Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Multiscale engineering of immune cells and lymphoid organs

Abstract

Immunoengineering applies quantitative and materials-based approaches for the investigation of the immune system and for the development of therapeutic solutions for various diseases, such as infection, cancer, inflammatory diseases and age-related malfunctions. The design of immunomodulatory and cell therapies requires the precise understanding of immune cell formation and activation in primary, secondary and ectopic tertiary immune organs. However, the study of the immune system has long been limited to in vivo approaches, which often do not allow multidimensional control of intracellular and extracellular processes, and to 2D in vitro models, which lack physiological relevance. 3D models built with synthetic and natural materials enable the structural and functional recreation of immune tissues. These models are being explored for the investigation of immune function and dysfunction at the cell, tissue and organ levels. In this Review, we discuss 2D and 3D approaches for the engineering of primary, secondary and tertiary immune structures at multiple scales. We highlight important insights gained using these models and examine multiscale engineering strategies for the design and development of immunotherapies. Finally, dynamic 4D materials are investigated for their potential to provide stimuli-dependent and context-dependent scaffolds for the generation of immune organ models.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The different levels of the immune response.
Fig. 2: Engineering bone marrow niches.
Fig. 3: Engineering thymus tissue.
Fig. 4: Engineering activated T cells.
Fig. 5: Engineering the germinal centre.
Fig. 6: Temperature-responsive, photo-responsive and magnetoresponsive 4D materials.
Fig. 7: Electroresponsive, pH-responsive and cellular 4D materials.

Similar content being viewed by others

References

  1. Joshi, N. S. et al. Regulatory T cells in tumor-associated tertiary lymphoid structures suppress anti-tumor T cell responses. Immunity 43, 579–590 (2015).

    Article  CAS  Google Scholar 

  2. Li, W. et al. Bronchus-associated lymphoid tissue-resident Foxp3+ T lymphocytes prevent antibody-mediated lung rejection. J. Clin. Invest. 129, 556–568 (2019).

    Article  Google Scholar 

  3. Garcia-Hernandez, M. L. et al. A unique cellular and molecular microenvironment is present in tertiary lymphoid organs of patients with spontaneous prostate cancer regression. Front. Immunol. 8, 563 (2017).

    Article  CAS  Google Scholar 

  4. Eddens, T. et al. Pneumocystis-driven inducible bronchus-associated lymphoid tissue formation requires Th2 and Th17 immunity. Cell Rep. 18, 3078–3090 (2017).

    Article  CAS  Google Scholar 

  5. Neelapu, S. S. et al. Chimeric antigen receptor T cell therapy — assessment and management of toxicities. Nat. Rev. Clin. Oncol. 15, 47–62 (2018). In this Review, the authors discuss cellular immunotherapy and provide recommendations for monitoring, grading and managing acute toxicities that can occur in patients.

    Article  CAS  Google Scholar 

  6. Weiner, G. J. Building better monoclonal antibody-based therapeutics. Nat. Rev. Cancer 15, 361–370 (2015).

    Article  CAS  Google Scholar 

  7. Chan, A. C. & Carter, P. J. Therapeutic antibodies for autoimmunity and inflammation. Nat. Rev. Immunol. 10, 301–316 (2010).

    Article  CAS  Google Scholar 

  8. Burak, M. F. et al. Development of a therapeutic monoclonal antibody that targets secreted fatty acid-binding protein aP2 to treat type 2 diabetes. Sci. Transl Med. 7, 319ra205 (2015).

    Article  CAS  Google Scholar 

  9. Harrison, C. Autoimmune disease: targeting IL-7 reverses type 1 diabetes. Nat. Rev. Drug Discov. 11, 599 (2012).

    Article  CAS  Google Scholar 

  10. Penaranda, C. et al. IL-7 receptor blockade reverses autoimmune diabetes by promoting inhibition of effector/memory T cells. Proc. Natl Acad. Sci. USA 109, 12668–12673 (2012).

    Article  CAS  Google Scholar 

  11. Li, W. et al. A neutralizing anti-Nogo66 receptor monoclonal antibody reverses inhibition of neurite outgrowth by central nervous system myelin. J. Biol. Chem. 279, 43780–43788 (2004).

    Article  CAS  Google Scholar 

  12. Mothe, A. J. et al. RGMa inhibition with human monoclonal antibodies promotes regeneration, plasticity and repair, and attenuates neuropathic pain after spinal cord injury. Sci. Rep. 7, 10529 (2017).

    Article  CAS  Google Scholar 

  13. Tran, H. T. et al. Alpha-synuclein immunotherapy blocks uptake and templated propagation of misfolded alpha-synuclein and neurodegeneration. Cell Rep. 7, 2054–2065 (2014).

    Article  CAS  Google Scholar 

  14. Stephenson, R. & Singh, A. Drug discovery and therapeutic delivery for the treatment of B and T cell tumors. Adv. Drug Deliv. Rev. 114, 285–300 (2017).

    Article  CAS  Google Scholar 

  15. Tokatlian, T. et al. Innate immune recognition of glycans targets HIV nanoparticle immunogens to germinal centers. Science 363, 649–654 (2019).

    Article  CAS  Google Scholar 

  16. Wilson, D. S. et al. Antigens reversibly conjugated to a polymeric glyco-adjuvant induce protective humoral and cellular immunity. Nat. Mater. 18, 175–185 (2019).

    Article  CAS  Google Scholar 

  17. Mosquera, M. J. et al. Immunomodulatory nanogels overcome restricted immunity in a murine model of gut microbiome-mediated metabolic syndrome. Sci. Adv. 5, eaav9788 (2019).

    Article  Google Scholar 

  18. Crane, G. M., Jeffery, E. & Morrison, S. J. Adult haematopoietic stem cell niches. Nat. Rev. Immunol. 17, 573–590 (2017).

    Article  CAS  Google Scholar 

  19. Gordon, J. & Manley, N. R. Mechanisms of thymus organogenesis and morphogenesis. Development 138, 3865–3878 (2011).

    Article  CAS  Google Scholar 

  20. Morrison, S. J. & Scadden, D. T. The bone marrow niche for haematopoietic stem cells. Nature 505, 327–334 (2014). This paper describes the current understanding and controversies regarding the cellular composition and localization of haematopoietic stem cell niches within the bone marrow.

    Article  CAS  Google Scholar 

  21. Nagasawa, T. Microenvironmental niches in the bone marrow required for B cell development. Nat. Rev. Immunol. 6, 107–116 (2006).

    Article  CAS  Google Scholar 

  22. Wilson, A. & Trumpp, A. Bone-marrow haematopoietic-stem-cell niches. Nat. Rev. Immunol. 6, 93–106 (2006).

    Article  CAS  Google Scholar 

  23. Chabannon, C. et al. Hematopoietic stem cell transplantation in its 60s: a platform for cellular therapies. Sci. Transl Med. 10, eaap9630 (2018).

    Article  CAS  Google Scholar 

  24. Cornelissen, J. J. et al. The European LeukemiaNet AML Working Party consensus statement on allogeneic HSCT for patients with AML in remission: an integrated-risk adapted approach. Nat. Rev. Clin. Oncol. 9, 579–590 (2012).

    Article  CAS  Google Scholar 

  25. Atkins, H. L. et al. Immunoablation and autologous haemopoietic stem-cell transplantation for aggressive multiple sclerosis: a multicentre single-group phase 2 trial. Lancet 388, 576–585 (2016).

    Article  Google Scholar 

  26. Kawai, T. et al. Long-term results in recipients of combined HLA-mismatched kidney and bone marrow transplantation without maintenance immunosuppression. Am. J. Transplant. 14, 1599–1611 (2014).

    Article  CAS  Google Scholar 

  27. Ogonek, J. et al. Immune reconstitution after allogeneic hematopoietic stem cell transplantation. Front. Immunol. 7, 507 (2016).

    Article  CAS  Google Scholar 

  28. Bello, A. B., Park, H. & Lee, S. H. Current approaches in biomaterial-based hematopoietic stem cell niches. Acta Biomater. 72, 1–15 (2018).

    Article  CAS  Google Scholar 

  29. Chinn, I. K., Blackburn, C. C., Manley, N. R. & Sempowski, G. D. Changes in primary lymphoid organs with aging. Semin. Immunol. 24, 309–320 (2012).

    Article  CAS  Google Scholar 

  30. Itkin, T. et al. Distinct bone marrow blood vessels differentially regulate haematopoiesis. Nature 532, 323–328 (2016).

    Article  CAS  Google Scholar 

  31. Kunisaki, Y. et al. Arteriolar niches maintain haematopoietic stem cell quiescence. Nature 502, 637–643 (2013).

    Article  CAS  Google Scholar 

  32. Braccini, A. et al. Three-dimensional perfusion culture of human bone marrow cells and generation of osteoinductive grafts. Stem Cells 23, 1066–1072 (2005).

    Article  Google Scholar 

  33. Ferreira, M. S. et al. Cord blood-hematopoietic stem cell expansion in 3D fibrin scaffolds with stromal support. Biomaterials 33, 6987–6997 (2012).

    Article  CAS  Google Scholar 

  34. Leisten, I. et al. 3D co-culture of hematopoietic stem and progenitor cells and mesenchymal stem cells in collagen scaffolds as a model of the hematopoietic niche. Biomaterials 33, 1736–1747 (2012).

    Article  CAS  Google Scholar 

  35. Miyoshi, H., Murao, M., Ohshima, N. & Tun, T. Three-dimensional culture of mouse bone marrow cells within a porous polymer scaffold: effects of oxygen concentration and stromal layer on expansion of haematopoietic progenitor cells. J. Tissue Eng. Regen. Med. 5, 112–118 (2011).

    Article  CAS  Google Scholar 

  36. Mortera-Blanco, T., Mantalaris, A., Bismarck, A., Aqel, N. & Panoskaltsis, N. Long-term cytokine-free expansion of cord blood mononuclear cells in three-dimensional scaffolds. Biomaterials 32, 9263–9270 (2011).

    Article  CAS  Google Scholar 

  37. Nichols, J. E. et al. In vitro analog of human bone marrow from 3D scaffolds with biomimetic inverted colloidal crystal geometry. Biomaterials 30, 1071–1079 (2009).

    Article  CAS  Google Scholar 

  38. Raic, A., Rodling, L., Kalbacher, H. & Lee-Thedieck, C. Biomimetic macroporous PEG hydrogels as 3D scaffolds for the multiplication of human hematopoietic stem and progenitor cells. Biomaterials 35, 929–940 (2014).

    Article  CAS  Google Scholar 

  39. Feng, Q., Chai, C., Jiang, X. S., Leong, K. W. & Mao, H. Q. Expansion of engrafting human hematopoietic stem/progenitor cells in three-dimensional scaffolds with surface-immobilized fibronectin. J. Biomed. Mater. Res. A 78, 781–791 (2006).

    Article  CAS  Google Scholar 

  40. Nilsson, S. K. et al. Immunofluorescence characterization of key extracellular matrix proteins in murine bone marrow in situ. J. Histochem. Cytochem. 46, 371–377 (1998).

    Article  CAS  Google Scholar 

  41. Choi, J. S. & Harley, B. A. Marrow-inspired matrix cues rapidly affect early fate decisions of hematopoietic stem and progenitor cells. Sci. Adv. 3, e1600455 (2017).

    Article  CAS  Google Scholar 

  42. Kotov, N. A. et al. Inverted colloidal crystals as three-dimensional cell scaffolds. Langmuir 20, 7887–7892 (2004).

    Article  CAS  Google Scholar 

  43. Huang, X. et al. Co-cultured hBMSCs and HUVECs on human bio-derived bone scaffolds provide support for the long-term ex vivo culture of HSC/HPCs. J. Biomed. Mater. Res. A 104, 1221–1230 (2016).

    Article  CAS  Google Scholar 

  44. Ronaldson-Bouchard, K. & Vunjak-Novakovic, G. Organs-on-a-Chip: a fast track for engineered human tissues in drug development. Cell Stem Cell 22, 310–324 (2018).

    Article  CAS  Google Scholar 

  45. Mahadik, B. P., Wheeler, T. D., Skertich, L. J., Kenis, P. J. & Harley, B. A. Microfluidic generation of gradient hydrogels to modulate hematopoietic stem cell culture environment. Adv. Healthc. Mater. 3, 449–458 (2014).

    Article  CAS  Google Scholar 

  46. Torisawa, Y. S. et al. Bone marrow-on-a-chip replicates hematopoietic niche physiology in vitro. Nat. Methods 11, 663–669 (2014). In this study, the authors report an engineered bone-marrow-on-chip that recapitulates organ-level toxicity responses and protective effects of radiation countermeasure drugs.

    Article  CAS  Google Scholar 

  47. Rodling, L. et al. 3D models of the hematopoietic stem cell niche under steady-state and active conditions. Sci. Rep. 7, 4625 (2017).

    Article  CAS  Google Scholar 

  48. Bourgine, P. E. et al. In vitro biomimetic engineering of a human hematopoietic niche with functional properties. Proc. Natl Acad. Sci. USA 115, E5688–E5695 (2018).

    Article  CAS  Google Scholar 

  49. Di Buduo, C. A. et al. Modular flow chamber for engineering bone marrow architecture and function. Biomaterials 146, 60–71 (2017).

    Article  CAS  Google Scholar 

  50. Di Buduo, C. A. et al. Programmable 3D silk bone marrow niche for platelet generation ex vivo and modeling of megakaryopoiesis pathologies. Blood 125, 2254–2264 (2015).

    Article  CAS  Google Scholar 

  51. Shepherd, J. H. et al. Structurally graduated collagen scaffolds applied to the ex vivo generation of platelets from human pluripotent stem cell-derived megakaryocytes: enhancing production and purity. Biomaterials 182, 135–144 (2018).

    Article  CAS  Google Scholar 

  52. Tozzi, L. et al. Multi-channel silk sponge mimicking bone marrow vascular niche for platelet production. Biomaterials 178, 122–133 (2018).

    Article  CAS  Google Scholar 

  53. Braham, M. V. J. et al. Endosteal and perivascular subniches in a 3D bone marrow model for multiple myeloma. Tissue Eng. Part C Methods 24, 300–312 (2018).

    Article  CAS  Google Scholar 

  54. Braham, M. V. J. et al. Cellular immunotherapy on primary multiple myeloma expanded in a 3D bone marrow niche model. Oncoimmunology 7, e1434465 (2018).

    Article  Google Scholar 

  55. Reagan, M. R. et al. Investigating osteogenic differentiation in multiple myeloma using a novel 3D bone marrow niche model. Blood 124, 3250–3259 (2014).

    Article  CAS  Google Scholar 

  56. Shih, Y. R. et al. In vivo engineering of bone tissues with hematopoietic functions and mixed chimerism. Proc. Natl Acad. Sci. USA 114, 5419–5424 (2017).

    Article  CAS  Google Scholar 

  57. Shah, N. J. et al. An injectable bone marrow-like scaffold enhances T cell immunity after hematopoietic stem cell transplantation. Nat. Biotechnol. https://doi.org/10.1038/s41587-019-0017-2 (2019).

    Article  Google Scholar 

  58. Fan, Y. et al. Bioengineering thymus organoids to restore thymic function and induce donor-specific immune tolerance to allografts. Mol. Ther. 23, 1262–1277 (2015).

    Article  CAS  Google Scholar 

  59. Tajima, A., Pradhan, I., Trucco, M. & Fan, Y. Restoration of thymus function with bioengineered thymus organoids. Curr. Stem Cell Rep. 2, 128–139 (2016).

    Article  CAS  Google Scholar 

  60. Palmer, D. B. The effect of age on thymic function. Front. Immunol. 4, 316 (2013).

    Article  CAS  Google Scholar 

  61. Neelapu, S. S. et al. Kte-C19 (anti-CD19 CAR T Cells) induces complete remissions in patients with refractory diffuse large B-cell lymphoma (DLBCL): results from the pivotal phase 2 zuma-1. Blood 128, LBA-6 (2016).

    Google Scholar 

  62. Maude, S. L. et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 371, 1507–1517 (2014).

    Article  CAS  Google Scholar 

  63. Fischbach, M. A., Bluestone, J. A. & Lim, W. A. Cell-based therapeutics: the next pillar of medicine. Sci. Transl Med. 5, 179ps177 (2013).

    Article  CAS  Google Scholar 

  64. Rosenberg, S. A. & Restifo, N. P. Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348, 62–68 (2015).

    Article  CAS  Google Scholar 

  65. Hare, K. J., Jenkinson, E. J. & Anderson, G. In vitro models of T cell development. Semin. Immunol. 11, 3–12 (1999).

    Article  CAS  Google Scholar 

  66. Dallas, M. H., Varnum-Finney, B., Delaney, C., Kato, K. & Bernstein, I. D. Density of the Notch ligand Delta1 determines generation of B and T cell precursors from hematopoietic stem cells. J. Exp. Med. 201, 1361–1366 (2005).

    Article  CAS  Google Scholar 

  67. Dallas, M. H., Varnum-Finney, B., Martin, P. J. & Bernstein, I. D. Enhanced T cell reconstitution by hematopoietic progenitors expanded ex vivo using the Notch ligand Delta1. Blood 109, 3579–3587 (2007).

    Article  CAS  Google Scholar 

  68. Varnum-Finney, B. et al. Immobilization of Notch ligand, Delta-1, is required for induction of notch signaling. J. Cell Sci. 23, 4313–4318 (2000).

    Google Scholar 

  69. Schmitt, T. M. et al. Induction of T cell development and establishment of T cell competence from embryonic stem cells differentiated in vitro. Nat. Immunol. 5, 410–417 (2004).

    Article  CAS  Google Scholar 

  70. Schmitt, T. M. & Zuniga-Pflucker, J. C. Induction of T cell development from hematopoietic progenitor cells by delta-like-1 in vitro. Immunity 17, 749–756 (2002).

    Article  CAS  Google Scholar 

  71. Taqvi, S., Dixit, L. & Roy, K. Biomaterial-based notch signaling for the differentiation of hematopoietic stem cells into T cells. J. Biomed. Mater. Res. A 79, 689–697 (2006).

    Article  Google Scholar 

  72. Shukla, S. et al. Progenitor T cell differentiation from hematopoietic stem cells using Delta-like-4 and VCAM-1. Nature Methods 14, 531–538 (2017).

    Article  CAS  Google Scholar 

  73. Mohtashami, M. & Zuniga-Pflucker, J. C. Three-dimensional architecture of the thymus is required to maintain delta-like expression necessary for inducing T cell development. J. Immunol. 176, 730–734 (2006).

    Article  CAS  Google Scholar 

  74. Seet, C. S. et al. Generation of mature T cells from human hematopoietic stem and progenitor cells in artificial thymic organoids. Nat. Methods 14, 521–530 (2017). In this paper, the authors report on artificial thymic organoids for directing human HSCs along the T cell lineage.

    Article  CAS  Google Scholar 

  75. Nitta, T., Ohigashi, I., Nakagawa, Y. & Takahama, Y. Cytokine crosstalk for thymic medulla formation. Curr. Opin. Immunol. 23, 190–197 (2011).

    Article  CAS  Google Scholar 

  76. van Ewijk, W. et al. Thymic microenvironments, 3D versus 2D? Semin. Immunol. 11, 57–64 (1999).

    Article  Google Scholar 

  77. Hun, M. et al. Native thymic extracellular matrix improves in vivo thymic organoid T cell output, and drives in vitro thymic epithelial cell differentiation. Biomaterials 118, 1–15 (2017).

    Article  CAS  Google Scholar 

  78. Hussey, G. S., Dziki, J. L. & Badylak, S. F. Extracellular matrix-based materials for regenerative medicine. Nat. Rev. Mater. 3, 159–173 (2018).

    Article  CAS  Google Scholar 

  79. Shah, S. B. & Singh, A. Cellular self-assembly and biomaterials-based organoid models of development and diseases. Acta Biomater. 53, 29–45 (2017).

    Article  CAS  Google Scholar 

  80. Tajima, A. et al. Bioengineering mini functional thymic units with EAK16-II/EAKIIH6 self-assembling hydrogel. Clin. Immunol. 160, 82–89 (2015).

    Article  CAS  Google Scholar 

  81. Junt, T., Scandella, E. & Ludewig, B. Form follows function: lymphoid tissue microarchitecture in antimicrobial immune defence. Nat. Rev. Immunol. 8, 764–775 (2008).

    Article  CAS  Google Scholar 

  82. Zappasodi, R. et al. The effect of artificial antigen-presenting cells with preclustered anti-CD28/-CD3/-LFA-1 monoclonal antibodies on the induction of ex vivo expansion of functional human antitumor T cells. Haematologica 93, 1523–1534 (2008).

    Article  CAS  Google Scholar 

  83. Li, Y. & Kurlander, R. J. Comparison of anti-CD3 and anti-CD28-coated beads with soluble anti-CD3 for expanding human T cells: differing impact on CD8 T cell phenotype and responsiveness to restimulation. J. Transl Med. 8, 104 (2010).

    Article  CAS  Google Scholar 

  84. Dustin, M. L. The immunological synapse. Cancer Immunol. Res. 2, 1023–1033 (2014).

    Article  CAS  Google Scholar 

  85. Huppa, J. B. & Davis, M. M. T cell-antigen recognition and the immunological synapse. Nat. Rev. Immunol. 3, 973–983 (2003).

    Article  CAS  Google Scholar 

  86. Mossman, K. D., Campi, G., Groves, J. T. & Dustin, M. L. Altered TCR signaling from geometrically repatterned immunological synapses. Science 310, 1191–1193 (2005).

    Article  CAS  Google Scholar 

  87. Thery, M. et al. The extracellular matrix guides the orientation of the cell division axis. Nat. Cell Biol. 7, 947–953 (2005).

    Article  CAS  Google Scholar 

  88. Coyer, S. R. et al. Nanopatterning reveals an ECM area threshold for focal adhesion assembly and force transmission that is regulated by integrin activation and cytoskeleton tension. J. Cell Sci. 125, 5110–5123 (2012).

    Article  CAS  Google Scholar 

  89. Coyer, S. R., Delamarche, E. & Garcia, A. J. Protein tethering into multiscale geometries by covalent subtractive printing. Adv. Mater. 23, 1550–1553 (2011).

    Article  CAS  Google Scholar 

  90. Singh, A. et al. Adhesion strength-based, label-free isolation of human pluripotent stem cells. Nat. Methods 10, 438–444 (2013).

    Article  CAS  Google Scholar 

  91. Dumbauld, D. W. et al. How vinculin regulates force transmission. Proc. Natl Acad. Sci. USA 110, 9788–9793 (2013).

    Article  CAS  Google Scholar 

  92. Doh, J. & Irvine, D. J. Immunological synapse arrays: patterned protein surfaces that modulate immunological synapse structure formation in T cells. Proc. Natl Acad. Sci. USA 103, 5700–5705 (2006). In this paper, the authors report on lithographically defined patterns of T cell receptor ligands surrounded by a field of tethered ICAM1 to mimic T cell–APC interactions.

    Article  CAS  Google Scholar 

  93. Shen, K., Thomas, V. K., Dustin, M. L. & Kam, L. C. Micropatterning of costimulatory ligands enhances CD4+ T cell function. Proc. Natl Acad. Sci. USA 105, 7791–7796 (2008).

    Article  CAS  Google Scholar 

  94. Tan, J. L. et al. Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc. Natl Acad. Sci. USA 100, 1484–1489 (2003).

    Article  CAS  Google Scholar 

  95. Fu, J. et al. Mechanical regulation of cell function with geometrically modulated elastomeric substrates. Nat. Methods 7, 733–736 (2010).

    Article  CAS  Google Scholar 

  96. Basu, R. et al. Cytotoxic T cells use mechanical force to potentiate target cell killing. Cell 165, 100–110 (2016).

    Article  CAS  Google Scholar 

  97. Steenblock, E. R. & Fahmy, T. M. A comprehensive platform for ex vivo T cell expansion based on biodegradable polymeric artificial antigen-presenting cells. Mol. Ther. 16, 765–772 (2008).

    Article  CAS  Google Scholar 

  98. Prakken, B. et al. Artificial antigen-presenting cells as a tool to exploit the immune ‘synapse’. Nat. Med. 6, 1406 (2000).

    Article  CAS  Google Scholar 

  99. Zitvogel, L. et al. Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat. Med. 4, 594–600 (1998).

    Article  CAS  Google Scholar 

  100. Fadel, T. R. et al. Enhanced cellular activation with single walled carbon nanotube bundles presenting antibody stimuli. Nano Lett. 8, 2070–2076 (2008).

    Article  CAS  Google Scholar 

  101. Fadel, T. R. et al. A carbon nanotube-polymer composite for T cell therapy. Nat. Nanotechnol. 9, 639–647 (2014).

    Article  CAS  Google Scholar 

  102. Cheung, A. S., Zhang, D. K. Y., Koshy, S. T. & Mooney, D. J. Scaffolds that mimic antigen-presenting cells enable ex vivo expansion of primary T cells. Nat. Biotechnol. 36, 160–169 (2018).

    Article  CAS  Google Scholar 

  103. Oelke, M. et al. Ex vivo induction and expansion of antigen-specific cytotoxic T cells by HLA-Ig–coated artificial antigen-presenting cells. Nat. Med. 9, 619 (2003).

    Article  CAS  Google Scholar 

  104. Cui, H. F., Vashist, S. K., Al-Rubeaan, K., Luong, J. H. & Sheu, F. S. Interfacing carbon nanotubes with living mammalian cells and cytotoxicity issues. Chem. Res. Toxicol. 23, 1131–1147 (2010).

    Article  CAS  Google Scholar 

  105. Sato, Y. et al. Influence of length on cytotoxicity of multi-walled carbon nanotubes against human acute monocytic leukemia cell line THP-1 in vitro and subcutaneous tissue of rats in vivo. Mol. Biosyst. 1, 176–182 (2005).

    Article  CAS  Google Scholar 

  106. Perica, K. et al. Enrichment and expansion with nanoscale artificial antigen presenting cells for adoptive immunotherapy. ACS Nano 9, 6861–6871 (2015).

    Article  CAS  Google Scholar 

  107. Smith, M. R., Tolbert, S. V. & Wen, F. Protein-scaffold directed nanoscale assembly of T cell ligands: artificial antigen presentation with defined valency, density, and ratio. ACS Synth. Biol. 7, 1629–1639 (2018).

    Article  CAS  Google Scholar 

  108. Koffeman, E., Keogh, E., Klein, M., Prakken, B. & Albani, S. Identification and manipulation of antigen specific T cells with artificial antigen presenting cells. Methods Mol. Med. 136, 69–86 (2007).

    Article  CAS  Google Scholar 

  109. Wherry, E. J. & Kurachi, M. Molecular and cellular insights into T cell exhaustion. Nat. Rev. Immunol. 15, 486–499 (2015).

    Article  CAS  Google Scholar 

  110. Lamers, C. H. et al. Treatment of metastatic renal cell carcinoma with CAIX CAR-engineered T cells: clinical evaluation and management of on-target toxicity. Mol. Ther. 21, 904–912 (2013).

    Article  CAS  Google Scholar 

  111. Smith, T. T. et al. Biopolymers codelivering engineered T cells and STING agonists can eliminate heterogeneous tumors. J. Clin. Invest. 127, 2176–2191 (2017).

    Article  Google Scholar 

  112. Stephan, S. B. et al. Biopolymer implants enhance the efficacy of adoptive T cell therapy. Nat. Biotechnol. 33, 97–101 (2015).

    Article  CAS  Google Scholar 

  113. Allen, C. D., Okada, T. & Cyster, J. G. Germinal-center organization and cellular dynamics. Immunity 27, 190–202 (2007).

    Article  CAS  Google Scholar 

  114. De Silva, N. S. & Klein, U. Dynamics of B cells in germinal centres. Nat. Rev. Immunol. 15, 137–148 (2015).

    Article  CAS  Google Scholar 

  115. McHeyzer-Williams, M., Okitsu, S., Wang, N. & McHeyzer-Williams, L. Molecular programming of B cell memory. Nat. Rev. Immunol. 12, 24–34 (2012). In this Review, the authors discuss each phase of antigen-specific B cell development and affinity maturation of memory B cells.

    Article  CAS  Google Scholar 

  116. Grilo, A. L. & Mantalaris, A. The increasingly human and profitable monoclonal antibody market. Trends Biotechnol. 37, 9–16 (2019).

    Article  CAS  Google Scholar 

  117. Yokoyama, W. M. et al. Production of monoclonal antibodies. Curr. Protoc. Immunol. 102, 2.5.1–2.5.29 (2013).

    Article  Google Scholar 

  118. Georgiou, G. et al. The promise and challenge of high-throughput sequencing of the antibody repertoire. Nat. Biotechnol. 32, 158–168 (2014).

    Article  CAS  Google Scholar 

  119. Rathmell, J. C. et al. CD95 (Fas)-dependent elimination of self-reactive B cells upon interaction with CD4+ T cells. Nature 376, 181–184 (1995).

    Article  CAS  Google Scholar 

  120. Wu, Y. et al. Immune complex-bearing follicular dendritic cells deliver a late antigenic signal that promotes somatic hypermutation. J. Immunol. 180, 281–290 (2008).

    Article  CAS  Google Scholar 

  121. Pound, J. D. & Gordon, J. Maintenance of human germinal center B cells in vitro. Blood 89, 919–928 (1997).

    CAS  Google Scholar 

  122. Arpin, C. et al. Generation of memory B cells and plasma cells in vitro. Science 268, 720–722 (1995).

    Article  CAS  Google Scholar 

  123. Nojima, T. et al. In-vitro derived germinal centre B cells differentially generate memory B or plasma cells in vivo. Nat. Commun. 2, 465 (2011).

    Article  CAS  Google Scholar 

  124. Beguelin, W. et al. EZH2 enables germinal centre formation through epigenetic silencing of CDKN1A and an Rb-E2F1 feedback loop. Nat. Commun. 8, 877 (2017). In this study, the authors develop immune organoids to reveal the epigenetic mechanism behind B cell hyperproliferation in response to infection.

    Article  CAS  Google Scholar 

  125. Roh, K. H. et al. A synthetic stroma-free germinal center niche for efficient generation of humoral immunity ex vivo. Biomaterials 164, 106–120 (2018).

    Article  CAS  Google Scholar 

  126. Purwada, A. & Singh, A. Immuno-engineered organoids for regulating the kinetics of B cell development and antibody production. Nat. Protoc. 12, 168–182 (2017).

    Article  CAS  Google Scholar 

  127. Purwada, A. et al. Ex vivo engineered immune organoids for controlled germinal center reactions. Biomaterials 63, 24–34 (2015).

    Article  CAS  Google Scholar 

  128. Apoorva, F. N. U. et al. Lymph node stiffness-mimicking hydrogels regulate human B cell lymphoma growth and cell surface receptor expression in a molecular subtype-specific manner. J. Biomed. Mater. Res. A 105, 1833–1844 (2017).

    Article  CAS  Google Scholar 

  129. Cayrol, F. et al. Integrin αvβ3 acting as membrane receptor for thyroid hormones mediates angiogenesis in malignant T cells. Blood 125, 841–851 (2015).

    Article  CAS  Google Scholar 

  130. Tian, Y. F. et al. Integrin-specific hydrogels as adaptable tumor organoids for malignant B and T cells. Biomaterials 73, 110–119 (2015).

    Article  CAS  Google Scholar 

  131. Purwada, A. et al. Ex vivo synthetic immune tissues with T cell signals for differentiating antigen-specific, high affinity germinal center B cells. Biomaterials 198, 27–36 (2019). In this paper, the authors demonstrate that ex vivo 3D immune organoids can form antigen-specific B cells in a dish.

    Article  Google Scholar 

  132. Purwada, A., Shah, S. B., Beguelin, W., Melnick, A. M. & Singh, A. Modular immune organoids with integrin ligand specificity differentially regulate ex vivo B cell activation. ACS Biomater. Sci. Eng. 3, 214–225 (2017).

    Article  CAS  Google Scholar 

  133. Apoorva, F. et al. How biophysical forces regulate human B cell lymphomas. Cell Rep. 23, 499–511 (2018).

    Article  CAS  Google Scholar 

  134. Hoch, S., Boyd, M., Malone, B., Gonye, G. & Schwaber, J. Fas-mediated apoptosis eliminates B cells that acquire self-reactivity during the germinal center response to NP. Cell. Immunol. 203, 103–110 (2000).

    Article  CAS  Google Scholar 

  135. Meyer-Hermann, M. et al. A theory of germinal center B cell selection, division, and exit. Cell Rep. 2, 162–174 (2012).

    Article  CAS  Google Scholar 

  136. Jones, G. W., Hill, D. G. & Jones, S. A. Understanding immune cells in tertiary lymphoid organ development: it is all starting to come together. Front. Immunol. 7, 401 (2016).

    Article  CAS  Google Scholar 

  137. Mueller, C. G., Nayar, S., Gardner, D. & Barone, F. Cellular and vascular components of tertiary lymphoid structures. Methods Mol. Biol. 1845, 17–30 (2018).

    Article  Google Scholar 

  138. Nerviani, A. & Pitzalis, C. Role of chemokines in ectopic lymphoid structures formation in autoimmunity and cancer. J. Leukoc. Biol. 104, 333–341 (2018).

    Article  CAS  Google Scholar 

  139. Rangel-Moreno, J. et al. The development of inducible bronchus-associated lymphoid tissue depends on IL-17. Nat. Immunol. 12, 639–646 (2011).

    Article  CAS  Google Scholar 

  140. Dorraji, S. E. et al. Mesenchymal stem cells and T cells in the formation of tertiary lymphoid structures in lupus nephritis. Sci. Rep. 8, 7861 (2018).

    Article  CAS  Google Scholar 

  141. Figenschau, S. L. et al. ICAM1 expression is induced by proinflammatory cytokines and associated with TLS formation in aggressive breast cancer subtypes. Sci. Rep. 8, 11720 (2018).

    Article  CAS  Google Scholar 

  142. Vu Van, D. et al. Local T/B cooperation in inflamed tissues is supported by T follicular helper-like cells. Nat. Commun. 7, 10875 (2016).

    Article  CAS  Google Scholar 

  143. Cheng, J. et al. Ectopic B cell clusters that infiltrate transplanted human kidneys are clonal. Proc. Natl Acad. Sci. USA 108, 5560–5565 (2011).

    Article  CAS  Google Scholar 

  144. Mittal, S. et al. Lymphoid aggregates that resemble tertiary lymphoid organs define a specific pathological subset in metal-on-metal hip replacements. PLOS ONE 8, e63470 (2013).

    Article  CAS  Google Scholar 

  145. Akhavanpoor, M. et al. Adventitial tertiary lymphoid organ classification in human atherosclerosis. Cardiovasc. Pathol. 32, 8–14 (2018).

    Article  Google Scholar 

  146. Neyt, K., Perros, F., GeurtsvanKessel, C. H., Hammad, H. & Lambrecht, B. N. Tertiary lymphoid organs in infection and autoimmunity. Trends Immunol. 33, 297–305 (2012).

    Article  CAS  Google Scholar 

  147. Yin, C., Mohanta, S., Maffia, P. & Habenicht, A. J. Editorial: tertiary lymphoid organs (TLOs): powerhouses of disease immunity. Front. Immunol. 8, 228 (2017).

    Google Scholar 

  148. Ventura Ferreira, M. S. et al. An engineered multicomponent bone marrow niche for the recapitulation of hematopoiesis at ectopic transplantation sites. J. Hematol. Oncol. 9, 4 (2016).

    Article  Google Scholar 

  149. Kobayashi, Y. & Watanabe, T. Gel-trapped lymphorganogenic chemokines trigger artificial tertiary lymphoid organs and mount adaptive immune responses in vivo. Front. Immunol. 7, 316 (2016).

    Article  CAS  Google Scholar 

  150. Ali, O. A., Huebsch, N., Cao, L., Dranoff, G. & Mooney, D. J. Infection-mimicking materials to program dendritic cells in situ. Nat. Mater. 8, 151–158 (2009).

    Article  CAS  Google Scholar 

  151. Singh, A. et al. An injectable synthetic immune-priming center mediates efficient T cell class switching and T-helper 1 response against B cell lymphoma. J. Control. Release 155, 184–192 (2011).

    Article  CAS  Google Scholar 

  152. Calvi, L. M. et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425, 841–846 (2003).

    Article  CAS  Google Scholar 

  153. Ding, L. & Morrison, S. J. Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature 495, 231–235 (2013).

    Article  CAS  Google Scholar 

  154. Matsuda, N., Shimizu, T., Yamato, M. & Okano, T. Tissue engineering based on cell sheet technology. Adv. Mater. 19, 3089–3099 (2007).

    Article  CAS  Google Scholar 

  155. DeForest, C. A. & Anseth, K. S. Cytocompatible click-based hydrogels with dynamically tunable properties through orthogonal photoconjugation and photocleavage reactions. Nat. Chem. 3, 925–931 (2011).

    Article  CAS  Google Scholar 

  156. DeForest, C. A., Polizzotti, B. D. & Anseth, K. S. Sequential click reactions for synthesizing and patterning three-dimensional cell microenvironments. Nat. Mater. 8, 659–664 (2009). In this study, the authors demonstrate direct fabrication of biologically functionalized gels with photopatterned structures in the presence of cells — a first step towards 4D cultures.

    Article  CAS  Google Scholar 

  157. Kloxin, A. M. et al. Responsive culture platform to examine the influence of microenvironmental geometry on cell function in 3D. Integ. Biol. 4, 1540–1549 (2012).

    Article  CAS  Google Scholar 

  158. Hasani-Sadrabadi, M. M. et al. Mechanobiological mimicry of helper T lymphocytes to evaluate cell–biomaterials crosstalk. Adv. Mater. 30, 1706780 (2018).

    Article  CAS  Google Scholar 

  159. Shifrut, E. et al. Genome-wide CRISPR screens in primary human T cells reveal key regulators of immune function. Cell 175, 1958–1971 (2018).

    Article  CAS  Google Scholar 

  160. Roth, T. L. et al. Reprogramming human T cell function and specificity with non-viral genome targeting. Nature 559, 405–409 (2018).

    Article  CAS  Google Scholar 

  161. Dudda, J. C. et al. MicroRNA-155 is required for effector CD8+ T cell responses to virus infection and cancer. Immunity 38, 742–753 (2013).

    Article  CAS  Google Scholar 

  162. Shin, S. R. et al. Carbon nanotube reinforced hybrid microgels as scaffold materials for cell encapsulation. ACS Nano 6, 362–372 (2012).

    Article  CAS  Google Scholar 

  163. Dvir, T. et al. Nanowired three-dimensional cardiac patches. Nat. Nanotechnol. 6, 720–725 (2011).

    Article  CAS  Google Scholar 

  164. Lardner, A. The effects of extracellular pH on immune function. J. Leukoc. Biol. 69, 522–530 (2001).

    CAS  Google Scholar 

  165. Carswell, K. S. & Papoutsakis, E. T. Extracellular pH affects the proliferation of cultured human T cells and their expression of the interleukin-2 receptor. J. Immunother. 23, 669–674 (2000).

    Article  CAS  Google Scholar 

  166. Patel, A. et al. Highly elastomeric poly(glycerol sebacate)-co-poly(ethylene glycol) amphiphilic block copolymers. Biomaterials 34, 3970–3983 (2013).

    Article  CAS  Google Scholar 

  167. Roybal, K. T. & Lim, W. A. Synthetic immunology: hacking immune cells to expand their therapeutic capabilities. Annu. Rev. Immunol. 35, 229–253 (2017).

    Article  CAS  Google Scholar 

  168. Wu, C. Y., Rupp, L. J., Roybal, K. T. & Lim, W. A. Synthetic biology approaches to engineer T cells. Curr. Opin. Immunol. 35, 123–130 (2015).

    Article  CAS  Google Scholar 

  169. Xie, M. & Fussenegger, M. Designing cell function: assembly of synthetic gene circuits for cell biology applications. Nat. Rev. Mol. Cell Biol. 19, 507–525 (2018).

    Article  CAS  Google Scholar 

  170. La Motte-Mohs, R. N., Herer, E. & Zuniga-Pflucker, J. C. Induction of T cell development from human cord blood hematopoietic stem cells by Delta-like 1 in vitro. Blood 105, 1431–1439 (2005).

    Article  CAS  Google Scholar 

  171. Grakoui, A. et al. The immunological synapse: a molecular machine controlling T cell activation. Science 285, 221 (1999). This work demonstrates that immunological synapse formation is a multistage process, in which T cell activation is reconstituted by interacting with MHC–peptide and the adhesion ligand ICAM1.

    Article  CAS  Google Scholar 

  172. Doh, J. & Irvine, D. J. Photogenerated polyelectrolyte bilayers from an aqueous-processible photoresist for multicomponent protein patterning. J. Am. Chem. Soc. 126, 9170–9171 (2004).

    Article  CAS  Google Scholar 

  173. Bashour, K. T. et al. CD28 and CD3 have complementary roles in T cell traction forces. Proc. Natl Acad. Sci. USA 111, 2241–2246 (2014).

    Article  CAS  Google Scholar 

  174. Moon, J. J. et al. Enhancing humoral responses to a malaria antigen with nanoparticle vaccines that expand Tfh cells and promote germinal center induction. Proc. Natl Acad. Sci. USA 109, 1080–1085 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the National Institute of Allergy and Infectious Diseases of the US National Institutes of Health (1R01AI132738-01A1 awarded to A.S.), the Innovative Molecular Analysis Technology programme of the US National Cancer Institute (NIH R33-CA212968-01 awarded to A.S.), a US National Science Foundation CAREER award (DMR-1554275 awarded to A.S.), a US Department of Defense Congressionally Directed Medical Research Program (CDMRP) cancer career development award (W81XWH-17-1-0215 awarded to A.S.) and the 3 M Non-Tenured Faculty Award (awarded to A.S.).

Author information

Authors and Affiliations

Authors

Contributions

S.K., S.B.S., P.G. and A.S. wrote the article. A.S. edited and reviewed the article. All authors contributed to the discussion of the content.

Corresponding author

Correspondence to Ankur Singh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S., Shah, S.B., Graney, P.L. et al. Multiscale engineering of immune cells and lymphoid organs. Nat Rev Mater 4, 355–378 (2019). https://doi.org/10.1038/s41578-019-0100-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-019-0100-9

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research