straw residues. Ind. Crop. Prod. 87, 287–296 (2016).

    CAS  Article  Google Scholar 

  219. 219.

    Henrique, M. A., Silvério, H. A., Flauzino Neto, W. P. & Pasquini, D. Valorization of an agro-industrial waste, mango seed, by the extraction and characterization of its cellulose nanocrystals. J. Environ. Manage. 121, 202–209 (2013).

    CAS  Article  Google Scholar 

  220. 220.

    Rhim, J. W., Reddy, J. P. & Luo, X. Isolation of cellulose nanocrystals from onion skin and their utilization for the preparation of agar-based bio-nanocomposites films. Cellulose 22, 407–420 (2015).

    CAS  Article  Google Scholar 

  221. 221.

    Wijaya, C. J. et al. Cellulose nanocrystals from passion fruit peels waste as antibiotic drug carrier. Carbohydr. Polym. 175, 370–376 (2017).

    CAS  Article  Google Scholar 

  222. 222.

    Chen, Y., Liu, C., Chang, P. R., Cao, X. & Anderson, D. P. Bionanocomposites based on pea starch and cellulose nanowhiskers hydrolyzed from pea hull fibre: effect of hydrolysis time. Carbohydr. Polym. 76, 607–615 (2009).

    CAS  Article  Google Scholar 

  223. 223.

    Dai, H., Ou, S., Huang, Y. & Huang, H. Utilization of pineapple peel for production of nanocellulose and film application. Cellulose 25, 1743–1756 (2018).

    CAS  Article  Google Scholar 

  224. 224.

    Marett, J., Aning, A. & Foster, E. J. The isolation of cellulose nanocrystals from pistachio shells via acid hydrolysis. Ind. Crop. Prod. 109, 869–874 (2017).

    CAS  Article  Google Scholar 

  225. 225.

    Chen, D., Lawton, D., Thompson, M. R. & Liu, Q. Biocomposites reinforced with cellulose nanocrystals derived from potato peel waste. Carbohydr. Polym. 90, 709–716 (2012).

    CAS  Article  Google Scholar 

  226. 226.

    Lu, P. & Hsieh, Y. L. O. Preparation and characterization of cellulose nanocrystals from rice straw. Carbohydr. Polym. 87, 564–573 (2012).

    CAS  Article  Google Scholar 

  227. 227.

    Flauzino Neto, W. P., Silvério, H. A., Dantas, N. O. & Pasquini, D. Extraction and characterization of cellulose nanocrystals from agro-industrial residue - soy hulls. Ind. Crop. Prod. 42, 480–488 (2013).

    CAS  Article  Google Scholar 

  228. 228.

    Favier, V., Chanzy, H. & Cavaillé, J. Y. Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28, 6365–6367 (1995).

    CAS  Article  Google Scholar 

  229. 229.

    Retsina, T. & Pylkkanen, V. Method for the production of fermentable sugars and cellulose from lignocellulosic material. US Patent 8030039B1 (2011).

  230. 230.

    Retsina, T., Pylkkanen, V. & van Heiningen, A. Method for vapor phase pulping with alcohol, sulfur dioxide and ammonia. US Patent 8038842B2 (2011).

  231. 231.

    Retsina, T., Pylkkanen, V. & van Heiningen, A. Method for vapor phase pulping with alcohol and sulfur dioxide. US Patent 20120305207A1 (2012).

  232. 232.

    Retsina, T. & Pylkkanen, V. Separation of lignin from hydrolyzate.US Patent 8864941B2 (2013).

  233. 233.

    Choi, Y. & Simonsen, J. Cellulose nanocrystal-filled carboxymethyl cellulose nanocomposites. J. Nanosci. Nanotechnol. 6, 633–639 (2006).

    CAS  Article  Google Scholar 

  234. 234.

    Heath, L. & Thielemans, W. Cellulose nanowhisker aerogels. Green. Chem. 12, 1448–1453 (2010).

    CAS  Article  Google Scholar 

  235. 235.

    Liew, S. Y., Thielemans, W. & Walsh, D. A. Electrochemical capacitance of nanocomposite polypyrrole/cellulose films. J. Phys. Chem. C. 114, 17926–17933 (2010).

    CAS  Article  Google Scholar 

  236. 236.

    Jackson, J. K. et al. The use of nanocrystalline cellulose for the binding and controlled release of drugs. Int. J. Nanomed. 6, 321–330 (2011).

    CAS  Google Scholar 

  237. 237.

    Kalashnikova, I., Bizot, H., Cathala, B. & Capron, I. New Pickering emulsions stabilized by bacterial cellulose nanocrystals. Langmuir 27, 7471–7479 (2011).

    CAS  Article  Google Scholar 

  238. 238.

    Cao, Y., Weiss, W. J., Youngblood, J., Moon, R. & Zavattieri, P. in Production and Applications of Cellulose Nanomaterial (eds Postek, M. T., Moon, R. J., Rudie, A. W. & Bilodeau, M. A.) 135–136 (TAPPI, 2013).

Download references

Acknowledgements

The authors thank E. Niinivaara and G. Delepierre for drawing chemical structures. E.D.C. is grateful for financial support and recognition through the Early Researcher awards from the Ontario Ministry of Research and Innovation, the Canada Research Chairs programme and the University of British Columbia’s President’s Excellence Chair initiative. McMaster University (Faculty of Engineering), the University of British Columbia (Faculty of Applied Science and Faculty of Forestry) and the BioProducts Institute (http://bpi.ubc.ca) are gratefully acknowledged for support. This work was funded through Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant RGPIN-2017-05252 to E.D.C. and an NSERC Alexander Graham Bell Canada Graduate Scholarship to O.M.V.

Author information

Affiliations

Authors

Contributions

O.M.V. and E.D.C developed the outline and wrote the manuscript in collaboration. O.M.V. compiled all data in tables. O.M.V. and E.D.C revised the manuscript on the basis of reviewer and editorial suggestions.

Corresponding author

Correspondence to Emily D. Cranston.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vanderfleet, O.M., Cranston, E.D. Production routes to tailor the performance of cellulose nanocrystals. Nat Rev Mater (2020). https://doi.org/10.1038/s41578-020-00239-y

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing