Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The biophysics and mechanics of blood from a materials perspective

Abstract

Cells actively interact with their microenvironment, constantly sensing and modulating biochemical and biophysical signals. Blood comprises a variety of non-adherent cells that interact with each other and with endothelial and vascular smooth muscle cells of the blood vessel walls. Blood cells further experience a range of external forces by the haemodynamic environment, and they also exert forces to remodel their local environment. Therefore, the biophysics and material properties of blood cells and blood play an important role in determining blood behaviour in health and disease. In this Review, we discuss blood cells and tissues from a materials perspective, considering the mechanical properties and biophysics of individual blood cells and endothelial cells as well as blood cell collectives. We highlight how blood vessels provide a mechanosensitive barrier between blood and tissues and how changes in vessel stiffness and flow shear stress can be correlated to plaque formation and exploited for the design of vascular grafts. We discuss the effect of the properties of fibrin on blood clotting and investigate how forces exerted by platelets are correlated to disease. Finally, we hypothesize that blood and vascular cells are constantly establishing a mechanical homeostasis, which, when imbalanced, can lead to haematologic and vascular diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Tools to measure and recreate the mechanical properties of blood tissues.
Fig. 2: Mechanical forces and mechanical homeostasis in blood vessels.
Fig. 3: Material properties of individual blood cells.
Fig. 4: Blood clots.

Similar content being viewed by others

References

  1. Ingber, D. E., Wang, N. & Stamenovic, D. Tensegrity, cellular biophysics, and the mechanics of living systems. Rep. Prog. Phys. 77, 046603 (2014).

    Google Scholar 

  2. Weng, S. N., Shao, Y., Chen, W. Q. & Fu, J. P. Mechanosensitive subcellular rheostasis drives emergent single-cell mechanical homeostasis. Nat. Mater. 15, 961–967 (2016).

    CAS  Google Scholar 

  3. Paszek, M. J. et al. Tensional homeostasis and the malignant phenotype. Cancer Cell 8, 241–254 (2005).

    CAS  Google Scholar 

  4. Humphrey, J. D., Dufresne, E. R. & Schwartz, M. A. Mechanotransduction and extracellular matrix homeostasis. Nat. Rev. Mol. Cell Biol. 15, 802–812 (2014).

    CAS  Google Scholar 

  5. Hahn, C. & Schwartz, M. A. Mechanotransduction in vascular physiology and atherogenesis. Nat. Rev. Mol. Cell Biol. 10, 53–62 (2009).

    CAS  Google Scholar 

  6. Kohn, J. C., Lampi, M. C. & Reinhart-King, C. A. Age-related vascular stiffening: causes and consequences. Front. Genet. 6, 112 (2015).

    Google Scholar 

  7. Llaurado, G. et al. Arterial stiffness is increased in patients with type 1 diabetes without cardiovascular disease a potential role of low-grade inflammation. Diabetes Care 35, 1083–1089 (2012).

    CAS  Google Scholar 

  8. Tomaiuolo, G. Biomechanical properties of red blood cells in health and disease towards microfluidics. Biomicrofluidics 8, 051501 (2014).

    Google Scholar 

  9. Tran, R. et al. Biomechanics of haemostasis and thrombosis in health and disease: from the macro- to molecular scale. J. Cell. Mol. Med. 17, 579–596 (2013).

    CAS  Google Scholar 

  10. Lampi, M. C. & Reinhart-King, C. A. Targeting extracellular matrix stiffness to attenuate disease: from molecular mechanisms to clinical trials. Sci. Transl Med. 10, eaao0475 (2018).

    Google Scholar 

  11. Carden, M. A. et al. Extracellular fluid tonicity impacts sickle red blood cell deformability and adhesion. Blood 130, 2654–2663 (2017).

    CAS  Google Scholar 

  12. Akhtar, R., Sherratt, M. J., Cruickshank, J. K. & Derby, B. Characterizing the elastic properties of tissues. Mater. Today 14, 96–105 (2011).

    CAS  Google Scholar 

  13. Wu, P. H. et al. A comparison of methods to assess cell mechanical properties. Nat. Methods 15, 491–496 (2018).

    CAS  Google Scholar 

  14. Shirwany, N. A. & Zou, M. H. Arterial stiffness: a brief review. Acta Pharmacol. Sin. 31, 1267–1276 (2010).

    CAS  Google Scholar 

  15. van Andel, C. J., Pistecky, P. V. & Borst, C. Mechanical properties of porcine and human arteries: implications for coronary anastomotic connectors. Ann. Thorac Surg. 76, 58–64 (2003).

    Google Scholar 

  16. Hirata, K., Kawakami, M. & O’Rourke, M. F. Pulse wave analysis and pulse wave velocity: a review of blood pressure interpretation 100 years after Korotkov. Circ. J. 70, 1231–1239 (2006).

    Google Scholar 

  17. Wentland, A. L., Grist, T. M. & Wieben, O. Review of MRI-based measurements of pulse wave velocity: a biomarker of arterial stiffness. Cardiovasc. Diagn. Ther. 4, 193–206 (2014).

    Google Scholar 

  18. Tai, N. R., Salacinski, H. J., Edwards, A., Hamilton, G. & Seifalian, A. M. Compliance properties of conduits used in vascular reconstruction. Br. J. Surg. 87, 1516–1524 (2000).

    CAS  Google Scholar 

  19. Stone, M. J. & Bogen, S. A. Evidence-based focused review of management of hyperviscosity syndrome. Blood 119, 2205–2208 (2012).

    CAS  Google Scholar 

  20. Tutwiler, V. et al. Kinetics and mechanics of clot contraction are governed by the molecular and cellular composition of the blood. Blood 127, 149–159 (2016).

    CAS  Google Scholar 

  21. Hartert, H. Blutgerinnungsstudien mit der thrombelastographie, einem neuen untersuchungsverfahren [German]. Klin. Wochenschr. 26, 577–583 (1948).

    CAS  Google Scholar 

  22. Whitten, C. W. & Greilich, P. E. Thromboelastography: past, present, and future. Anesthesiology 92, 1223–1225 (2000).

    CAS  Google Scholar 

  23. Carr, M. E. Development of platelet contractile force as a research and clinical measure of platelet function. Cell Biochem. Biophys. 38, 55–78 (2003). This Review comprehensively describes the measurement of bulk platelet forces in a clinical setting, suggesting that forces exerted by a platelet may be altered in pathophysiological conditions.

    CAS  Google Scholar 

  24. Qiu, Y. Z., Ciciliano, J., Myers, D. R., Tran, R. & Lam, W. A. Platelets and physics: how platelets “feel” and respond to their mechanical microenvironment. Blood Rev. 29, 377–386 (2015).

    CAS  Google Scholar 

  25. Davies, P. F. Flow-mediated endothelial mechanotransduction. Physiol. Rev. 75, 519–560 (1995).

    CAS  Google Scholar 

  26. Muller, D. J. & Dufrene, Y. F. Atomic force microscopy: a nanoscopic window on the cell surface. Trends Cell Biol. 21, 461–469 (2011).

    Google Scholar 

  27. Reinhart-King, C. A., Dembo, M. & Hammer, D. A. The dynamics and mechanics of endothelial cell spreading. Biophys. J. 89, 676–689 (2005).

    CAS  Google Scholar 

  28. Liu, Z. J., Sniadecki, N. J. & Chen, C. S. Mechanical forces in endothelial cells during firm adhesion and early transmigration of human monocytes. Cell. Mol. Bioeng. 3, 50–59 (2010).

    Google Scholar 

  29. Myers, D. R. et al. Single-platelet nanomechanics measured by high-throughput cytometry. Nat. Mater. 16, 230–235 (2017). In this paper, a novel cytometer is reported for characterizing platelet contraction forces at a single platelet level, demonstrating how low platelet contraction forces correlate with bleeding disorders and therefore showing the first demonstration of a biophysical biomarker.

    CAS  Google Scholar 

  30. Kim, J., Zhang, C. Z., Zhang, X. H. & Springer, T. A. A mechanically stabilized receptor-ligand flex-bond important in the vasculature. Nature 466, 992–U123 (2010).

    CAS  Google Scholar 

  31. Yago, T. et al. Platelet glycoprotein Ibα forms catch bonds with human WT vWF but not with type 2B von Willebrand disease vWF. J. Clin. Invest. 118, 3195–3207 (2008).

    CAS  Google Scholar 

  32. Zhang, Y. et al. Platelet integrins exhibit anisotropic mechanosensing and harness piconewton forces to mediate platelet aggregation. Proc. Natl Acad. Sci. USA 115, 325–330 (2018).

    CAS  Google Scholar 

  33. Sun, Y. B., Chen, C. S. & Fu, J. P. Forcing stem cells to behave: a biophysical perspective of the cellular microenvironment. Annu. Rev. Biophys. 41, 519–542 (2012).

    Google Scholar 

  34. Savage, B., Saldivar, E. & Ruggeri, Z. M. Initiation of platelet adhesion by arrest onto fibrinogen or translocation on von Willebrand factor. Cell 84, 289–297 (1996).

    CAS  Google Scholar 

  35. Ruggeri, Z. M. Platelet adhesion under flow. Microcirculation 16, 58–83 (2009).

    CAS  Google Scholar 

  36. Pelham, R. J. Jr & Wang, Y. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl Acad. Sci. USA 94, 13661–13665 (1997).

    CAS  Google Scholar 

  37. Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

    CAS  Google Scholar 

  38. Yeh, Y. T. et al. Matrix stiffness regulates endothelial cell proliferation through septin 9. PLOS ONE 7, e46889 (2012).

    CAS  Google Scholar 

  39. Qiu, Y. Z. et al. Platelet mechanosensing of substrate stiffness during clot formation mediates adhesion, spreading, and activation. Proc. Natl Acad. Sci. USA 111, 14430–14435 (2014). This paper is the first to describe how the stiffness of substrates affects platelet physiology, highlighting the role of the physical microenvironment in clot formation and the importance of adjusting mechanical properties for biomaterials in blood.

    CAS  Google Scholar 

  40. Kee, M. F., Myers, D. R., Sakurai, Y., Lam, W. A. & Qiu, Y. Platelet mechanosensing of collagen matrices. PLOS ONE 10, e0126624 (2015).

    Google Scholar 

  41. Lammermann, T. et al. Cdc42-dependent leading edge coordination is essential for interstitial dendritic cell migration. Blood 113, 5703–5710 (2009).

    Google Scholar 

  42. Nguyen, D. H. T. et al. Biomimetic model to reconstitute angiogenic sprouting morphogenesis in vitro. Proc. Natl Acad. Sci. USA 110, 6712–6717 (2013).

    CAS  Google Scholar 

  43. Zheng, Y. et al. In vitro microvessels for the study of angiogenesis and thrombosis. Proc. Natl Acad. Sci. USA 109, 9342–9347 (2012).

    CAS  Google Scholar 

  44. Galie, P. A. et al. Fluid shear stress threshold regulates angiogenic sprouting. Proc. Natl Acad. Sci. USA 111, 7968–7973 (2014). Using a hydrogel-based microvasculature model, the existence of a shear stress threshold in regulating angiogenic sprouting is demonstrated.

    CAS  Google Scholar 

  45. Chaudhuri, O. et al. Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat. Mater. 15, 326–334 (2016).

    CAS  Google Scholar 

  46. Huebsch, N. et al. Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nat. Mater. 9, 518–526 (2010).

    CAS  Google Scholar 

  47. Mannino, R. G. et al. “Do-it-yourself in vitro vasculature that recapitulates in vivo geometries for investigating endothelial-blood cell interactions”. Sci. Rep. 5, 12401 (2015).

    Google Scholar 

  48. Qiu, Y. Z. et al. Magnetic forces enable controlled drug delivery by disrupting endothelial cell-cell junctions. Nat. Commun. 8, 15594 (2017).

    CAS  Google Scholar 

  49. Tsai, M. et al. In vitro modeling of the microvascular occlusion and thrombosis that occur in hematologic diseases using microfluidic technology. J. Clin. Invest. 122, 408–418 (2012).

    CAS  Google Scholar 

  50. Huh, D. et al. A human disease model of drug toxicity-induced pulmonary edema in a lung-on-a-chip microdevice. Sci. Transl Med. 4, 159ra147 (2012).

    Google Scholar 

  51. Chrobak, K. M., Potter, D. R. & Tien, J. Formation of perfused, functional microvascular tubes in vitro. Microvasc. Res. 71, 185–196 (2006).

    CAS  Google Scholar 

  52. Chen, M. B. et al. On-chip human microvasculature assay for visualization and quantification of tumor cell extravasation dynamics. Nat. Protoc. 12, 865–880 (2017).

    CAS  Google Scholar 

  53. Jeon, J. S. et al. Human 3D vascularized organotypic microfluidic assays to study breast cancer cell extravasation. Proc. Natl Acad. Sci. USA 112, 214–219 (2015).

    CAS  Google Scholar 

  54. Wang, X. L. et al. Engineering anastomosis between living capillary networks and endothelial cell-lined microfluidic channels. Lab. Chip 16, 282–290 (2016).

    Google Scholar 

  55. Choi, N. W. et al. Microfluidic scaffolds for tissue engineering. Nat. Mater. 6, 908–915 (2007).

    CAS  Google Scholar 

  56. Ling, Y. et al. A cell-laden microfluidic hydrogel. Lab. Chip 7, 756–762 (2007).

    CAS  Google Scholar 

  57. Humphrey, J. D. Vascular adaptation and mechanical homeostasis at tissue, cellular, and sub-cellular levels. Cell Biochem. Biophys. 50, 53–78 (2008).

    CAS  Google Scholar 

  58. Baeyens, N., Bandyopadhyay, C., Coon, B. G., Yun, S. & Schwartz, M. A. Endothelial fluid shear stress sensing in vascular health and disease. J. Clin. Invest. 126, 821–828 (2016).

    Google Scholar 

  59. Wagenseil, J. E. & Mecham, R. P. Vascular extracellular matrix and arterial mechanics. Physiol. Rev. 89, 957–989 (2009).

    CAS  Google Scholar 

  60. Kwak, B. R. et al. Biomechanical factors in atherosclerosis: mechanisms and clinical implications. Eur. Heart J. 35, 3013–3020 (2014).

    CAS  Google Scholar 

  61. Thondapu, V. et al. Biomechanical stress in coronary atherosclerosis: emerging insights from computational modelling. Eur. Heart J. 38, 81–92 (2017).

    CAS  Google Scholar 

  62. Chiu, J. J. & Chien, S. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol. Rev. 91, 327–387 (2011).

    Google Scholar 

  63. Lacolley, P., Regnault, V., Nicoletti, A., Li, Z. L. & Michel, J. B. The vascular smooth muscle cell in arterial pathology: a cell that can take on multiple roles. Cardiovasc. Res. 95, 194–204 (2012).

    CAS  Google Scholar 

  64. Lu, D. S. & Kassab, G. S. Role of shear stress and stretch in vascular mechanobiology. J. R. Soc. Interface 8, 1379–1385 (2011).

    CAS  Google Scholar 

  65. Langille, B. L. & Odonnell, F. Reductions in arterial diameter produced by chronic decreases in blood-flow are endothelium-dependent. Science 231, 405–407 (1986).

    CAS  Google Scholar 

  66. Frangos, J. A., Eskin, S. G., Mcintire, L. V. & Ives, C. L. Flow effects on prostacyclin production by cultured human-endothelial cells. Science 227, 1477–1479 (1985). This seminal contribution demonstrates how the application of forces influences the biochemical response of a cell by showing that pulsatile shear stress applied to cultured endothelial cells increases production of PGI 2 , a vasodilator and potent endogenous inhibitor of platelet aggregation.

    CAS  Google Scholar 

  67. Sandoo, A., van Zanten, J. J., Metsios, G. S., Carroll, D. & Kitas, G. D. The endothelium and its role in regulating vascular tone. Open Cardiovasc. Med. J. 4, 302–312 (2010).

    Google Scholar 

  68. Mac Gabhann, F. & Peirce, S. M. Collateral capillary arterialization following arteriolar ligation in murine skeletal muscle. Microcirculation 17, 333–347 (2010).

    Google Scholar 

  69. Chien, S. Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell. Am. J. Physiol. Heart Circ. Physiol. 292, H1209–H1224 (2007).

    CAS  Google Scholar 

  70. Kutys, M. L. & Chen, C. S. Forces and mechanotransduction in 3D vascular biology. Curr. Opin. Cell Biol. 42, 73–79 (2016).

    CAS  Google Scholar 

  71. Xu, J. et al. GPR68 senses flow and is essential for vascular physiology. Cell 173, 762–775 (2018).

    CAS  Google Scholar 

  72. Mack, J. J. et al. NOTCH1 is a mechanosensor in adult arteries. Nat. Commun. 8, 1620 (2017).

    Google Scholar 

  73. Coon, B. G. et al. Intramembrane binding of VE-cadherin to VEGFR2 and VEGFR3 assembles the endothelial mechanosensory complex. J. Cell Biol. 208, 975–986 (2015).

    CAS  Google Scholar 

  74. Schiffrin, E. L. Vascular stiffening and arterial compliance: implications for systolic blood pressure. Am. J. Hypertens. 17, 39S–48S (2004).

    CAS  Google Scholar 

  75. Duca, L. et al. Matrix ageing and vascular impacts: focus on elastin fragmentation. Cardiovasc. Res. 110, 298–308 (2016).

    CAS  Google Scholar 

  76. SenBanerjee, S. et al. KLF2 is a novel transcriptional regulator of endothelial proinflammatory activation. J. Exp. Med. 199, 1305–1315 (2004).

    CAS  Google Scholar 

  77. Mackman, N. New insights into the mechanisms of venous thrombosis. J. Clin. Invest. 122, 2331–2336 (2012).

    CAS  Google Scholar 

  78. Lehmann, M. et al. Platelets drive thrombus propagation in a hematocrit and glycoprotein VI-dependent manner in an in vitro venous thrombosis model. Arterioscler. Thromb. Vasc. Biol. 38, 1052–1062 (2018).

    CAS  Google Scholar 

  79. Conway, D. E., Williams, M. R., Eskin, S. G. & McIntire, L. V. Endothelial cell responses to atheroprone flow are driven by two separate flow components: low time-average shear stress and fluid flow reversal. Am. J. Physiol. Heart Circ. Physiol. 298, H367–H374 (2010).

    CAS  Google Scholar 

  80. Davies, P. F. Endothelial transcriptome profiles in vivo in complex arterial flow fields. Ann. Biomed. Eng. 36, 563–570 (2008).

    Google Scholar 

  81. Davies, P. F., Civelek, M., Fang, Y., Guerraty, M. A. & Passerini, A. G. Endothelial heterogeneity associated with regional athero-susceptibility and adaptation to disturbed blood flow in vivo. Semin. Thromb. Hemost. 36, 265–275 (2010).

    CAS  Google Scholar 

  82. Glagov, S., Weisenberg, E., Zarins, C. K., Stankunavicius, R. & Kolettis, G. J. Compensatory enlargement of human atherosclerotic coronary-arteries. N. Engl. J. Med. 316, 1371–1375 (1987).

    CAS  Google Scholar 

  83. Inaba, S. et al. Compensatory enlargement of the left main coronary artery: insights from the PROSPECT study. Coron. Artery Dis. 25, 98–103 (2014).

    Google Scholar 

  84. Varnava, A. M., Mills, P. G. & Davies, M. J. Relationship between coronary artery remodeling and plaque vulnerability. Circulation 105, 939–943 (2002).

    Google Scholar 

  85. Samady, H. et al. Coronary artery wall shear stress is associated with progression and transformation of atherosclerotic plaque and arterial remodeling in patients with coronary artery disease. Circulation 124, 779–788 (2011).

    CAS  Google Scholar 

  86. Stone, P. H. et al. Prediction of progression of coronary artery disease and clinical outcomes using vascular profiling of endothelial shear stress and arterial plaque characteristics the PREDICTION study. Circulation 126, 172–181 (2012).

    Google Scholar 

  87. Li, Z. Y. et al. Structural analysis and magnetic resonance imaging predict plaque vulnerability: a study comparing symptomatic and asymptomatic individuals. J. Vasc. Surg. 45, 768–775 (2007).

    Google Scholar 

  88. Gijsen, F. J. H. et al. Strain distribution over plaques in human coronary arteries relates to shear stress. Am. J. Physiol. Heart Circ. Physiol. 295, H1608–H1614 (2008).

    CAS  Google Scholar 

  89. Dahl, S. L. M. et al. Readily available tissue-engineered vascular grafts. Sci. Transl Med. 3, 68ra9 (2011).

    Google Scholar 

  90. Spadaccio, C. et al. Old myths, new concerns: the long-term effects of ascending aorta replacement with dacron grafts. Not all that glitters is gold. J. Cardiovasc. Transl Res. 9, 334–342 (2016).

    Google Scholar 

  91. Hoenig, M. R., Campbell, G. R., Rolfe, B. E. & Campbell, J. H. Tissue-engineered blood vessels: alternative to autologous grafts? Arterioscler. Thromb. Vasc. Biol. 25, 1128–1134 (2005).

    CAS  Google Scholar 

  92. L’Heureux, N. et al. Human tissue-engineered blood vessels for adult arterial revascularization. Nat. Med. 12, 361–365 (2006).

    Google Scholar 

  93. McAllister, T. N. et al. Effectiveness of haemodialysis access with an autologous tissue-engineered vascular graft: a multicentre cohort study. Lancet 373, 1440–1446 (2009).

    Google Scholar 

  94. Lawson, J. H. et al. Bioengineered human acellular vessels for dialysis access in patients with end-stage renal disease: two phase 2 single-arm trials. Lancet 387, 2026–2034 (2016).

    Google Scholar 

  95. Egginton, S., Zhou, A. L., Brown, M. D. & Hudlicka, O. Unorthodox angiogenesis in skeletal muscle. Cardiovasc. Res. 49, 634–646 (2001).

    CAS  Google Scholar 

  96. Hudlicka, O. & Brown, M. D. Adaptation of skeletal muscle microvasculature to increased or decreased blood flow: role of shear stress, nitric oxide and vascular endothelial growth factor. J. Vasc. Res. 46, 504–512 (2009).

    CAS  Google Scholar 

  97. Song, J. W. & Munn, L. L. Fluid forces control endothelial sprouting. Proc. Natl Acad. Sci. USA 108, 15342–15347 (2011).

    CAS  Google Scholar 

  98. Zhang, B. Y. et al. Biodegradable scaffold with built-in vasculature for organ-on-a-chip engineering and direct surgical anastomosis. Nat. Mater. 15, 669–678 (2016).

    CAS  Google Scholar 

  99. Bertassoni, L. E. et al. Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab. Chip 14, 2202–2211 (2014).

    CAS  Google Scholar 

  100. DiVito, K. A., Daniele, M. A., Roberts, S. A., Ligler, F. S. & Adams, A. A. Microfabricated blood vessels undergo neoangiogenesis. Biomaterials 138, 142–152 (2017).

    CAS  Google Scholar 

  101. Nichol, J. W. et al. Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 31, 5536–5544 (2010).

    CAS  Google Scholar 

  102. Heintz, K. A. et al. Fabrication of 3D biomimetic microfluidic networks in hydrogels. Adv. Healthc. Mater. 5, 2153–2160 (2016).

    CAS  Google Scholar 

  103. Cuchiara, M. P., Gould, D. J., McHale, M. K., Dickinson, M. E. & West, J. L. Integration of self-assembled microvascular networks with microfabricated PEG-based hydrogels. Adv. Funct. Mater. 22, 4511–4518 (2012).

    CAS  Google Scholar 

  104. Brandenberg, N. & Lutolf, M. P. In situ patterning of microfluidic networks in 3D cell-laden hydrogels. Adv. Mater. 28, 7450–7456 (2016).

    CAS  Google Scholar 

  105. Miller, J. S. et al. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat. Mater. 11, 768–774 (2012).

    CAS  Google Scholar 

  106. Qiu, Y. Z. et al. Microvasculature-on-a-chip for the long-term study of endothelial barrier dysfunction and microvascular obstruction in disease. Nat. Biomed. Eng. 2, 453–463 (2018). A hydrogel-based microvasculature-on-a-chip device is reported, showing for the first time long-term, physiologically relevant endothelial barrier function in vitro and the potential to elucidate the role of microvascular dysfunction in the pathogenesis of haematological disorders.

    Google Scholar 

  107. Polacheck, W. J. et al. A non-canonical Notch complex regulates adherens junctions and vascular barrier function. Nature 552, 258–262 (2017). Using a hydrogel-based microvasculature model, NOTCH1 can be identified as a mechanosensor that is responsible for regulating endothelial barrier function by a novel transcription-independent signalling mechanism.

    CAS  Google Scholar 

  108. Huynh, J. et al. Age-related intimal stiffening enhances endothelial permeability and leukocyte transmigration. Sci. Transl Med. 3, 112ra122 (2011). In this paper, the age-related stiffening of the arterial intima is characterized, and increased endothelial permeability is associated with its stiffening, which is a hallmark of atherosclerosis.

    Google Scholar 

  109. Swift, J. et al. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341, 1240104 (2013).

    Google Scholar 

  110. Zheng, Y. et al. Decreased deformability of lymphocytes in chronic lymphocytic leukemia. Sci. Rep. 5, 7613 (2015).

    CAS  Google Scholar 

  111. Dao, M., Lim, C. T. & Suresh, S. Mechanics of the human red blood cell deformed by optical tweezers. J. Mech. Phys. Solids 51, 2259–2280 (2003).

    Google Scholar 

  112. Fay, M. E. et al. Cellular softening mediates leukocyte demargination and trafficking, thereby increasing clinical blood counts. Proc. Natl Acad. Sci. USA 113, 1987–1992 (2016).

    CAS  Google Scholar 

  113. Tsai, M. A., Waugh, R. E. & Keng, P. C. Passive mechanical behavior of human neutrophils: effects of colchicine and paclitaxel. Biophys. J. 74, 3282–3291 (1998).

    CAS  Google Scholar 

  114. Brown, M. J., Hallam, J. A., Colucci-Guyon, E. & Shaw, S. Rigidity of circulating lymphocytes is primarily conferred by vimentin intermediate filaments. J. Immunol. 166, 6640 (2001).

    CAS  Google Scholar 

  115. Fletcher, D. A. & Mullins, D. Cell mechanics and the cytoskeleton. Nature 463, 485–492 (2010).

    CAS  Google Scholar 

  116. Harris, A. R., Jreij, P. & Fletcher, D. A. Mechanotransduction by the actin cytoskeleton: converting mechanical stimuli into biochemical signals. Annu. Rev. Biophys. 47, 617–631 (2016).

    Google Scholar 

  117. Discher, D. E. & Carl, P. New insights into red cell network structure, elasticity, and spectrin unfolding—a current review. Cell. Mol. Biol. Lett. 6, 593–606 (2001).

    CAS  Google Scholar 

  118. Johnson, C. P., Tang, H.-Y., Carag, C., Speicher, D. W. & Discher, D. E. Forced unfolding of proteins within cells. Science 317, 663–666 (2007).

    CAS  Google Scholar 

  119. Lammerding, J. et al. Lamins A and C but not lamin B1 regulate nuclear mechanics. J. Biol. Chem. 281, 25768–25780 (2006).

    CAS  Google Scholar 

  120. Shin, J. W. et al. Lamins regulate cell trafficking and lineage maturation of adult human hematopoietic cells. Proc. Natl Acad. Sci. USA 110, 18892–18897 (2013).

    CAS  Google Scholar 

  121. Feng, Q. & Kornmann, B. Mechanical forces on cellular organelles. J. Cell Sci. 131, jcs218479 (2018).

    Google Scholar 

  122. Mohandas, N. & Gallagher, P. G. Red cell membrane: past, present, and future. Blood 112, 3939–3948 (2008).

    CAS  Google Scholar 

  123. Smith, A. S. et al. Myosin IIA interacts with the spectrin-actin membrane skeleton to control red blood cell membrane curvature and deformability. Proc. Natl Acad. Sci. USA 115, E4377–E4385 (2018).

    CAS  Google Scholar 

  124. Schaer, D. J., Buehler, P. W., Alayash, A. I., Belcher, J. D. & Vercellotti, G. M. Hemolysis and free hemoglobin revisited: exploring hemoglobin and hemin scavengers as a novel class of therapeutic proteins. Blood 121, 1276–1284 (2013).

    CAS  Google Scholar 

  125. Presley, T. D. et al. Effects of a single sickling event on the mechanical fragility of sickle cell trait erythrocytes. Hemoglobin 34, 24–36 (2010).

    CAS  Google Scholar 

  126. Messmann, R., Gannon, S., Sarnaik, S. & Johnson, R. Mechanical properties of sickle cell membranes. Blood 75, 1711–1717 (1990).

    CAS  Google Scholar 

  127. Cranston, H. et al. Plasmodium falciparum maturation abolishes physiologic red cell deformability. Science 223, 400–403 (1984).

    CAS  Google Scholar 

  128. Paulitschke, M. & Nash, G. B. Membrane rigidity of red blood cells parasitized by different strains of Plasmodium falciparum. J. Lab. Clin. Med. 122, 581–589 (1993).

    CAS  Google Scholar 

  129. Zhang, Y. et al. Multiple stiffening effects of nanoscale knobs on human red blood cells infected with Plasmodium falciparum malaria parasite. Proc. Natl Acad. Sci. USA 112, 6068–6073 (2015).

    CAS  Google Scholar 

  130. Cahalan, S. M. et al. Piezo1 links mechanical forces to red blood cell volume. eLife 4, e07370 (2015).

    Google Scholar 

  131. Glogowska, E. et al. Novel mechanisms of PIEZO1 dysfunction in hereditary xerocytosis. Blood 130, 1845–1856 (2017).

    CAS  Google Scholar 

  132. Albuisson, J. et al. Dehydrated hereditary stomatocytosis linked to gain-of-function mutations in mechanically activated PIEZO1 ion channels. Nat. Commun. 4, 1884 (2013).

    Google Scholar 

  133. Bae, C., Gnanasambandam, R., Nicolai, C., Sachs, F. & Gottlieb, P. A. Xerocytosis is caused by mutations that alter the kinetics of the mechanosensitive channel PIEZO1. Proc. Natl Acad. Sci. USA 110, E1162–E1168 (2013).

    CAS  Google Scholar 

  134. Locke, C., Depani, S. & Gray, M. Extensive subclinical venous sinus thrombosis in the dehydrated infant. J. Matern. Fetal. Neonatal. Med. 23, 463–464 (2010).

    Google Scholar 

  135. Hbibi, M. et al. Severe hypernatremic dehydration associated with cerebral venous and aortic thrombosis in the neonatal period. BMJ Case Rep. 2012, bcr0720114426 (2012).

    Google Scholar 

  136. Schmid-Schönbein, G. W., Usami, S., Skalak, R. & Chien, S. The interaction of leukocytes and erythrocytes in capillary and postcapillary vessels. Microvasc. Res. 19, 45–70 (1980). This is one of the earliest papers suggesting that mechanical differences in the size and shape of red and white blood cells contribute to the margination phenomenon.

    Google Scholar 

  137. Walton, B. L. et al. Elevated hematocrit enhances platelet accumulation following vascular injury. Blood 129, 2537–2546 (2017).

    CAS  Google Scholar 

  138. Dunn, A. & Donnelly, S. The role of the kidney in blood volume regulation: the kidney as a regulator of the hematocrit. Am. J. Med. Sci. 334, 65–71 (2007).

    CAS  Google Scholar 

  139. Connes, P. et al. The role of blood rheology in sickle cell disease. Blood Rev. 30, 111–118 (2016).

    Google Scholar 

  140. Jelkmann, W. Regulation of erythropoietin production. J. Physiol. 589, 1251–1258 (2011).

    CAS  Google Scholar 

  141. Pivkin, I. V. et al. Biomechanics of red blood cells in human spleen and consequences for physiology and disease. Proc. Natl Acad. Sci. USA 113, 7804–7809 (2016).

    CAS  Google Scholar 

  142. Deplaine, G. et al. The sensing of poorly deformable red blood cells by the human spleen can be mimicked in vitro. Blood 117, e88–e95 (2011).

    CAS  Google Scholar 

  143. Rollig, C. & Ehninger, G. How I treat hyperleukocytosis in acute myeloid leukemia. Blood 125, 3246–3252 (2015).

    Google Scholar 

  144. Byrnes, J. R. & Wolberg, A. S. Red blood cells in thrombosis. Blood 130, 1795–1799 (2017).

    CAS  Google Scholar 

  145. Vannucchi, A. M. How I treat polycythemia vera. Blood 124, 3212–3220 (2014).

    CAS  Google Scholar 

  146. Westenbrink, B. D. et al. Anemia is associated with bleeding and mortality, but not stroke, in patients with atrial fibrillation: insights from the Apixaban for Reduction in Stroke and Other Thromboembolic Events in Atrial Fibrillation (ARISTOTLE) trial. Am. Heart J. 185, 140–149 (2017).

    Google Scholar 

  147. Gutierrez, M., Fish, M. B., Golinski, A. W. & Eniola-Adefeso, O. Presence of rigid red blood cells in blood flow interferes with the vascular wall adhesion of leukocytes. Langmuir 34, 2363–2372 (2018).

    CAS  Google Scholar 

  148. Khismatullin, D. B. in Current Topics in Membranes Vol. 64 (ed. Ley, K.) 47–111 (Academic Press, 2009).

  149. Hvas, A. M. et al. Tranexamic acid combined with recombinant factor VIII increases clot resistance to accelerated fibrinolysis in severe hemophilia A. J. Thromb. Haemost. 5, 2408–2414 (2007).

    CAS  Google Scholar 

  150. Collet, J. P. et al. Altered fibrin architecture is associated with hypofibrinolysis and premature coronary atherothrombosis. Arterioscler. Thromb. Vasc. Biol. 26, 2567–2573 (2006).

    CAS  Google Scholar 

  151. Brummel-Ziedins, K. E., Branda, R. F., Butenas, S. & Mann, K. G. Discordant fibrin formation in hemophilia. J. Thromb. Haemost. 7, 825–832 (2009).

    CAS  Google Scholar 

  152. Undas, A. Fibrin clot properties and their modulation in thrombotic disorders. Thromb. Haemost. 112, 32–42 (2014).

    CAS  Google Scholar 

  153. Brown, A. E., Litvinov, R. I., Discher, D. E., Purohit, P. K. & Weisel, J. W. Multiscale mechanics of fibrin polymer: gel stretching with protein unfolding and loss of water. Science 325, 741–744 (2009).

    CAS  Google Scholar 

  154. Collet, J.-P., Shuman, H., Ledger, R. E., Lee, S. & Weisel, J. W. The elasticity of an individual fibrin fiber in a clot. Proc. Natl Acad. Sci. USA 102, 9133 (2005).

    CAS  Google Scholar 

  155. Gersh, K. C., Nagaswami, C. & Weisel, J. W. Fibrin network structure and clot mechanical properties are altered by incorporation of erythrocytes. Thromb. Haemost. 102, 1169–1175 (2009).

    CAS  Google Scholar 

  156. Hategan, A., Gersh, K. C., Safer, D. & Weisel, J. W. Visualization of the dynamics of fibrin clot growth 1 molecule at a time by total internal reflection fluorescence microscopy. Blood 121, 1455–1458 (2013).

    CAS  Google Scholar 

  157. Ryan, E. A., Mockros, L. F., Weisel, J. W. & Lorand, L. Structural origins of fibrin clot rheology. Biophys. J. 77, 2813–2826 (1999).

    CAS  Google Scholar 

  158. Wolberg, A. S. Thrombin generation and fibrin clot structure. Blood Rev. 21, 131–142 (2007).

    CAS  Google Scholar 

  159. Weisel, J. W. The mechanical properties of fibrin for basic scientists and clinicians. Biophys. Chem. 112, 267–276 (2004).

    CAS  Google Scholar 

  160. Weisel, J. W. Enigmas of blood clot elasticity. Science 320, 456–457 (2008).

    CAS  Google Scholar 

  161. Liu, W. et al. Fibrin fibers have extraordinary extensibility and elasticity. Science 313, 634–634 (2006).

    CAS  Google Scholar 

  162. Li, W. et al. Fibrin fiber stiffness is strongly affected by fiber diameter, but not by fibrinogen glycation. Biophys. J. 110, 1400–1410 (2016).

    CAS  Google Scholar 

  163. Hudson, N. E. et al. Stiffening of individual fibrin fibers equitably distributes strain and strengthens networks. Biophys. J. 98, 1632–1640 (2010).

    CAS  Google Scholar 

  164. Shah, J. V. & Janmey, P. A. Strain hardening of fibrin gels and plasma clots. Rheol. Acta 36, 262–268 (1997).

    CAS  Google Scholar 

  165. Piechocka, I. K., Bacabac, R. G., Potters, M., MacKintosh, F. C. & Koenderink, G. H. Structural hierarchy governs fibrin gel mechanics. Biophys. J. 98, 2281–2289 (2010).

    CAS  Google Scholar 

  166. Macrae, F. L. et al. A fibrin biofilm covers blood clots and protects from microbial invasion. J. Clin. Invest. 128, 3356–3368 (2018).

    Google Scholar 

  167. Carroll, R. C., Gerrard, J. M. & Gilliam, J. M. Clot retraction facilitates clot lysis. Blood 57, 44–48 (1981).

    CAS  Google Scholar 

  168. Bucay, I. et al. Physical determinants of fibrinolysis in single fibrin fibers. PLOS ONE 10, e0116350 (2015).

    Google Scholar 

  169. Litvinov, R. I. & Weisel, J. W. Shear strengthens fibrin: the knob-hole interactions display ‘catch-slip’ kinetics. J. Thromb. Haemost. 11, 1933–1935 (2013).

    CAS  Google Scholar 

  170. Litvinov, R. I. et al. Regulatory element in fibrin triggers tension-activated transition from catch to slip bonds. Proc. Natl Acad. Sci. USA 115, 8575–8580 (2018).

    CAS  Google Scholar 

  171. Carr, M. E. & Zekert, S. L. Abnormal clot retraction, altered fibrin structure, and normal platelet function in multiple myeloma. Am. J. Physiol. Heart Circ. Physiol. 266, H1195–H1201 (1994).

    CAS  Google Scholar 

  172. Collet, J.-P. et al. Abnormal fibrin clot architecture in nephrotic patients is related to hypofibrinolysis: influence of plasma biochemical modifications. Thromb. Haemost. 82, 1482–1489 (1999).

    CAS  Google Scholar 

  173. Cieslik, J., Mrozinska, S., Broniatowska, E. & Undas, A. Altered plasma clot properties increase the risk of recurrent deep vein thrombosis: a cohort study. Blood 131, 797–807 (2018).

    CAS  Google Scholar 

  174. Drabik, L., Wołkow, P. & Undas, A. Fibrin clot permeability as a predictor of stroke and bleeding in anticoagulated patients with atrial fibrillation. Stroke 48, 2716–2722 (2017).

    Google Scholar 

  175. Undas, A., Wiek, I., Stêpien, E., Zmudka, K. & Tracz, W. Hyperglycemia is associated with enhanced thrombin formation, platelet activation, and fibrin clot resistance to lysis in patients with acute coronary syndrome. Diabetes Care 31, 1590–1595 (2008).

    CAS  Google Scholar 

  176. Carmassi, F. et al. Coagulation and fibrinolytic system impairment in insulin dependent diabetes mellitus. Thromb. Res. 67, 643–654 (1992).

    CAS  Google Scholar 

  177. Jirousková, M., Jaiswal, J. K. & Coller, B. S. Ligand density dramatically affects integrin alpha IIb beta 3-mediated platelet signaling and spreading. Blood 109, 5260–5269 (2007).

    Google Scholar 

  178. Lam, W. A. et al. Mechanics and contraction dynamics of single platelets and implications for clot stiffening. Nat. Mater. 10, 61–66 (2011). This is the first paper to report the measurement of the mechanics of platelet contraction at the single platelet level, providing insight into how the mechanosensitivity and mechanics of single platelets affect clot mechanics.

    CAS  Google Scholar 

  179. Jen, C. J. & McIntire, L. V. The structural properties and contractile force of a clot. Cell Motil. 2, 445–455 (1982).

    CAS  Google Scholar 

  180. Greilich, P. E., Carr, M. E., Zekert, S. L. & Dent, R. M. Quantitative assessment of platelet function and clot structure in patients with severe coronary artery disease. Am. J. Med. Sci. 307, 15–20 (1994).

    CAS  Google Scholar 

  181. Minh, G. L. et al. Impaired contraction of blood clots as a novel prothrombotic mechanism in systemic lupus erythematosus. Clin. Sci. 132, 243–254 (2018).

    Google Scholar 

  182. Kita, A. et al. Microenvironmental geometry guides platelet adhesion and spreading: a quantitative analysis at the single cell level. PLOS ONE 6, e26437 (2011).

    CAS  Google Scholar 

  183. Stalker, T. J. et al. Hierarchical organization in the hemostatic response and its relationship to the platelet-signaling network. Blood 121, 1875–1885 (2013).

    CAS  Google Scholar 

  184. Kroll, M. H., Hellums, J. D., McIntire, L. V., Schafer, A. I. & Moake, J. L. Platelets and shear stress. Blood 88, 1525–1541 (1996).

    CAS  Google Scholar 

  185. Nesbitt, W. S. et al. A shear gradient-dependent platelet aggregation mechanism drives thrombus formation. Nat. Med. 15, 665–673 (2009).

    CAS  Google Scholar 

  186. Carr, M. E. Measurement of platelet force: the Hemodyne hemostasis analyzer. Clin. Lab Manage. Rev. 9, 9 (1995).

    Google Scholar 

  187. Krishnaswami, A. et al. Patients with coronary artery disease who present with chest pain have significantly elevated platelet contractile force and clot elastic modulus. Thromb. Haemost. 88, 739–744 (2002).

    CAS  Google Scholar 

  188. Carr, M. E. et al. Enhanced platelet force development despite drug-induced inhibition of platelet aggregation in patients with thromboangiitis obliterans: two case reports. Vasc. Endovascular Surg. 36, 473–480 (2002).

    Google Scholar 

  189. Tutwiler, V. et al. Contraction of blood clots is impaired in acute ischemic stroke. Arterioscler. Thromb. Vasc. Biol. 37, 271–279 (2017).

    CAS  Google Scholar 

  190. Rusak, T. et al. Evaluation of hemostatic balance in blood from patients with polycythemia vera by means of thromboelastography: The effect of isovolemic erythrocytapheresis. Platelets 23, 455–462 (2012).

    CAS  Google Scholar 

  191. Rusak, T., Piszcz, J., Misztal, T., Branska-Januszewska, J. & Tomasiak, M. Platelet-related fibrinolysis resistance in patients suffering from PV. Impact of clot retraction and isovolemic erythrocytapheresis. Thromb. Res. 134, 192–198 (2014).

    CAS  Google Scholar 

  192. Feghhi, S. et al. Glycoprotein Ib-IX-V complex transmits cytoskeletal forces that enhance platelet adhesion. Biophys. J. 111, 601–608 (2016).

    CAS  Google Scholar 

  193. Feghhi, S., Tooley, W. W. & Sniadecki, N. J. Nonmuscle myosin IIA regulates platelet contractile forces through Rho kinase and myosin light-chain kinase. J. Biomech. Eng. 138, 104506 (2016).

    Google Scholar 

  194. Cines, D. B. et al. Clot contraction: compression of erythrocytes into tightly packed polyhedra and redistribution of platelets and fibrin. Blood 123, 1596–1603 (2014).

    CAS  Google Scholar 

  195. Stalker, T. J. et al. A systems approach to hemostasis: 3. Thrombus consolidation regulates intrathrombus solute transport and local thrombin activity. Blood 124, 1824–1831 (2014).

    CAS  Google Scholar 

  196. Tomaiuolo, M. et al. A systems approach to hemostasis: 2. Computational analysis of molecular transport in the thrombus microenvironment. Blood 124, 1816–1823 (2014).

    CAS  Google Scholar 

  197. Welsh, J. D. et al. A systems approach to hemostasis: 1. The interdependence of thrombus architecture and agonist movements in the gaps between platelets. Blood 124, 1808–1815 (2014).

    CAS  Google Scholar 

  198. M., M. et al. Platelet packing density is an independent regulator of the hemostatic response to injury. J. Thromb. Haemost. 16, 973–983 (2018).

    Google Scholar 

  199. Rana, K. & Neeves, K. B. Blood flow and mass transfer regulation of coagulation. Blood Rev. 30, 357–368 (2016).

    CAS  Google Scholar 

  200. Nechipurenko, D. Y. et al. Clot contraction drives the translocation of procoagulant platelets to thrombus surface. Arterioscler. Thromb. Vasc. Biol. 39, 37–47 (2019).

    CAS  Google Scholar 

  201. Kim, O. V., Litvinov, R. I., Alber, M. S. & Weisel, J. W. Quantitative structural mechanobiology of platelet-driven blood clot contraction. Nat. Commun. 8, 1274 (2017).

    Google Scholar 

  202. Merkel, T. J. et al. Using mechanobiological mimicry of red blood cells to extend circulation times of hydrogel microparticles. Proc. Natl Acad. Sci. USA 108, 586–591 (2011).

    CAS  Google Scholar 

  203. Brenner, J. S. et al. Red blood cell-hitchhiking boosts delivery of nanocarriers to chosen organs by orders of magnitude. Nat. Commun. 9, 2684 (2018).

    Google Scholar 

  204. Korin, N. et al. Shear-activated nanotherapeutics for drug targeting to obstructed blood vessels. Science 337, 738–742 (2012).

    CAS  Google Scholar 

  205. Hansen, C. E. et al. Platelet–microcapsule hybrids leverage contractile force for targeted delivery of hemostatic agents. ACS Nano 11, 5579–5589 (2017).

    CAS  Google Scholar 

  206. Brown, A. C. et al. Ultrasoft microgels displaying emergent platelet-like behaviours. Nat. Mater. 13, 1108–1114 (2014).

    CAS  Google Scholar 

  207. Brophy, D. F., Martin, R. J., Gehr, T. W. & Carr, M. E. A hypothesis-generating study to evaluate platelet activity in diabetics with chronic kidney disease. Thromb. J. 3, 3 (2005).

    Google Scholar 

  208. Kim, S., Lee, H., Chung, M. & Jeon, N. L. Engineering of functional, perfusable 3D microvascular networks on a chip. Lab. Chip 13, 1489–1500 (2013).

    CAS  Google Scholar 

  209. Takahashi, H. et al. Visualizing dynamics of angiogenic sprouting from a three-dimensional microvasculature model using stage-top optical coherence tomography. Sci. Rep. 7, 42426 (2017).

    CAS  Google Scholar 

  210. Herring, N. & Paterson, D. J. Levick’s Introduction to Cardiovascular Physiology 6th edn (CRC Press, 2018).

  211. Dupré, L., Houmadi, R., Tang, C. & Rey-Barroso, J. T lymphocyte migration: an action movie starring the actin and associated actors. Front. Immunol. https://doi.org/10.3389/fimmu.2015.00586 (2015).

    Article  Google Scholar 

  212. MBINFO. What is microtubule dynamic instability. Mechanobiology Institute https://www.mechanobio.info/cytoskeleton-dynamics/what-is-the-cytoskeleton/what-are-microtubules/what-microtubule-dynamic-instability/ (2018).

  213. Wells, R. E. & Merrill, E. W. Influence of flow properties of blood upon viscosity-hematocrit relationships. J. Clin. Invest. 41, 1591–1598 (1962).

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Georgia Tech Institute for Electronics and Nanotechnology (a member of the National Nanotechnology Coordinated Infrastructure), which is supported by the US National Science Foundation (grant ECCS-1542174), and the financial supports provided by US National Science Foundation grants CAREER CBET-1150235 (to W.A.L.) and DMR-1809566 (to W.A.L. and D.R.M.) and US National Institutes of Health grants R01HL140589 (to W.A.L.), R21MD011590 (to W.A.L.), R01HL130918 (to W.A.L.), U54HL141981 (to W.A.L.), R01HL121264 (to W.A.L.), K25HL141636 (to D.R.M.) and R21EB026591 (to D.R.M.). D.R.M. thanks C. R. Dillon for advice and useful discussions.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the preparation of this manuscript.

Corresponding author

Correspondence to Wilbur A. Lam.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, Y., Myers, D.R. & Lam, W.A. The biophysics and mechanics of blood from a materials perspective. Nat Rev Mater 4, 294–311 (2019). https://doi.org/10.1038/s41578-019-0099-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-019-0099-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing