Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Engineering immunomodulatory biomaterials for type 1 diabetes

Abstract

A cure for type 1 diabetes (T1D) would help millions of people worldwide but remains elusive to date. Tolerogenic vaccines and β-cell replacement therapy are complementary therapies that seek to address aberrant T1D autoimmune attack and subsequent β-cell loss. However, both approaches require some form of systemic immunosuppression, imparting risks to the patient. Biomaterials-based tools enable localized and targeted immunomodulation, and biomaterial properties can be designed and combined with immunomodulatory agents to locally instruct specific immune responses. In this Review, we discuss immunomodulatory biomaterial platforms for the development of T1D tolerogenic vaccines and β-cell replacement devices. We investigate nanoparticles and microparticles for the delivery of tolerogenic agents and autoantigens and as artificial antigen-presenting cells, and we highlight how bulk biomaterials can be used to provide immune tolerance. We examine biomaterials for drug delivery and as immuno-isolation devices for cell therapy and islet transplantation and explore synergies with other fields for the development of new T1D treatment strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Immunomodulation biomaterial vaccines.
Fig. 2: Temporal sequence of host immune response to islet transplants.
Fig. 3: Immunomodulatory biomaterial approaches for islet and β-cell transplantation.

Similar content being viewed by others

References

  1. Cooper, G. S., Bynum, M. L. & Somers, E. C. Recent insights in the epidemiology of autoimmune diseases: improved prevalence estimates and understanding of clustering of diseases. J. Autoimmun. 33, 197–207 (2009).

    Article  Google Scholar 

  2. Centers for Disease Control and Prevention. National diabetes statistics report, 2017. Centers for Disease Control and Prevention https://www.cdc.gov/diabetes/pdfs/data/statistics/national-diabetes-statistics-report.pdf (2017).

  3. Thomas, N. J. et al. Frequency and phenotype of type 1 diabetes in the first six decades of life: a cross-sectional, genetically stratified survival analysis from UK Biobank. Lancet Diabetes Endocrinol. 6, 122–129 (2018).

    Article  Google Scholar 

  4. Tao, B., Pietropaolo, M., Atkinson, M., Schatz, D. & Taylor, D. Estimating the cost of type 1 diabetes in the U.S.: a propensity score matching method. PLOS ONE 5, e11501 (2010).

    Article  CAS  Google Scholar 

  5. Atkinson, M. A., Eisenbarth, G. S. & Michels, A. W. Type 1 diabetes. Lancet 383, 69–82 (2014).

    Article  Google Scholar 

  6. American Diabetes Association. Classification and diagnosis of diabetes: standards of medical care in diabetes—2018. Diabetes Care 41, S13–S27 (2018).

    Article  Google Scholar 

  7. Groop, P. H. et al. The presence and severity of chronic kidney disease predicts all-cause mortality in type 1 diabetes. Diabetes 58, 1651–1658 (2009).

    Article  CAS  Google Scholar 

  8. Shapiro, A. M., Pokrywczynska, M. & Ricordi, C. Clinical pancreatic islet transplantation. Nat. Rev. Endocrinol. 13, 268–277 (2017).

    Article  CAS  Google Scholar 

  9. Skyler, J. S. Prevention and reversal of type 1 diabetes—past challenges and future opportunities. Diabetes Care 38, 997–1007 (2015).

    Article  Google Scholar 

  10. Sachs, D. H., Kawai, T. & Sykes, M. Induction of tolerance through mixed chimerism. Cold Spring Harb. Perspect. Med. 4, a015529 (2014).

    Article  CAS  Google Scholar 

  11. D’Addio, F. et al. Autologous nonmyeloablative hematopoietic stem cell transplantation in new-onset type 1 diabetes: a multicenter analysis. Diabetes 63, 3041–3046 (2014).

    Article  Google Scholar 

  12. Trzonkowski, P. et al. Hurdles in therapy with regulatory T cells. Sci. Transl Med. 7, 304ps18 (2015).

    Article  Google Scholar 

  13. Thomson, A. W. et al. Prospective clinical testing of regulatory dendritic cells in organ transplantation. Front. Immunol. 7, 15 (2016).

    Article  CAS  Google Scholar 

  14. Broichhausen, C., Riquelme, P., Geissler, E. K. & Hutchinson, J. A. Regulatory macrophages as therapeutic targets and therapeutic agents in solid organ transplantation. Curr. Opin. Organ Transplant. 17, 332–342 (2012).

    CAS  Google Scholar 

  15. Brusko, T. M., Wasserfall, C. H., Clare-Salzler, M. J., Schatz, D. A. & Atkinson, M. A. Functional defects and the influence of age on the frequency of CD4+ CD25+ T cells in type 1 diabetes. Diabetes 54, 1407–1414 (2005).

    Article  CAS  Google Scholar 

  16. Haseda, F., Imagawa, A., Murase-Mishiba, Y., Terasaki, J. & Hanafusa, T. CD4(+) CD45RA(-) FoxP3high activated regulatory T cells are functionally impaired and related to residual insulin-secreting capacity in patients with type 1 diabetes. Clin. Exp. Immunol. 173, 207–216 (2013).

    Article  CAS  Google Scholar 

  17. Bluestone, J. A. et al. Type 1 diabetes immunotherapy using polyclonal regulatory T cells. Sci. Transl Med. 7, 315ra189 (2015).

    Article  CAS  Google Scholar 

  18. Marek-Trzonkowska, N. et al. Therapy of type 1 diabetes with CD4(+)CD25(high)CD127-regulatory T cells prolongs survival of pancreatic islets - results of one year follow-up. Clin. Immunol. 153, 23–30 (2014).

    Article  CAS  Google Scholar 

  19. Phillips, B. E., Garciafigueroa, Y., Trucco, M. & Giannoukakis, N. Clinical tolerogenic dendritic cells: exploring therapeutic impact on human autoimmune disease. Front. Immunol. 8, 1279 (2017).

    Article  CAS  Google Scholar 

  20. Gregori, S. et al. Regulatory T cells induced by 1α, 25-dihydroxyvitamin D3 and mycophenolate mofetil treatment mediate transplantation tolerance. J. Immunol. 167, 1945–1953 (2001).

    Article  CAS  Google Scholar 

  21. McKarns, S. C. & Schwartz, R. H. Distinct effects of TGF-beta 1 on CD4+ and CD8+ T cell survival, division, and IL-2 production: a role for T cell intrinsic Smad3. J. Immunol. 174, 2071–2083 (2005).

    Article  CAS  Google Scholar 

  22. Border, W. A. & Noble, N. A. Transforming growth factor β in tissue fibrosis. N. Engl. J. Med. 331, 1286–1292 (1994).

    Article  CAS  Google Scholar 

  23. Desai, T. & Shea, L. D. Advances in islet encapsulation technologies. Nat. Rev. Drug Discov. 16, 338 (2016).

    Article  CAS  Google Scholar 

  24. Scharp, D. W. & Marchetti, P. Encapsulated islets for diabetes therapy: History, current progress, and critical issues requiring solution. Adv. Drug Deliv. Rev. 67–68, 35–73 (2014).

    Article  CAS  Google Scholar 

  25. Hwa, A. J. & Weir, G. C. Transplantation of macroencapsulated insulin-producing cells. Curr. Diab Rep. 18, 50 (2018).

    Article  CAS  Google Scholar 

  26. Smink, A. M., Haan, B. J., Lakey, J. R. T. & Vos, P. Polymer scaffolds for pancreatic islet transplantation — progress and challenges. Am. J. Transplant. 18, 2113–2119 (2018).

    Article  Google Scholar 

  27. Anderson, J. M., Rodriguez, A. & Chang, D. T. Foreign body reaction to biomaterials. Semin. Immunol. 20, 86–100 (2008).

    Article  CAS  Google Scholar 

  28. Del Giudice, G., Rappuoli, R. & Didierlaurent, A. M. Correlates of adjuvanticity: a review on adjuvants in licensed vaccines. Semin. Immunol. 39, 14–21 (2018).

    Article  CAS  Google Scholar 

  29. Smith-Garvin, J. E., Koretzky, G. A. & Jordan, M. S. T cell activation. Annu. Rev. Immunol. 27, 591–619 (2009).

    Article  CAS  Google Scholar 

  30. Bachmann, M. F. & Jennings, G. T. Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat. Immunol. 10, 787–796 (2010).

    Article  CAS  Google Scholar 

  31. Larche, M., Akdis, C. A. & Valenta, R. Immunological mechanisms of allergen-specific immunotherapy. Nat. Immunol. 6, 761–771 (2006).

    Article  CAS  Google Scholar 

  32. Larche, M. & Wraith, D. C. Peptide-based therapeutic vaccines for allergic and autoimmune diseases. Nat. Med. 11, S69–S76 (2005).

    Article  CAS  Google Scholar 

  33. Streeter, H. B., Rigden, R., Martin, K. F., Scolding, N. J. & Wraith, D. C. Preclinical development and first-in-human study of ATX-MS-1467 for immunotherapy of MS. Neurol. Neuroimmunol. Neuroinflamm 2, e93 (2015).

    Article  Google Scholar 

  34. Chataway, J. et al. Effects of ATX-MS-1467 immunotherapy over 16 weeks in relapsing multiple sclerosis. Neurology 90, e955–e962 (2018).

    Article  CAS  Google Scholar 

  35. Skyler, J. S. et al. Effects of oral insulin in relatives of patients with type 1 diabetes: the Diabetes Prevention Trial — Type 1. Diabetes Care 28, 1068–1076 (2005).

    Article  CAS  Google Scholar 

  36. Nanto-Salonen, K. et al. Nasal insulin to prevent type 1 diabetes in children with HLA genotypes and autoantibodies conferring increased risk of disease: a double-blind, randomised controlled trial. Lancet 372, 1746–1755 (2008).

    Article  CAS  Google Scholar 

  37. Walter, M. et al. No effect of the altered peptide ligand NBI-6024 on beta-cell residual function and insulin needs in new-onset type 1 diabetes. Diabetes Care 32, 2036–2040 (2009).

    Article  CAS  Google Scholar 

  38. Ludvigsson, J. et al. GAD65 antigen therapy in recently diagnosed type 1 diabetes mellitus. N. Engl. J. Med. 366, 433–442 (2012).

    Article  CAS  Google Scholar 

  39. Alhadj Ali, M. et al. Metabolic and immune effects of immunotherapy with proinsulin peptide in human new-onset type 1 diabetes. Sci. Transl Med. 9, eaaf7779 (2017).

    Article  CAS  Google Scholar 

  40. Delong, T. et al. Pathogenic CD4 T cells in type 1 diabetes recognize epitopes formed by peptide fusion. Science 351, 711–714 (2016).

    Article  CAS  Google Scholar 

  41. Baker, R. L. et al. CD4 T cells reactive to hybrid insulin peptides are indicators of disease activity in the NOD mouse. Diabetes 67, 1836–1846 (2018).

    Article  CAS  Google Scholar 

  42. Delong, T. et al. Diabetogenic T cell clones recognize an altered peptide of chromogranin A. Diabetes 61, 3239–3246 (2012).

    Article  CAS  Google Scholar 

  43. van Lummel, M. et al. Posttranslational modification of HLA-DQ binding islet autoantigens in type 1 diabetes. Diabetes 63, 237–247 (2014).

    Article  CAS  Google Scholar 

  44. Kool, M. et al. Alum adjuvant boosts adaptive immunity by inducing uric acid and activating inflammatory dendritic cells. J. Exp. Med. 205, 869–882 (2008).

    Article  CAS  Google Scholar 

  45. Bracho-Sanchez, E., Xia, C. Q., Clare-Salzler, M. J. & Keselowsky, B. G. Micro and nano material carriers for immunomodulation. Am. J. Transplant. 16, 3362–3370 (2016).

    Article  CAS  Google Scholar 

  46. Sonavane, G., Tomoda, K. & Makino, K. Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size. Colloids Surf. B 66, 274–280 (2008).

    Article  CAS  Google Scholar 

  47. Reddy, S. T. et al. Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nat. Biotechnol. 25, 1159–1164 (2007).

    Article  CAS  Google Scholar 

  48. Nishioka, Y. & Yoshino, H. Lymphatic targeting with nanoparticulate system. Adv. Drug Deliv. Rev. 47, 55–64 (2001).

    Article  CAS  Google Scholar 

  49. Gerner, M. Y., Torabi-Parizi, P. & Germain, R. N. Strategically localized dendritic cells promote rapid T cell responses to lymph-borne particulate antigens. Immunity 42, 172–185 (2015).

    Article  CAS  Google Scholar 

  50. Keselowsky, B. G., Xia, C. Q. & Clare-Salzler, M. Multifunctional dendritic cell-targeting polymeric microparticles: engineering new vaccines for type 1 diabetes. Hum. Vaccines 7, 37–44 (2011).

    Article  CAS  Google Scholar 

  51. Champion, J. A., Walker, A. & Mitragotri, S. Role of particle size in phagocytosis of polymeric microspheres. Pharm. Res. 25, 1815–1821 (2008).

    Article  CAS  Google Scholar 

  52. Cruz, L. J. et al. Targeting nanoparticles to CD40, DEC-205 or CD11c molecules on dendritic cells for efficient CD8(+) T cell response: a comparative study. J. Control. Release 192, 209–218 (2014).

    Article  CAS  Google Scholar 

  53. Lewis, J. S., Zaveri, T. D., Crooks, C. P. 2nd & Keselowsky, B. G. Microparticle surface modifications targeting dendritic cells for non-activating applications. Biomaterials 33, 7221–7232 (2012).

    Article  CAS  Google Scholar 

  54. Cruz, L. J. et al. Targeted PLGA nano- but not microparticles specifically deliver antigen to human dendritic cells via DC-SIGN in vitro. J. Control. Release 144, 118–126 (2010).

    Article  CAS  Google Scholar 

  55. McHugh, M. D. et al. Paracrine co-delivery of TGF-beta and IL-2 using CD4-targeted nanoparticles for induction and maintenance of regulatory T cells. Biomaterials 59, 172–181 (2015).

    Article  CAS  Google Scholar 

  56. Rodriguez, P. L. et al. Minimal “Self” peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science 339, 971–975 (2013).

    Article  CAS  Google Scholar 

  57. Elward, K. & Gasque, P. “Eat me” and “don’t eat me” signals govern the innate immune response and tissue repair in the CNS: emphasis on the critical role of the complement system. Mol. Immunol. 40, 85–94 (2003).

    Article  CAS  Google Scholar 

  58. Northrup, L., Christopher, M. A., Sullivan, B. P. & Berkland, C. Combining antigen and immunomodulators: emerging trends in antigen-specific immunotherapy for autoimmunity. Adv. Drug Deliv. Rev. 98, 86–98 (2015).

    Article  CAS  Google Scholar 

  59. Getts, D. R. et al. Therapeutic inflammatory monocyte modulation using immune-modifying microparticles. Sci. Transl Med. 6, 219ra7 (2014).

    Article  CAS  Google Scholar 

  60. Allen, R. P., Bolandparvaz, A., Ma, J. A., Manickam, V. A. & Lewis, J. S. Latent, immunosuppressive nature of poly(lactic-co-glycolic acid) microparticles. ACS Biomater. Sci. Eng. 4, 900–918 (2018).

    Article  CAS  Google Scholar 

  61. Giannoukakis, N., Phillips, B., Finegold, D., Harnaha, J. & Trucco, M. Phase I (safety) study of autologous tolerogenic dendritic cells in type 1 diabetic patients. Diabetes Care 34, 2026–2032 (2011).

    Article  Google Scholar 

  62. Machen, J. et al. Antisense oligonucleotides down-regulating costimulation confer diabetes-preventive properties to nonobese diabetic mouse dendritic cells. J. Immunol. 173, 4331–4341 (2004).

    Article  CAS  Google Scholar 

  63. Engman, C. et al. Generation of antigen-specific Foxp3+ regulatory T cells in vivo following administration of diabetes-reversing tolerogenic microspheres does not require provision of antigen in the formulation. Clin. Immunol. 160, 103–123 (2015).

    Article  CAS  Google Scholar 

  64. Phillips, B. et al. A microsphere-based vaccine prevents and reverses new-onset autoimmune diabetes. Diabetes 57, 1544–1555 (2008).

    Article  CAS  Google Scholar 

  65. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00445913 (2016).

  66. Yin, H. et al. Non-viral vectors for gene-based therapy. Nat. Rev. Genet. 15, 541–555 (2014).

    Article  CAS  Google Scholar 

  67. Jhunjhunwala, S. et al. Controlled release formulations of IL-2, TGF-beta1 and rapamycin for the induction of regulatory T cells. J. Control. Release 159, 78–84 (2012).

    Article  CAS  Google Scholar 

  68. Balmert, S. C. et al. In vivo induction of regulatory T cells promotes allergen tolerance and suppresses allergic contact dermatitis. J. Control. Release 261, 223–233 (2017).

    Article  CAS  Google Scholar 

  69. Jhunjhunwala, S. et al. Bioinspired controlled release of CCL22 recruits regulatory T cells in vivo. Adv. Mater. 24, 4735–4738 (2012).

    Article  CAS  Google Scholar 

  70. Glowacki, A. J. et al. Prevention of inflammation-mediated bone loss in murine and canine periodontal disease via recruitment of regulatory lymphocytes. Proc. Natl Acad. Sci. USA 110, 18525–18530 (2013).

    Article  CAS  Google Scholar 

  71. Araujo-Pires, A. C. et al. IL-4/CCL22/CCR4 axis controls regulatory T cell migration that suppresses inflammatory bone loss in murine experimental periodontitis. J. Bone Miner. Res. 30, 412–422 (2015).

    Article  CAS  Google Scholar 

  72. Francisconi, C. F. et al. Characterization of the protective role of regulatory T cells in experimental periapical lesion development and their chemoattraction manipulation as a therapeutic tool. J. Endod. 42, 120–126 (2016).

    Article  Google Scholar 

  73. Ratay, M. L. et al. Treg-recruiting microspheres prevent inflammation in a murine model of dry eye disease. J. Control. Release 258, 208–217 (2017).

    Article  CAS  Google Scholar 

  74. Rosenblum, M. D. et al. Response to self antigen imprints regulatory memory in tissues. Nature 480, 538–542 (2011).

    Article  CAS  Google Scholar 

  75. Wherry, E. J. T cell exhaustion. Nat. Immunol. 12, 492–499 (2011).

    Article  CAS  Google Scholar 

  76. Sharma, G. et al. Nanoparticle based insulin delivery system: the next generation efficient therapy for Type 1 diabetes. J. Nanobiotechnol. 13, 74 (2015).

    Article  CAS  Google Scholar 

  77. Yang, L. et al. Poly(2-propylacrylic acid)/poly(lactic-co-glycolic acid) blend microparticles as a targeted antigen delivery system to direct either CD4(+) or CD8(+) T cell activation. Bioeng. Transl Med. 2, 202–211 (2017).

    Article  CAS  Google Scholar 

  78. Shen, H. et al. Enhanced and prolonged cross-presentation following endosomal escape of exogenous antigens encapsulated in biodegradable nanoparticles. Immunology 117, 78–88 (2006).

    Article  CAS  Google Scholar 

  79. Joffre, O. P., Segura, E., Savina, A. & Amigorena, S. Cross-presentation by dendritic cells. Nat. Rev. Immunol. 12, 557–569 (2012).

    Article  CAS  Google Scholar 

  80. Prasad, S. et al. Tolerogenic Ag-PLG nanoparticles induce tregs to suppress activated diabetogenic CD4 and CD8 T cells. J. Autoimmun. 89, 112–124 (2017).

    Article  CAS  Google Scholar 

  81. Vanderlugt, C. L. & Miller, S. D. Epitope spreading in immune-mediated diseases: implications for immunotherapy. Nat. Rev. Immunol. 2, 85–95 (2002).

    Article  CAS  Google Scholar 

  82. Getts, D. R., McCarthy, D. P. & Miller, S. D. Exploiting apoptosis for therapeutic tolerance induction. J. Immunol. 191, 5341–5346 (2013).

    Article  CAS  Google Scholar 

  83. Turley, D. M. & Miller, S. D. Peripheral tolerance induction using ethylenecarbodiimide-fixed APCs uses both direct and indirect mechanisms of antigen presentation for prevention of experimental autoimmune encephalomyelitis. J. Immunol. 178, 2212–2220 (2007).

    Article  CAS  Google Scholar 

  84. Lutterotti, A. et al. Antigen-specific tolerance by autologous myelin peptide-coupled cells: a phase 1 trial in multiple sclerosis. Sci. Transl Med. 5, 188ra75 (2013).

    Article  CAS  Google Scholar 

  85. Getts, D. R. et al. Microparticles bearing encephalitogenic peptides induce T cell tolerance and ameliorate experimental autoimmune encephalomyelitis. Nat. Biotechnol. 30, 1217–1224 (2012).

    Article  CAS  Google Scholar 

  86. Kontos, S., Kourtis, I. C., Dane, K. Y. & Hubbell, J. A. Engineering antigens for in situ erythrocyte binding induces T cell deletion. Proc. Natl Acad. Sci. USA 110, E60–E68 (2013).

    Article  CAS  Google Scholar 

  87. Grimm, A. J., Kontos, S., Diaceri, G., Quaglia-Thermes, X. & Hubbell, J. A. Memory of tolerance and induction of regulatory T cells by erythrocyte-targeted antigens. Sci. Rep. 5, 15907 (2015).

    Article  CAS  Google Scholar 

  88. Quintana, F. J. et al. Control of T(reg) and T(H)17 cell differentiation by the aryl hydrocarbon receptor. Nature 453, 65–71 (2008).

    Article  CAS  Google Scholar 

  89. Quintana, F. J. et al. An endogenous aryl hydrocarbon receptor ligand acts on dendritic cells and T cells to suppress experimental autoimmune encephalomyelitis. Proc. Natl Acad. Sci. USA 107, 20768–20773 (2010).

    Article  CAS  Google Scholar 

  90. Yeste, A. et al. Tolerogenic nanoparticles inhibit T cell-mediated autoimmunity through SOCS2. Sci. Signal. 9, ra61 (2016).

    Article  CAS  Google Scholar 

  91. Abdelhalim, M. A. & Abdelmottaleb Moussa, S. A. The gold nanoparticle size and exposure duration effect on the liver and kidney function of rats: in vivo. Saudi J. Bio Sci. 20, 177–181 (2013).

    Article  CAS  Google Scholar 

  92. Maldonado, R. A. et al. Polymeric synthetic nanoparticles for the induction of antigen-specific immunological tolerance. Proc. Natl Acad. Sci. USA 112, E156–E165 (2015).

    Article  CAS  Google Scholar 

  93. Kishimoto, T. K. et al. Improving the efficacy and safety of biologic drugs with tolerogenic nanoparticles. Nat. Nanotechnol. 11, 890–899 (2016).

    Article  CAS  Google Scholar 

  94. Chen, N. et al. Co-delivery of disease associated peptide and rapamycin via acetalated dextran microparticles for treatment of multiple sclerosis. Adv. Biosys. 1, 1700022 (2017).

    Article  CAS  Google Scholar 

  95. Chen, N., Kroger, C. J., Tisch, R. M., Bachelder, E. M. & Ainslie, K. M. Prevention of type 1 diabetes with acetalated dextran microparticles containing rapamycin and pancreatic peptide P31. Adv. Healthc. Mater. 7, 1800341 (2018).

    Article  CAS  Google Scholar 

  96. Lewis, J. S. et al. Dual-sized microparticle system for generating suppressive dendritic cells prevents and reverses type 1 diabetes in the nonobese diabetic mouse model. ACS Biomater. Sci. Eng. https://doi.org/10.1021/acsbiomaterials.9b00332 (2019).

    Article  Google Scholar 

  97. Klopot, A., Hance, K. W., Peleg, S., Barsony, J. & Fleet, J. C. Nucleo-cytoplasmic cycling of the vitamin D receptor in the enterocyte-like cell line, Caco-2. J. Cell. Biochem. 100, 617–628 (2007).

    Article  CAS  Google Scholar 

  98. Cho, J. J. et al. An antigen-specific semi-therapeutic treatment with local delivery of tolerogenic factors through a dual-sized microparticle system blocks experimental autoimmune encephalomyelitis. Biomaterials 143, 79–92 (2017).

    Article  CAS  Google Scholar 

  99. Stewart, J. M. & Keselowsky, B. G. Combinatorial drug delivery approaches for immunomodulation. Adv. Drug Deliv. Rev. 114, 161–174 (2017).

    Article  CAS  Google Scholar 

  100. Tsai, S. et al. Reversal of autoimmunity by boosting memory-like autoregulatory T cells. Immunity 32, 568–580 (2010).

    Article  CAS  Google Scholar 

  101. Clemente-Casares, X. et al. Expanding antigen-specific regulatory networks to treat autoimmunity. Nature 530, 434–440 (2016).

    Article  CAS  Google Scholar 

  102. Akbari, O. et al. Antigen-specific regulatory T cells develop via the ICOS-ICOS-ligand pathway and inhibit allergen-induced airway hyperreactivity. Nat. Med. 8, 1024–1032 (2002).

    Article  CAS  Google Scholar 

  103. Schutz, C., Fleck, M., Schneck, J. P. & Oelke, M. Killer artificial antigen presenting cells (KaAPC) for efficient in vitro depletion of human antigen-specific T cells. J. Vis. Exp. 90, e51859 (2014).

    Google Scholar 

  104. Schutz, C. et al. Killer artificial antigen-presenting cells: a novel strategy to delete specific T cells. Blood 111, 3546–3552 (2008).

    Article  CAS  Google Scholar 

  105. Vincent, B. G. et al. Toxin-coupled MHC class I tetramers can specifically ablate autoreactive CD8+ T cells and delay diabetes in nonobese diabetic mice. J. Immunol. 184, 4196–4204 (2010).

    Article  CAS  Google Scholar 

  106. Jewell, C. M., Lopez, S. C. & Irvine, D. J. In situ engineering of the lymph node microenvironment via intranodal injection of adjuvant-releasing polymer particles. Proc. Natl Acad. Sci. USA 108, 15745–15750 (2011).

    Article  CAS  Google Scholar 

  107. Tostanoski, L. H. et al. Reprogramming the local lymph node microenvironment promotes tolerance that is systemic and antigen specific. Cell Rep. 16, 2940–2952 (2016).

    Article  CAS  Google Scholar 

  108. Liu, H. et al. Structure-based programming of lymph-node targeting in molecular vaccines. Nature 507, 519–522 (2014).

    Article  CAS  Google Scholar 

  109. Hull, C. M. et al. Generation of human islet-specific regulatory T cells by TCR gene transfer. J. Autoimmun. 79, 63–73 (2017).

    Article  CAS  Google Scholar 

  110. MacDonald, K. G. et al. Alloantigen-specific regulatory T cells generated with a chimeric antigen receptor. J. Clin. Invest. 126, 1413–1424 (2016).

    Article  Google Scholar 

  111. Smith, T. T. et al. In situ programming of leukaemia-specific T cells using synthetic DNA nanocarriers. Nat. Nanotechnol. 12, 813–820 (2017).

    Article  CAS  Google Scholar 

  112. Herold, K. C. et al. Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus. N. Engl. J. Med. 346, 1692–1698 (2002).

    Article  CAS  Google Scholar 

  113. Pescovitz, M. D. et al. Rituximab, B-lymphocyte depletion, and preservation of beta-cell function. N. Engl. J. Med. 361, 2143–2152 (2009).

    Article  CAS  Google Scholar 

  114. Orban, T. et al. Co-stimulation modulation with abatacept in patients with recent-onset type 1 diabetes: a randomised, double-blind, placebo-controlled trial. Lancet 378, 412–419 (2011).

    Article  CAS  Google Scholar 

  115. Sherry, N. et al. Teplizumab for treatment of type 1 diabetes (Protege study): 1-year results from a randomised, placebo-controlled trial. Lancet 378, 487–497 (2011).

    Article  CAS  Google Scholar 

  116. Singh, A. & Peppas, N. A. Hydrogels and scaffolds for immunomodulation. Adv. Mater. 26, 6530–6541 (2014).

    Article  CAS  Google Scholar 

  117. Ali, O. A., Huebsch, N., Cao, L., Dranoff, G. & Mooney, D. J. Infection-mimicking materials to program dendritic cells in situ. Nat. Mater. 8, 151–158 (2009).

    Article  CAS  Google Scholar 

  118. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01753089 (2019).

  119. Stephan, S. B. et al. Biopolymer implants enhance the efficacy of adoptive T cell therapy. Nat. Biotechnol. 33, 97–101 (2015).

    Article  CAS  Google Scholar 

  120. Verbeke, C. S. et al. Multicomponent injectable hydrogels for antigen-specific tolerogenic immune modulation. Adv. Healthc. Mater. 6, 1600773 (2017).

    Article  CAS  Google Scholar 

  121. Pauken, K. E. et al. Cutting edge: type 1 diabetes occurs despite robust anergy among endogenous insulin-specific CD4 T cells in NOD mice. J. Immunol. 191, 4913–4917 (2013).

    Article  CAS  Google Scholar 

  122. Yoon, Y. M. et al. A combination hydrogel microparticle-based vaccine prevents type 1 diabetes in non-obese diabetic mice. Sci. Rep. 5, 13155 (2015).

    Article  CAS  Google Scholar 

  123. Zonneveld-Huijssoon, E. et al. TLR9 agonist CpG enhances protective nasal HSP60 peptide vaccine efficacy in experimental autoimmune arthritis. Ann. Rheum. Dis. 71, 1706–1715 (2012).

    Article  CAS  Google Scholar 

  124. Marek-Trzonkowska, N. et al. Administration of CD4+CD25highCD127- regulatory T cells preserves beta-cell function in type 1 diabetes in children. Diabetes Care 35, 1817–1820 (2012).

    Article  Google Scholar 

  125. Peakman, M. & von Herrath, M. Antigen-specific immunotherapy for type 1 diabetes: maximizing the potential. Diabetes 59, 2087–2093 (2010).

    Article  CAS  Google Scholar 

  126. Cheung, A. S., Zhang, D. K. Y., Koshy, S. T. & Mooney, D. J. Scaffolds that mimic antigen-presenting cells enable ex vivo expansion of primary T cells. Nat. Biotechnol. 36, 160–169 (2018).

    Article  CAS  Google Scholar 

  127. Oelke, M. et al. Ex vivo induction and expansion of antigen-specific cytotoxic T cells by HLA-Ig-coated artificial antigen-presenting cells. Nat. Med. 9, 619–624 (2003).

    Article  CAS  Google Scholar 

  128. Shapiro, A. M. et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N. Engl. J. Med. 343, 230–238 (2000).

    Article  CAS  Google Scholar 

  129. Pagliuca, F. W. et al. Generation of functional human pancreatic β cells in vitro. Cell 159, 428–439 (2014).

    Article  CAS  Google Scholar 

  130. Graham, M. L. & Schuurman, H.-J. Pancreatic islet xenotransplantation. Drug Discov. Today Dis. Models 23, 43–50 (2017).

    Article  Google Scholar 

  131. Pepper, A. R. et al. A prevascularized subcutaneous device-less site for islet and cellular transplantation. Nat. Biotechnol. 33, 518 (2015).

    Article  CAS  Google Scholar 

  132. Coronel, M. M. & Stabler, C. L. Engineering a local microenvironment for pancreatic islet replacement. Curr. Opin. Biotechnol. 24, 900–908 (2013).

    Article  CAS  Google Scholar 

  133. Pedraza, E. et al. Macroporous three-dimensional PDMS scaffolds for extrahepatic islet transplantation. Cell Transplant. 22, 1123–1135 (2013).

    Article  Google Scholar 

  134. Blomeier, H. et al. Polymer scaffolds as synthetic microenvironments for extrahepatic islet transplantation. Transplantation 82, 452–459 (2006).

    Article  CAS  Google Scholar 

  135. Tuckermann, J. P., Kleiman, A., McPherson, K. G. & Reichardt, H. M. Molecular mechanisms of glucocorticoids in the contorl of inflammation and lymphocyte apoptosis. Crit. Rev. Clin. Lab. Sci. 42, 71–104 (2005).

    Article  CAS  Google Scholar 

  136. Jiang, K. et al. Local release of dexamethasone from macroporous scaffolds accelerates islet transplant engraftment by promotion of anti-inflammatory M2 macrophages. Biomaterials 114, 71–81 (2017).

    Article  CAS  Google Scholar 

  137. Webber, M. J., Matson, J. B., Tamboli, V. K. & Stupp, S. I. Controlled release of dexamethasone from peptide nanofiber gels to modulate inflammatory response. Biomaterials 33, 6823–6832 (2012).

    Article  CAS  Google Scholar 

  138. Kanitkar, M., Gokhale, K., Galande, S. & Bhonde, R. R. Novel role of curcumin in the prevention of cytokine-induced islet death in vitro and diabetogenesis in vivo. Br. J. Pharm. 155, 702–713 (2008).

    Article  CAS  Google Scholar 

  139. Pathak, S. et al. Hybrid congregation of islet single cells and curcumin-loaded polymeric microspheres as an interventional strategy to overcome apoptosis associated with pancreatic islets transplantation. ACS Appl. Mater. Interfaces 8, 25702–25713 (2016).

    Article  CAS  Google Scholar 

  140. Altunbas, A., Lee, S. J., Rajasekaran, S. A., Schneider, J. P. & Pochan, D. J. Encapsulation of curcumin in self-assembling peptide hydrogels as injectable drug delivery vehicles. Biomaterials 32, 5906–5914 (2011).

    Article  CAS  Google Scholar 

  141. Kang, N.-W. et al. Curcumin-loaded lipid-hybridized cellulose nanofiber film ameliorates imiquimod-induced psoriasis-like dermatitis in mice. Biomaterials 182, 245–258 (2018).

    Article  CAS  Google Scholar 

  142. Manca, M. L. et al. Development of curcumin loaded sodium hyaluronate immobilized vesicles (hyalurosomes) and their potential on skin inflammation and wound restoring. Biomaterials 71, 100–109 (2015).

    Article  CAS  Google Scholar 

  143. Wang, S. et al. Influences of mesoporous magnesium calcium silicate on mineralization, degradability, cell responses, curcumin release from macro-mesoporous scaffolds of gliadin based biocomposites. Sci. Rep. 8, 174 (2018).

    Article  CAS  Google Scholar 

  144. Shamji, M. F. et al. Release and activity of anti-TNFα therapeutics from injectable chitosan preparations for local drug delivery. J. Biomed. Mater. Res. 90B, 319–326 (2009).

    Article  CAS  Google Scholar 

  145. Friedrich, E. E. & Washburn, N. R. Transport patterns of anti-TNF-α in burn wounds: therapeutic implications of hyaluronic acid conjugation. Biomaterials 114, 10–22 (2017).

    Article  CAS  Google Scholar 

  146. Erdemli, Ö. et al. In vitro evaluation of effects of sustained anti-TNF release from MPEG-PCL-MPEG and PCL microspheres on human rheumatoid arthritis synoviocytes. J. Biomater. Appl. 29, 524–542 (2014).

    Article  CAS  Google Scholar 

  147. Whitmire, R. E. et al. Self-assembling nanoparticles for intra-articular delivery of anti-inflammatory proteins. Biomaterials 33, 7665–7675 (2012).

    Article  CAS  Google Scholar 

  148. Singh, A. et al. Nanoengineered particles for enhanced intra-articular retention and delivery of proteins. Adv. Healthc. Mater. 3, 1562–1567 (2014).

    Article  CAS  Google Scholar 

  149. Ozmen, L. et al. Inhibition of thrombin abrogates the instant blood-mediated inflammatory reaction triggered by isolated human islets: possible application of the thrombin inhibitor melagatran in clinical islet transplantation. Diabetes 51, 1779–1784 (2002).

    Article  CAS  Google Scholar 

  150. Contreras, J. L. et al. Activated protein C preserves functional islet mass after intraportal transplantation: a novel link between endothelial cell activation, thrombosis, inflammation, and islet cell death. Diabetes 53, 2804–2814 (2004).

    Article  CAS  Google Scholar 

  151. Johansson, H. et al. Low molecular weight dextran sulfate: a strong candidate drug to block IBMIR in clinical islet transplantation. Am. J. Transplant. 6, 305–312 (2006).

    Article  CAS  Google Scholar 

  152. Tokodai, K. et al. C5a-inhibitory peptide combined with gabexate mesilate prevents the instant blood-mediated inflammatory reaction in a rat model of islet transplantation. Transplant. Proc. 42, 2102–2103 (2010).

    Article  CAS  Google Scholar 

  153. Kanak, M. A. et al. Alleviation of instant blood-mediated inflammatory reaction in autologous conditions through treatment of human islets with NF-kappaB inhibitors. Transplantation 98, 578–584 (2014).

    Article  CAS  Google Scholar 

  154. Farahmand, L., Darvishi, B. & Majidzadeh, A. K. Suppression of chronic inflammation with engineered nanomaterials delivering nuclear factor kappaB transcription factor decoy oligodeoxynucleotides. Drug Deliv. 24, 1249–1261 (2017).

    Article  CAS  Google Scholar 

  155. Pawlick, R. L. et al. Reparixin, a CXCR1/2 inhibitor in islet allotransplantation. Islets 8, 115–124 (2016).

    Article  CAS  Google Scholar 

  156. Luo, Z. et al. Anticoagulation of heparinized silk fibroin by N2 plasma and carbodiimide double induction. J. Biomater. Tissue Eng. 7, 1190–1198 (2017).

    Google Scholar 

  157. Andersson, J., Larsson, R., Richter, R., Ekdahl, K. N. & Nilsson, B. Binding of a model regulator of complement activation (RCA) to a biomaterial surface: surface-bound factor H inhibits complement activation. Biomaterials 22, 2435–2443 (2001).

    Article  CAS  Google Scholar 

  158. Bryant, J. et al. Nanoparticle delivery of donor antigens for transplant tolerance in allogeneic islet transplantation. Biomaterials 35, 8887–8894 (2014).

    Article  CAS  Google Scholar 

  159. Truong, W., Emamaullee, J. A., Merani, S., Anderson, C. C. & James Shapiro, A. M. Human islet function is not impaired by the sphingosine-1-phosphate receptor modulator FTY720. Am. J. Transplant. 7, 2031–2038 (2007).

    Article  CAS  Google Scholar 

  160. Frei, A. W., Li, Y., Jiang, K., Buchwald, P. & Stabler, C. L. Local delivery of fingolimod from three-dimensional scaffolds impacts islet graft efficacy and microenvironment in a murine diabetic model. J. Tissue Eng. Regen. Med. 12, 393–404 (2018).

    Article  CAS  Google Scholar 

  161. Bowers, D. T. et al. An engineered macroencapsulation membrane releasing FTY720 to precondition pancreatic islet transplantation. J. Biomed. Mater. Res. B 106, 555–568 (2018).

    Article  CAS  Google Scholar 

  162. Fu, F. et al. Long-term islet graft survival in streptozotocin- and autoimmune-induced diabetes models by immunosuppressive and potential insulinotropic agent fty720. Transplantation 73, 1425–1430 (2002).

    Article  CAS  Google Scholar 

  163. Ogle, M. E. et al. Dual affinity heparin-based hydrogels achieve pro-regenerative immunomodulation and microvascular remodeling. ACS Biomater. Sci. Eng. 4, 1241–1250 (2018).

    Article  CAS  Google Scholar 

  164. Khattar, M. et al. Novel sphingosine-1-phosphate receptor modulator KRP203 combined with locally delivered regulatory T cells induces permanent acceptance of pancreatic islet allografts. Transplantation 95, 919–927 (2013).

    Article  CAS  Google Scholar 

  165. Bakdash, G., Sittig, S. P., van Dijk, T., Figdor, C. G. & de Vries, I. J. The nature of activatory and tolerogenic dendritic cell-derived signal II. Front. Immunol. 4, 53 (2013).

    Article  CAS  Google Scholar 

  166. Vergani, A. et al. Novel clinically relevant strategy to abrogate autoimmunity and regulate alloimmunity in NOD mice. Diabetes 59, 2253–2264 (2010).

    Article  CAS  Google Scholar 

  167. Charbonnier, L.-M. et al. CTLA4-Ig restores rejection of MHC class-II mismatched allografts by disabling IL-2-expanded regulatory T cells. Am. J. Transplant. 12, 2313–2321 (2012).

    Article  CAS  Google Scholar 

  168. Zhang, W. et al. Biopatterned CTLA4/Fc matrices facilitate local immunomodulation, engraftment, and glucose homeostasis after pancreatic islet transplantation. Diabetes 65, 3660–3666 (2016).

    Article  CAS  Google Scholar 

  169. Tze, W. J., Tai, J., Cheung, S. S. C., Murase, N. & Starzl, T. E. Successful islet allotransplantation in diabetic rats immunosuppressed with FK506: a functional and immunological study. Metabolism 43, 135–139 (1994).

    Article  CAS  Google Scholar 

  170. Pathak, S. et al. Single synchronous delivery of FK506-loaded polymeric microspheres with pancreatic islets for the successful treatment of streptozocin-induced diabetes in mice. Drug Deliv. 24, 1350–1359 (2017).

    Article  CAS  Google Scholar 

  171. Wood, K. J. & Sakaguchi, S. Regulatory T cells in transplantation tolerance. Nat. Rev. Immunol. 3, 199 (2003).

    Article  CAS  Google Scholar 

  172. Liu, J. M. H. et al. Transforming growth factor-beta 1 delivery from microporous scaffolds decreases inflammation post-implant and enhances function of transplanted islets. Biomaterials 80, 11–19 (2016).

    Article  CAS  Google Scholar 

  173. Orr, S. et al. TGF-β affinity-bound to a macroporous alginate scaffold generates local and peripheral immunotolerant responses and improves allocell transplantation. Acta Biomater. 45, 196–209 (2016).

    Article  CAS  Google Scholar 

  174. Liew, F. Y., Pitman, N. I. & McInnes, I. B. Disease-associated functions of IL-33: the new kid in the IL-1 family. Nat. Rev. Immunol. 10, 103 (2010).

    Article  CAS  Google Scholar 

  175. Liu, J. M. H., Zhang, X., Joe, S., Luo, X. & Shea, L. D. Evaluation of biomaterial scaffold delivery of IL-33 as a localized immunomodulatory agent to support cell transplantation in adipose tissue. J. Immunol. Regen. Med. 1, 1–12 (2018).

    Article  CAS  Google Scholar 

  176. de Vos, P., Faas, M. M., Strand, B. & Calafiore, R. Alginate-based microcapsules for immunoisolation of pancreatic islets. Biomaterials 27, 5603–5617 (2006).

    Article  CAS  Google Scholar 

  177. Stabler, C., Wilks, K., Sambanis, A. & Constantinidis, I. The effects of alginate composition on encapsulated βTC3 cells. Biomaterials 22, 1301–1310 (2001).

    Article  CAS  Google Scholar 

  178. Omer, A. et al. Long-term normoglycemia in rats receiving transplants with encapsulated islets. Transplantation 79, 52–58 (2005).

    Article  CAS  Google Scholar 

  179. Duvivier-Kali, V. F., Omer, A., Parent, R. J., O’Neil, J. J. & Weir, G. C. Complete protection of islets against allorejection and autoimmunity by a simple barium-alginate membrane. Diabetes 50, 1698–1705 (2001).

    Article  CAS  Google Scholar 

  180. Weber, C. J., Safley, S. A., Hagler, M. & Kapp, J. Evaluation of graft-host response for various tissue sources and animal models. Ann. NY Acad. Sci. 875, 233–254 (1999).

    Article  CAS  Google Scholar 

  181. Duvivier-Kali, V. F., Omer, A., Lopez-Avalos, M. D., O’Neil, J. J. & Weir, G. C. Survival of microencapsulated adult pig islets in mice in spite of an antibody response. Am. J. Transplant. 4, 1991–2000 (2004).

    Article  CAS  Google Scholar 

  182. Cui, H. et al. Long-term metabolic control of autoimmune diabetes in spontaneously diabetic nonobese diabetic mice by nonvascularized microencapsulated adult porcine islets. Transplantation 88, 160–169 (2009).

    Article  Google Scholar 

  183. Elliott, R. B. et al. Intraperitoneal alginate-encapsulated neonatal porcine islets in a placebo-controlled study with 16 diabetic cynomolgus primates. Transplant. Proc. 37, 3505–3508 (2005).

    Article  CAS  Google Scholar 

  184. Safley, S. A. et al. Microencapsulated adult porcine islets transplanted intraperitoneally in streptozotocin-diabetic non-human primates. Xenotransplantation 25, e12450 (2018).

    Article  Google Scholar 

  185. Kirchhof, N. et al. Reversal of diabetes in non-immunosuppressed rhesus macaques by intraportal porcine islet xenografts precedes acute cellular rejection. Xenotransplantation 11, 396–407 (2004).

    Article  Google Scholar 

  186. Basta, G. et al. Long-term metabolic and immunological follow-up of nonimmunosuppressed patients with type 1 diabetes treated with microencapsulated islet allografts. Diabetes Care 34, 2406–2409 (2011).

    Article  CAS  Google Scholar 

  187. Matsumoto, S., Abalovich, A., Wechsler, C., Wynyard, S. & Elliott, R. B. Clinical benefit of islet xenotransplantation for the treatment of type 1 diabetes. EBioMedicine 12, 255–262 (2016).

    Article  Google Scholar 

  188. Jacobs-Tulleneers-Thevissen, D. et al. Sustained function of alginate-encapsulated human islet cell implants in the peritoneal cavity of mice leading to a pilot study in a type 1 diabetic patient. Diabetologia 56, 1605–1614 (2013).

    Article  CAS  Google Scholar 

  189. Paredes Juárez, G. A., Spasojevic, M., Faas, M. M. & de Vos, P. Immunological and technical considerations in application of alginate-based microencapsulation systems. Front. Bioeng. Biotechnol. 2, 26 (2014).

    Article  Google Scholar 

  190. Vegas, A. J. et al. Combinatorial hydrogel library enables identification of materials that mitigate the foreign body response in primates. Nat. Biotechnol. 34, 345 (2016).

    Article  CAS  Google Scholar 

  191. Veiseh, O. et al. Size- and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates. Nat. Mater. 14, 643 (2015).

    Article  CAS  Google Scholar 

  192. Doloff, J. C. et al. Colony stimulating factor-1 receptor is a central component of the foreign body response to biomaterial implants in rodents and non-human primates. Nat. Mater. 16, 671 (2017).

    Article  CAS  Google Scholar 

  193. Cheng, Y. et al. Hypoxia/reoxygenation-induced HMGB1 translocation and release promotes islet proinflammatory cytokine production and early islet graft failure through TLRs signaling. Biochim. Biophys. Acta 1863, 354–364 (2017).

    Article  CAS  Google Scholar 

  194. Barkai, U., Rotem, A. & de Vos, P. Survival of encapsulated islets: more than a membrane story. World J. Transplant. 6, 69–90 (2016).

    Article  Google Scholar 

  195. Bochenek, M. A. et al. Alginate encapsulation as long-term immune protection of allogeneic pancreatic islet cells transplanted into the omental bursa of macaques. Nat. Biomed. Eng. 2, 810–821 (2018).

    Article  Google Scholar 

  196. Berman, D. M. et al. Bioengineering the endocrine pancreas: intraomental islet transplantation within a biologic resorbable scaffold. Diabetes 65, 1350–1361 (2016).

    Article  CAS  Google Scholar 

  197. Weaver, J. D. et al. Design of a vascularized synthetic poly(ethylene glycol) macroencapsulation device for islet transplantation. Biomaterials 172, 54–65 (2018).

    Article  CAS  Google Scholar 

  198. Brady, A.-C. et al. Proangiogenic hydrogels within macroporous scaffolds enhance islet engraftment in an extrahepatic site. Tissue Eng. A 19, 2544–2552 (2013).

    Article  CAS  Google Scholar 

  199. Pedraza, E., Coronel, M. M., Fraker, C. A., Ricordi, C. & Stabler, C. L. Preventing hypoxia-induced cell death in beta cells and islets via hydrolytically activated, oxygen-generating biomaterials. Proc. Natl Acad. Sci. USA 109, 4245–4250 (2012).

    Article  CAS  Google Scholar 

  200. Carlsson, P.-O. et al. Transplantation of macroencapsulated human islets within the bioartificial pancreas βAir to patients with type 1 diabetes mellitus. Am. J. Transplant. 18, 1735–1744 (2018).

    Article  CAS  Google Scholar 

  201. Tomei, A. A. et al. Device design and materials optimization of conformal coating for islets of Langerhans. Proc. Natl Acad. Sci. USA 111, 10514–10519 (2014).

    Article  CAS  Google Scholar 

  202. Headen, D. M., Aubry, G., Lu, H. & García, A. J. Microfluidic-based generation of size-controlled, biofunctionalized synthetic polymer microgels for cell encapsulation. Adv. Mater. 26, 3003–3008 (2014).

    Article  CAS  Google Scholar 

  203. Gattás-Asfura, K. M. & Stabler, C. L. Bioorthogonal layer-by-layer encapsulation of pancreatic islets via hyperbranched polymers. ACS Appl. Mater. Interfaces 5, 9964–9974 (2013).

    Article  CAS  Google Scholar 

  204. Kobayashi, T. et al. Immune mechanisms associated with the rejection of encapsulated neonatal porcine islet xenografts. Xenotransplantation 13, 547–559 (2006).

    Article  Google Scholar 

  205. Jones, K. S., Sefton, M. V. & Gorczynski, R. M. In vivo recognition by the host adaptive immune system of microencapsulated xenogeneic cells. Transplantation 78, 1454–1462 (2004).

    Article  Google Scholar 

  206. Xu, B.-Y. et al. Rapid destruction of encapsulated islet xenografts by NOD mice is CD4-dependent and facilitated by B cells: innate immunity and autoimmunity do not play significant roles. Transplantation 80, 402–409 (2005).

    Article  CAS  Google Scholar 

  207. Safley, S. A. et al. Inhibition of cellular immune responses to encapsulated porcine islet xenografts by simultaneous blockade of two different costimulatory pathways. Transplantation 79, 409–418 (2005).

    Article  CAS  Google Scholar 

  208. Lee, D. Y., Park, S. J., Nam, J. H. & Byun, Y. A combination therapy of PEGylation and immunosuppressive agent for successful islet transplantation. J. Control. Release 110, 290–295 (2006).

    Article  CAS  Google Scholar 

  209. Giraldo, J. A. et al. The impact of cell surface PEGylation and short-course immunotherapy on islet graft survival in an allogeneic murine model. Acta Biomater. 49, 272–283 (2017).

    Article  CAS  Google Scholar 

  210. Murua, A., Orive, G., Hernández, R. M. & Pedraz, J. L. Xenogeneic transplantation of erythropoietin-secreting cells immobilized in microcapsules using transient immunosuppression. J. Control. Release 137, 174–178 (2009).

    Article  CAS  Google Scholar 

  211. Hwang, Y. H., Kim, M. J. & Lee, D. Y. MRI-sensitive contrast agent with anticoagulant activity for surface camouflage of transplanted pancreatic islets. Biomaterials 138, 121–130 (2017).

    Article  CAS  Google Scholar 

  212. Zhi, Z. L. et al. Assembly of bioactive multilayered nanocoatings on pancreatic islet cells: incorporation of alpha1-antitrypsin into the coatings. Chem. Commun. 51, 10652–10655 (2015).

    Article  CAS  Google Scholar 

  213. Teramura, Y. & Iwata, H. Islets surface modification prevents blood-mediated inflammatory responses. Bioconjug. Chem. 19, 1389–1395 (2008).

    Article  CAS  Google Scholar 

  214. Stabler, C. L. et al. Surface re-engineering of pancreatic islets with recombinant azido-thrombomodulin. Bioconjug. Chem. 18, 1713–1715 (2007).

    Article  CAS  Google Scholar 

  215. Luan, N. M. & Iwata, H. Inhibition of instant blood-mediated inflammatory responses by co-immobilization of sCR1 and heparin on islets. Biomaterials 34, 5019–5024 (2013).

    Article  CAS  Google Scholar 

  216. Su, J. et al. Anti-inflammatory peptide-functionalized hydrogels for insulin-secreting cell encapsulation. Biomaterials 31, 308–314 (2010).

    Article  CAS  Google Scholar 

  217. Ricci, M. et al. Ketoprofen controlled release from composite microcapsules for cell encapsulation: effect on post-transplant acute inflammation. J. Control. Release 107, 395–407 (2005).

    Article  CAS  Google Scholar 

  218. Zhang, Y., An, D., Song, W., Pardo, Y. & Ma, M. Drug-eluting conformal coatings on individual cells. Cell. Mol. Bioeng. 9, 382–397 (2016).

    Article  CAS  Google Scholar 

  219. Bünger, C. M. et al. Deletion of the tissue response against alginate-pll capsules by temporary release of co-encapsulated steroids. Biomaterials 26, 2353–2360 (2005).

    Article  CAS  Google Scholar 

  220. Dang, T. T. et al. Enhanced function of immuno-isolated islets in diabetes therapy by co-encapsulation with an anti-inflammatory drug. Biomaterials 34, 5792–5801 (2013).

    Article  CAS  Google Scholar 

  221. Weaver, J. D. & Stabler, C. L. Antioxidant cerium oxide nanoparticle hydrogels for cellular encapsulation. Acta Biomater. 16, 136–144 (2015).

    Article  CAS  Google Scholar 

  222. Kozlovskaya, V. et al. Ultrathin polymeric coatings based on hydrogen-bonded polyphenol for protection of pancreatic islet cells. Adv. Funct. Mater. 22, 3389–3398 (2012).

    Article  CAS  Google Scholar 

  223. Lin, C.-C., Metters, A. T. & Anseth, K. S. Functional PEG–peptide hydrogels to modulate local inflammation inducedby the pro-inflammatory cytokine TNFα. Biomaterials 30, 4907–4914 (2009).

    Article  CAS  Google Scholar 

  224. Alagpulinsa, D. A., Cao, J. J. L., Sobell, D. & Poznansky, M. C. Harnessing CXCL12 signaling to protect and preserve functional β-cell mass and for cell replacement in type 1 diabetes. Pharmacol. Ther. 193, 63–74 (2018).

    Article  CAS  Google Scholar 

  225. Chen, T. et al. Alginate encapsulant incorporating CXCL12 supports long-term allo- and xenoislet transplantation without systemic immune suppression. Am. J. Transplant. 15, 618–627 (2015).

    Article  CAS  Google Scholar 

  226. Vernon, R. B., Gooden, M. D., Preisinger, A. & Gebe, J. A. Controlled release of monoclonal antibodies from poly-l-lysine-coated alginate spheres within a scaffolded implant mitigates autoimmune responses to transplanted islets and limits systemic antibody toxicity. Mater. Sci. Eng. C 93, 390–398 (2018).

    Article  CAS  Google Scholar 

  227. Pham, T. T. et al. Tissue adhesive FK506–loaded polymeric nanoparticles for multi–layered nano–shielding of pancreatic islets to enhance xenograft survival in a diabetic mouse model. Biomaterials 154, 182–196 (2018).

    Article  CAS  Google Scholar 

  228. Dong, H. et al. Immuno-isolation of pancreatic islet allografts using pegylated nanotherapy leads to long-term normoglycemia in full MHC mismatch recipient mice. PLOS ONE 7, e50265 (2012).

    Article  CAS  Google Scholar 

  229. Park, H. S. et al. Antifibrotic effect of rapamycin containing polyethylene glycol-coated alginate microcapsule in islet xenotransplantation. J. Tissue Eng. Regen. Med. 11, 1274–1284 (2017).

    Article  CAS  Google Scholar 

  230. Yolcu, E. S. et al. Pancreatic islets engineered with SA-FasL protein establish robust localized tolerance by inducing regulatory T cells in mice. J. Immunol. 187, 5901–5909 (2011).

    Article  CAS  Google Scholar 

  231. Headen, D. M. et al. Local immunomodulation with Fas ligand-engineered biomaterials achieves allogeneic islet graft acceptance. Nat. Mater. 17, 732–739 (2018).

    Article  CAS  Google Scholar 

  232. Shirwan, H. et al. SA-FasL-engineered PEG microgels as a novel means of modulating immune response to allogeneic islet grafts. J. Immunol. 200 (Suppl. 1), 55.36 (2018).

    Google Scholar 

  233. Yang, E. Y., Kronenfeld, J. P., Gattas-Asfura, K. M., Bayer, A. L. & Stabler, C. L. Engineering an “infectious” T(reg) biomimetic through chemoselective tethering of TGF-beta1 to PEG brush surfaces. Biomaterials 67, 20–31 (2015).

    Article  CAS  Google Scholar 

  234. Izadi, Z. et al. Tolerance induction by surface immobilization of Jagged-1 for immunoprotection of pancreatic islets. Biomaterials 182, 191–201 (2018).

    Article  CAS  Google Scholar 

  235. Kim, Y. K., Que, R., Wang, S.-W. & Liu, W. F. Modification of biomaterials with a self-protein inhibits the macrophage response. Adv. Healthc. Mater. 3, 989–994 (2014).

    Article  CAS  Google Scholar 

  236. Hume, P. S., He, J., Haskins, K. & Anseth, K. S. Strategies to reduce dendritic cell activation through functional biomaterial design. Biomaterials 33, 3615–3625 (2012).

    Article  CAS  Google Scholar 

  237. Kaddis, J. S., Pugliese, A. & Atkinson, M. A. A run on the biobank: what have we learned about type 1 diabetes from the nPOD tissue repository? Curr. Opin. Endocrinol. Diabetes Obes. 22, 290–295 (2015).

    Article  CAS  Google Scholar 

  238. Roep, B. O. & Peakman, M. Antigen targets of type 1 diabetes autoimmunity. Cold Spring Harb. Perspect. Med. 2, a007781 (2012).

    Article  CAS  Google Scholar 

  239. Watkins, R. A., Evans-Molina, C., Blum, J. S. & DiMeglio, L. A. Established and emerging biomarkers for the prediction of type 1 diabetes: a systematic review. Transl Res. 164, 110–121 (2014).

    Article  CAS  Google Scholar 

  240. Bottino, R., Knoll, M. F., Knoll, C. A., Bertera, S. & Trucco, M. M. The future of islet transplantation is now. Front. Med. 5, 202 (2018).

    Article  Google Scholar 

  241. Marchioli, G. et al. Fabrication of three-dimensional bioplotted hydrogel scaffolds for islets of Langerhans transplantation. Biofabrication 7, 025009 (2015).

    Article  CAS  Google Scholar 

  242. Teramura, Y., Ekdahl, K. N. & Barbu, A. A hybrid of cells and pancreatic islets toward a new bioartificial pancreas. Regen. Ther. 3, 68–74 (2016).

    Article  Google Scholar 

  243. Liu, H. Y. et al. Chitosan-assisted differentiation of porcine adipose tissue-derived stem cells into glucose-responsive insulin-secreting clusters. PLOS ONE 12, e0172922 (2017).

    Article  CAS  Google Scholar 

  244. Narayanan, K. et al. Extracellular matrix-mediated differentiation of human embryonic stem cells: differentiation to insulin-secreting beta cells. Tissue Eng. A 20, 424–433 (2014).

    Article  CAS  Google Scholar 

  245. Greenfield, A. L. & Hauser, S. L. B cell therapy for multiple sclerosis: entering an era. Ann. Neurol. 83, 13–26 (2018).

    Article  Google Scholar 

  246. Battaglia, M. & Atkinson, M. A. The streetlight effect in type 1 diabetes. Diabetes 64, 1081–1090 (2015).

    Article  CAS  Google Scholar 

  247. McIntosh, C. M., Chen, L., Shaiber, A., Eren, A. M. & Alegre, M. L. Gut microbes contribute to variation in solid organ transplant outcomes in mice. Microbiome 6, 96 (2018).

    Article  Google Scholar 

  248. Alegre, M. L., Bartman, C. & Chong, A. S. Microbes and allogeneic transplantation. Transplantation 97, 5–11 (2014).

    Article  CAS  Google Scholar 

  249. Bartman, C., Chong, A. S. & Alegre, M. L. The influence of the microbiota on the immune response to transplantation. Curr. Opin. Organ Transplant. 20, 1–7 (2015).

    Article  CAS  Google Scholar 

  250. Rodriguez-Calvo, T., Ekwall, O., Amirian, N., Zapardiel-Gonzalo, J. & von Herrath, M. G. Increased immune cell infiltration of the exocrine pancreas: a possible contribution to the pathogenesis of type 1 diabetes. Diabetes 63, 3880–3890 (2014).

    Article  CAS  Google Scholar 

  251. Atkinson, M. A., von Herrath, M., Powers, A. C. & Clare-Salzler, M. Current concepts on the pathogenesis of type 1 diabetes—considerations for attempts to prevent and reverse the disease. Diabetes Care 38, 979–988 (2015).

    Article  CAS  Google Scholar 

  252. Gomez-Tourino, I., Arif, S., Eichmann, M. & Peakman, M. T cells in type 1 diabetes: Instructors, regulators and effectors: a comprehensive review. J. Autoimmun. 66, 7–16 (2016).

    Article  CAS  Google Scholar 

  253. Walker, L. S. K. & von Herrath, M. CD4 T cell differentiation in type 1 diabetes. J. Clin. Exp. Immunol. 183, 16–29 (2016).

    Article  CAS  Google Scholar 

  254. Smith, M. J., Simmons, K. M. & Cambier, J. C. B cells in type 1 diabetes mellitus and diabetic kidney disease. Nat. Rev. Nephrol. 13, 712–720 (2017).

    Article  CAS  Google Scholar 

  255. Navarro-Gonzalez, J. F., Mora-Fernandez, C., Muros de Fuentes, M. & Garcia-Perez, J. Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy. Nat. Rev. Nephrol. 7, 327–340 (2011).

    Article  CAS  Google Scholar 

  256. Marino, E., Tan, B., Binge, L., Mackay, C. R. & Grey, S. T. B cell cross-presentation of autologous antigen precipitates diabetes. Diabetes 61, 2893–2905 (2012).

    Article  CAS  Google Scholar 

  257. Valle, A. et al. Reduction of circulating neutrophils precedes and accompanies type 1 diabetes. Diabetes 62, 2072–2077 (2013).

    Article  CAS  Google Scholar 

  258. Diana, J. et al. Crosstalk between neutrophils, B-1a cells and plasmacytoid dendritic cells initiates autoimmune diabetes. Nat. Med. 19, 65–73 (2013).

    Article  CAS  Google Scholar 

  259. Coppieters, K. T. et al. Demonstration of islet-autoreactive CD8 T cells in insulitic lesions from recent onset and long-term type 1 diabetes patients. J. Exp. Med. 209, 51–60 (2012).

    Article  CAS  Google Scholar 

  260. Jacobsen, L. M., Posgai, A., Seay, H. R., Haller, M. J. & Brusko, T. M. T. Cell receptor profiling in type 1 diabetes. Curr. Diab. Rep. 17, 118 (2017).

    Article  CAS  Google Scholar 

  261. Wong, F. S. & Wen, L. B cells in autoimmune diabetes. Rev. Diabet. Stud. 2, 121–135 (2005).

    Article  Google Scholar 

  262. Van Belle, T. L., Taylor, P. & von Herrath, M. G. Mouse models for type 1 diabetes. Drug Discov. Today Dis. Models 6, 41–45 (2009).

    Article  CAS  Google Scholar 

  263. Thayer, T. C., Wilson, S. B. & Mathews, C. E. Use of nonobese diabetic mice to understand human type 1 diabetes. Endocrinol. Metab. Clin. North Am. 39, 541–561 (2010).

    Article  CAS  Google Scholar 

  264. Atkinson, M. A. & Leiter, E. H. The NOD mouse model of type 1 diabetes: as good as it gets? Nat. Med. 5, 601–604 (1999).

    Article  CAS  Google Scholar 

  265. Driver, J. P., Chen, Y. G. & Mathews, C. E. Comparative genetics: synergizing human and NOD mouse studies for identifying genetic causation of type 1 diabetes. Rev. Diabet Stud 9, 169–187 (2012).

    Article  Google Scholar 

  266. Ader, D. N., Johnson, S. B., Huang, S. W. & Riley, W. J. Group size, cage shelf level, and emotionality in non-obese diabetic mice: impact on onset and incidence of IDDM. Psychosom. Med. 53, 313–321 (1991).

    Article  CAS  Google Scholar 

  267. Tan, S. et al. Type 1 diabetes induction in humanized mice. Proc. Natl Acad. Sci. USA 114, 10954–10959 (2017).

    Article  CAS  Google Scholar 

  268. Bennet, W., Groth, C. G., Larsson, R., Nilsson, B. & Korsgren, O. Isolated human islets trigger an instant blood mediated inflammatory reaction: implications for intraportal islet transplantation as a treatment for patients with type 1 diabetes. Ups. J. Med. Sci. 105, 125–133 (2000).

    Article  CAS  Google Scholar 

  269. Moberg, L. et al. Production of tissue factor by pancreatic islet cells as a trigger of detrimental thrombotic reactions in clinical islet transplantation. Lancet 360, 2039 (2002).

    Article  CAS  Google Scholar 

  270. Eich, T., Eriksson, O. & Lundgren, T. Visualization of early engraftment in clinical islet transplantation by positron-emission tomography. N. Engl. J. Med. 356, 2754–2755 (2007).

    Article  CAS  Google Scholar 

  271. Naziruddin, B. et al. Evidence for instant blood-mediated inflammatory reaction in clinical autologous islet transplantation. Am. J. Transplant. 14, 428–437 (2014).

    Article  CAS  Google Scholar 

  272. Pepper, A. R., Bruni, A. & Shapiro, A. M. J. Clinical islet transplantation: is the future finally now? Curr. Opin. Organ Transplant. 23, 428–439 (2018).

    Google Scholar 

  273. Lacy, P. E. & Finke, E. H. Activation of intraislet lymphoid cells causes destruction of islet cells. Am. J. Pathol. 138, 1183–1190 (1991).

    CAS  Google Scholar 

  274. Zitron, I. M., Ono, J., Lacy, P. E. & Davie, J. M. The cellular stimuli for the rejection of established islet allografts. Diabetes 30, 242–246 (1981).

    Article  CAS  Google Scholar 

  275. Brennan, T. V. et al. Preferential priming of alloreactive T cells with indirect reactivity. Am. J. Transplant. 9, 709–718 (2009).

    Article  CAS  Google Scholar 

  276. Gill, R. G. Antigen presentation pathways for immunity to islet transplants. Relevance to immunoisolation. Ann. NY Acad. Sci. 875, 255–260 (1999).

    Article  CAS  Google Scholar 

  277. Sharma, V. et al. Autoimmunity after islet-cell allotransplantation. N. Engl. J. Med. 355, 1397–1399 (2006).

    Article  CAS  Google Scholar 

  278. Vendrame, F. et al. Recurrence of type 1 diabetes after simultaneous pancreas-kidney transplantation, despite immunosuppression, associated with autoantibodies and pathogenic autoreactive CD4 T cells. Diabetes 59, 947–957 (2010).

    Article  CAS  Google Scholar 

  279. Laughlin, E., Burke, G., Pugliese, A., Falk, B. & Nepom, G. Recurrence of autoreactive antigen-specific CD4+ T cells in autoimmune diabetes after pancreas transplantation. Clin. Immunol. 128, 23–30 (2008).

    Article  CAS  Google Scholar 

  280. Kupfer, T. M., Crawford, M. L., Pham, K. & Gill, R. G. MHC-mismatched islet allografts are vulnerable to autoimmune recognition in vivo. J. Immunol. 175, 2309–2316 (2005).

    Article  CAS  Google Scholar 

  281. Citro, A., Cantarelli, E. & Piemonti, L. Anti-inflammatory strategies to enhance islet engraftment and survival. Curr. Diab Rep. 13, 733–744 (2013).

    Article  CAS  Google Scholar 

  282. Hilbrands, R. et al. Differences in baseline lymphocyte counts and autoreactivity are associated with differences in outcome of islet cell transplantation in type 1 diabetic patients. Diabetes 58, 2267–2276 (2009).

    Article  CAS  Google Scholar 

  283. Roelen, D. L. et al. Relevance of cytotoxic alloreactivity under different immunosuppressive regimens in clinical islet cell transplantation. J. Clin. Exp. Immunol. 156, 141–148 (2009).

    Article  CAS  Google Scholar 

  284. Brooks, A. M. S. et al. De novo donor-specific HLA antibodies are associated with rapid loss of graft function following islet transplantation in type 1 diabetes. Am. J. Transplant. 15, 3239–3246 (2015).

    Article  CAS  Google Scholar 

  285. Piemonti, L. et al. Alloantibody and autoantibody monitoring predicts islet transplantation outcome in human type 1 diabetes. Diabetes 62, 1656–1664 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for funding from the US National Institutes of Health (NIH) grants DK104208 and DK100654 (C.L.S.), DE027301, DK098589 and AI133623 (B.G.K.) and DK108736 (C.L.S. and B.G.K.), as well as from Juvenile Diabetes Research Foundation (JDRF) grants 3-SRA-2017-347-M-B and 3-SRA-2018-683-S-B (C.L.S.). J.M.S. is supported by the NIH training grant DK108736.

Author information

Authors and Affiliations

Authors

Contributions

C.L.S. and B.G.K. conceived the manuscript; C.L.S. designed the figures; and all authors made substantial contributions to the content, writing, and editing of the manuscript.

Corresponding authors

Correspondence to C. L. Stabler or B. G. Keselowsky.

Ethics declarations

Competing interest

Stockholder (B.G.K.) of OneVax (Gainesville, FL), a company focused on particle-based immunotherapies.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stabler, C.L., Li, Y., Stewart, J.M. et al. Engineering immunomodulatory biomaterials for type 1 diabetes. Nat Rev Mater 4, 429–450 (2019). https://doi.org/10.1038/s41578-019-0112-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-019-0112-5

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research